1
|
Rafaqat S, Ali N, Torres C, Rittmann B. Recent progress in treatment of dyes wastewater using microbial-electro-Fenton technology. RSC Adv 2022; 12:17104-17137. [PMID: 35755587 PMCID: PMC9178700 DOI: 10.1039/d2ra01831d] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2022] [Accepted: 05/02/2022] [Indexed: 01/24/2023] Open
Abstract
Globally, textile dyeing and manufacturing are one of the largest industrial units releasing huge amount of wastewater (WW) with refractory compounds such as dyes and pigments. Currently, wastewater treatment has been viewed as an industrial opportunity for rejuvenating fresh water resources and it is highly required in water stressed countries. This comprehensive review highlights an overall concept and in-depth knowledge on integrated, cost-effective cross-disciplinary solutions for domestic and industrial (textile dyes) WW and for harnessing renewable energy. This basic concept entails parallel or sequential modes of treating two chemically different WW i.e., domestic and industrial in the same system. In this case, contemporary advancement in MFC/MEC (METs) based systems towards Microbial-Electro-Fenton Technology (MEFT) revealed a substantial emerging scope and opportunity. Principally the said technology is based upon previously established anaerobic digestion and electro-chemical (photo/UV/Fenton) processes in the disciplines of microbial biotechnology and electro-chemistry. It holds an added advantage to all previously establish technologies in terms of treatment and energy efficiency, minimal toxicity and sludge waste, and environmental sustainable. This review typically described different dyes and their ultimate fate in environment and recently developed hierarchy of MEFS. It revealed detail mechanisms and degradation rate of dyes typically in cathodic Fenton system under batch and continuous modes of different MEF reactors. Moreover, it described cost-effectiveness of the said technology in terms of energy budget (production and consumption), and the limitations related to reactor fabrication cost and design for future upgradation to large scale application.
Collapse
Affiliation(s)
- Shumaila Rafaqat
- Department of Microbiology, Quaid-i-Azam University Islamabad Pakistan
| | - Naeem Ali
- Department of Microbiology, Faculty of Biological Sciences, Quaid-i-Azam University Islamabad Pakistan
| | - Cesar Torres
- Biodesign Swette Center for Environmental Biotechnology, Arizona State University USA
| | - Bruce Rittmann
- Biodesign Swette Center for Environmental Biotechnology, Arizona State University USA
| |
Collapse
|
2
|
Singh A, Sharma A, Ahmed A, Sundramoorthy AK, Furukawa H, Arya S, Khosla A. Recent Advances in Electrochemical Biosensors: Applications, Challenges, and Future Scope. BIOSENSORS 2021; 11:336. [PMID: 34562926 PMCID: PMC8472208 DOI: 10.3390/bios11090336] [Citation(s) in RCA: 117] [Impact Index Per Article: 39.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/24/2021] [Revised: 08/25/2021] [Accepted: 08/31/2021] [Indexed: 05/11/2023]
Abstract
The electrochemical biosensors are a class of biosensors which convert biological information such as analyte concentration that is a biological recognition element (biochemical receptor) into current or voltage. Electrochemical biosensors depict propitious diagnostic technology which can detect biomarkers in body fluids such as sweat, blood, feces, or urine. Combinations of suitable immobilization techniques with effective transducers give rise to an efficient biosensor. They have been employed in the food industry, medical sciences, defense, studying plant biology, etc. While sensing complex structures and entities, a large data is obtained, and it becomes difficult to manually interpret all the data. Machine learning helps in interpreting large sensing data. In the case of biosensors, the presence of impurity affects the performance of the sensor and machine learning helps in removing signals obtained from the contaminants to obtain a high sensitivity. In this review, we discuss different types of biosensors along with their applications and the benefits of machine learning. This is followed by a discussion on the challenges, missing gaps in the knowledge, and solutions in the field of electrochemical biosensors. This review aims to serve as a valuable resource for scientists and engineers entering the interdisciplinary field of electrochemical biosensors. Furthermore, this review provides insight into the type of electrochemical biosensors, their applications, the importance of machine learning (ML) in biosensing, and challenges and future outlook.
Collapse
Affiliation(s)
- Anoop Singh
- Department of Physics, University of Jammu, Jammu 180006, India; (A.S.); (A.S.); (A.A.)
| | - Asha Sharma
- Department of Physics, University of Jammu, Jammu 180006, India; (A.S.); (A.S.); (A.A.)
| | - Aamir Ahmed
- Department of Physics, University of Jammu, Jammu 180006, India; (A.S.); (A.S.); (A.A.)
| | - Ashok K. Sundramoorthy
- Department of Chemistry, SRM Institute of Science and Technology, Kattankulathur 603203, India;
| | - Hidemitsu Furukawa
- Department of Mechanical System Engineering, Graduate School of Science and Engineering, Yamagata University, Yamagata 992-8510, Japan;
| | - Sandeep Arya
- Department of Physics, University of Jammu, Jammu 180006, India; (A.S.); (A.S.); (A.A.)
| | - Ajit Khosla
- Department of Mechanical System Engineering, Graduate School of Science and Engineering, Yamagata University, Yamagata 992-8510, Japan;
| |
Collapse
|
3
|
Dharmaratne AC, Moulton JT, Niroula J, Walgama C, Mazumder S, Mohanty S, Krishnan S. Pyrenyl Carbon Nanotubes for Covalent Bilirubin Oxidase Biocathode Design: Should the Nanotubes be Carboxylated? ELECTROANAL 2020. [DOI: 10.1002/elan.201900564] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
- Asantha C. Dharmaratne
- Department of Chemistry Oklahoma State University, Stillwater Oklahoma 74078 United States
| | - James T. Moulton
- Department of Chemistry Oklahoma State University, Stillwater Oklahoma 74078 United States
| | - Jinesh Niroula
- Department of Chemistry Oklahoma State University, Stillwater Oklahoma 74078 United States
| | - Charuksha Walgama
- Department of Chemistry Oklahoma State University, Stillwater Oklahoma 74078 United States
- Present Address: Department of Chemistry The University of Texas at Austin Austin TX 78712 United States
| | - Suman Mazumder
- Department of Chemistry Oklahoma State University, Stillwater Oklahoma 74078 United States
| | - Smita Mohanty
- Department of Chemistry Oklahoma State University, Stillwater Oklahoma 74078 United States
| | - Sadagopan Krishnan
- Department of Chemistry Oklahoma State University, Stillwater Oklahoma 74078 United States
| |
Collapse
|
4
|
Alkotaini B, Tinucci SL, Robertson SJ, Hasan K, Minteer SD, Grattieri M. Alginate-Encapsulated Bacteria for the Treatment of Hypersaline Solutions in Microbial Fuel Cells. Chembiochem 2018; 19:1162-1169. [PMID: 29700989 DOI: 10.1002/cbic.201800142] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2018] [Indexed: 11/07/2022]
Abstract
A microbial fuel cell (MFC) based on a new wild-type strain of Salinivibrio sp. allowed the self-sustained treatment of hypersaline solutions (100 g L-1 , 1.71 m NaCl), reaching a removal of (87±11) % of the initial chemical oxygen demand after five days of operation, being the highest value achieved for hypersaline MFC. The degradation process and the evolution of the open circuit potential of the MFCs were correlated, opening the possibility for online monitoring of the treatment. The use of alginate capsules to trap bacterial cells, increasing cell density and stability, resulted in an eightfold higher power output, together with a more stable system, allowing operation up to five months with no maintenance required. The reported results are of critical importance to efforts to develop a sustainable and cost-effective system that treats hypersaline waste streams and reduces the quantity of polluting compounds released.
Collapse
Affiliation(s)
- Bassam Alkotaini
- Departments of Chemistry and Materials Science and Engineering, University of Utah, 315 S 1400 E Room 2020, Salt Lake City, UT, 84112, USA
- Present address: BioFire Diagnostics, LLC, Salt Lake City, UT, 84108, USA
| | - Samantha L Tinucci
- Chemistry Department, College of Saint Benedict, 37 South College Avenue, St. Joseph, MN, 56374, USA
| | - Stuart J Robertson
- Chemical Engineering Department, University of Utah, 50 Central Campus Drive, Salt Lake City, UT, 84112, USA
| | - Kamrul Hasan
- Departments of Chemistry and Materials Science and Engineering, University of Utah, 315 S 1400 E Room 2020, Salt Lake City, UT, 84112, USA
| | - Shelley D Minteer
- Departments of Chemistry and Materials Science and Engineering, University of Utah, 315 S 1400 E Room 2020, Salt Lake City, UT, 84112, USA
| | - Matteo Grattieri
- Departments of Chemistry and Materials Science and Engineering, University of Utah, 315 S 1400 E Room 2020, Salt Lake City, UT, 84112, USA
| |
Collapse
|
5
|
Colombo A, Marzorati S, Lucchini G, Cristiani P, Pant D, Schievano A. Assisting cultivation of photosynthetic microorganisms by microbial fuel cells to enhance nutrients recovery from wastewater. BIORESOURCE TECHNOLOGY 2017; 237:240-248. [PMID: 28341382 DOI: 10.1016/j.biortech.2017.03.038] [Citation(s) in RCA: 36] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/13/2017] [Revised: 03/06/2017] [Accepted: 03/08/2017] [Indexed: 06/06/2023]
Abstract
Spirulina was cultivated in cathodic compartments of photo-microbial fuel cells (P-MFC). Anodic compartments were fed with swine-farming wastewater, enriched with sodium acetate (2.34gCODL-1). Photosynthetic oxygen generation rates were sufficient to sustain cathodic oxygen reduction, significantly improving P-MFC electrochemical performances, as compared to water-cathode control experiments. Power densities (0.8-1Wm-2) approached those of air-cathode MFCs, run as control. COD was efficiently removed and only negligible fractions leaked to the cathodic chamber. Spirulina growth rates were comparable to those of control (MFC-free) cultures, while pH was significantly (0.5-1unit) higher in P-MFCs, due to cathodic reactions. Alkaliphilic photosynthetic microorganisms like Spirulina might take advantage of these selective conditions. Electro-migration along with diffusion to the cathodic compartment concurred for the recovery of most nutrients. Only P and Mg were retained in the anodic chamber. A deeper look into electro-osmotic mechanisms should be addressed in future studies.
Collapse
Affiliation(s)
- Alessandra Colombo
- Department of Agricultural and Environmental Science (DiSAA), Università degli Studi di Milano, via Celoria 2, 20133 Milano, Italy
| | - Stefania Marzorati
- Department of Agricultural and Environmental Science (DiSAA), Università degli Studi di Milano, via Celoria 2, 20133 Milano, Italy
| | - Giorgio Lucchini
- Department of Agricultural and Environmental Science (DiSAA), Università degli Studi di Milano, via Celoria 2, 20133 Milano, Italy
| | - Pierangela Cristiani
- RSE - Ricerca sul Sistema Energetico S.p.A., via Rubattino 54, 20134 Milano, Italy
| | - Deepak Pant
- Separation & Conversion Technology, Flemish Institute for Technological Research (VITO), Boeretang 200, 2400 Mol, Belgium
| | - Andrea Schievano
- Department of Agricultural and Environmental Science (DiSAA), Università degli Studi di Milano, via Celoria 2, 20133 Milano, Italy.
| |
Collapse
|
6
|
Santoro C, Arbizzani C, Erable B, Ieropoulos I. Microbial fuel cells: From fundamentals to applications. A review. JOURNAL OF POWER SOURCES 2017; 356:225-244. [PMID: 28717261 PMCID: PMC5465942 DOI: 10.1016/j.jpowsour.2017.03.109] [Citation(s) in RCA: 542] [Impact Index Per Article: 77.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/13/2017] [Accepted: 03/23/2017] [Indexed: 05/03/2023]
Abstract
In the past 10-15 years, the microbial fuel cell (MFC) technology has captured the attention of the scientific community for the possibility of transforming organic waste directly into electricity through microbially catalyzed anodic, and microbial/enzymatic/abiotic cathodic electrochemical reactions. In this review, several aspects of the technology are considered. Firstly, a brief history of abiotic to biological fuel cells and subsequently, microbial fuel cells is presented. Secondly, the development of the concept of microbial fuel cell into a wider range of derivative technologies, called bioelectrochemical systems, is described introducing briefly microbial electrolysis cells, microbial desalination cells and microbial electrosynthesis cells. The focus is then shifted to electroactive biofilms and electron transfer mechanisms involved with solid electrodes. Carbonaceous and metallic anode materials are then introduced, followed by an explanation of the electro catalysis of the oxygen reduction reaction and its behavior in neutral media, from recent studies. Cathode catalysts based on carbonaceous, platinum-group metal and platinum-group-metal-free materials are presented, along with membrane materials with a view to future directions. Finally, microbial fuel cell practical implementation, through the utilization of energy output for practical applications, is described.
Collapse
Affiliation(s)
- Carlo Santoro
- Department of Chemical and Biological Engineering, Center Micro-Engineered Materials (CMEM), University of New Mexico, 87106, Albuquerque, NM, USA
| | - Catia Arbizzani
- Department of Chemistry “Giacomo Ciamician”, University of Bologna, Via Selmi 2, 40126, Bologna, Italy
| | - Benjamin Erable
- University of Toulouse, CNRS, Laboratoire de Génie Chimique, CAMPUS INP – ENSIACET, 4 Allée Emile Monso, CS 84234, 31432, Toulouse Cedex 4, France
| | - Ioannis Ieropoulos
- Bristol BioEnergy Centre, Bristol Robotics Laboratory, T Block, University of the West of England, Frenchay Campus, Coldharbour Ln, Bristol, BS16 1QY, United Kingdom
| |
Collapse
|
7
|
Grattieri M, Shivel ND, Sifat I, Bestetti M, Minteer SD. Sustainable Hypersaline Microbial Fuel Cells: Inexpensive Recyclable Polymer Supports for Carbon Nanotube Conductive Paint Anodes. CHEMSUSCHEM 2017; 10:2053-2058. [PMID: 28244231 DOI: 10.1002/cssc.201700099] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/19/2017] [Revised: 02/26/2017] [Indexed: 06/06/2023]
Abstract
Microbial fuel cells are an emerging technology for wastewater treatment, but to be commercially viable and sustainable, the electrode materials must be inexpensive, recyclable, and reliable. In this study, recyclable polymeric supports were explored for the development of anode electrodes to be applied in single-chamber microbial fuel cells operated in field under hypersaline conditions. The support was covered with a carbon nanotube (CNT) based conductive paint, and biofilms were able to colonize the electrodes. The single-chamber microbial fuel cells with Pt-free cathodes delivered a reproducible power output after 15 days of operation to achieve 12±1 mW m-2 at a current density of 69±7 mA m-2 . The decrease of the performance in long-term experiments was mostly related to inorganic precipitates on the cathode electrode and did not affect the performance of the anode, as shown by experiments in which the cathode was replaced and the fuel cell performance was regenerated. The results of these studies show the feasibility of polymeric supports coated with CNT-based paint for microbial fuel cell applications.
Collapse
Affiliation(s)
- Matteo Grattieri
- Departments of Chemistry and Material Science and Engineering, University of Utah, 315 S 1400 E Rm 2020, Salt Lake City, UT, 84112, USA
| | - Nelson D Shivel
- Departments of Chemistry and Material Science and Engineering, University of Utah, 315 S 1400 E Rm 2020, Salt Lake City, UT, 84112, USA
| | - Iram Sifat
- Departments of Chemistry and Material Science and Engineering, University of Utah, 315 S 1400 E Rm 2020, Salt Lake City, UT, 84112, USA
- United States-Pakistan Centre for Advanced Studies in Water, Mehran University of Engineering and Technology, Jamshoro, 76090, Sindh, Pakistan
| | - Massimiliano Bestetti
- Department of Chemistry, Materials and Chemical Engineering "G. Natta", Politecnico di Milano, Piazza L. da Vinci 32, 20133, Milano, Italy
| | - Shelley D Minteer
- Departments of Chemistry and Material Science and Engineering, University of Utah, 315 S 1400 E Rm 2020, Salt Lake City, UT, 84112, USA
| |
Collapse
|
8
|
Compagnone D, Francia GD, Natale CD, Neri G, Seeber R, Tajani A. Chemical Sensors and Biosensors in Italy: A Review of the 2015 Literature. SENSORS 2017; 17:s17040868. [PMID: 28420110 PMCID: PMC5424745 DOI: 10.3390/s17040868] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/30/2017] [Revised: 03/29/2017] [Accepted: 04/11/2017] [Indexed: 12/14/2022]
Abstract
The contributions of Italian researchers to sensor research in 2015 is reviewed. The analysis of the activities in one year allows one to obtain a snapshot of the Italian scenario capturing the main directions of the research activities. Furthermore, the distance of more than one year makes meaningful the bibliometric analysis of the reviewed papers. The review shows a research community distributed among different scientific disciplines, from chemistry, physics, engineering, and material science, with a strong interest in collaborative works.
Collapse
Affiliation(s)
- Dario Compagnone
- Faculty of Bioscience and Technology for Food, Agriculture and Environment, University of Teramo, 64100 Teramo, Italy.
| | - Girolamo Di Francia
- ENEA Italian National Agency for New Technologies, Energy and Sustainable Economic Development, P.le E. Fermi 1, Napoli 80055, Italy.
| | - Corrado Di Natale
- Department of Electronic Engineering, University of Rome Tor Vergata, 00133 Roma, Italy.
| | - Giovanni Neri
- Department of Engineering, University of Messina, 98166 Messina, Italy.
| | - Renato Seeber
- Department of Chemical and Geological Sciences, University of Modena and Reggio Emilia, 41125 Modena, Italy.
| | - Antonella Tajani
- Department of Physical Science and Technologies of Matter, National Research Council, 00133 Roma, Italy.
| |
Collapse
|
9
|
Santoro C, Mohidin AF, Grasso LL, Seviour T, Palanisamy K, Hinks J, Lauro FM, Marsili E. Sub-toxic concentrations of volatile organic compounds inhibit extracellular respiration of Escherichia coli cells grown in anodic bioelectrochemical systems. Bioelectrochemistry 2016; 112:173-7. [DOI: 10.1016/j.bioelechem.2016.02.003] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2015] [Revised: 02/10/2016] [Accepted: 02/17/2016] [Indexed: 12/17/2022]
|
10
|
Grattieri M, Hasan K, Minteer SD. Bioelectrochemical Systems as a Multipurpose Biosensing Tool: Present Perspective and Future Outlook. ChemElectroChem 2016. [DOI: 10.1002/celc.201600507] [Citation(s) in RCA: 46] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
Affiliation(s)
- Matteo Grattieri
- Departments of Chemistry and Materials Science & Engineering University of Utah 315 S 1400 E Salt Lake City UT 84112 USA
| | - Kamrul Hasan
- Departments of Chemistry and Materials Science & Engineering University of Utah 315 S 1400 E Salt Lake City UT 84112 USA
| | - Shelley D. Minteer
- Departments of Chemistry and Materials Science & Engineering University of Utah 315 S 1400 E Salt Lake City UT 84112 USA
| |
Collapse
|
11
|
Grattieri M, Tucci M, Bestetti M, Trasatti S, Cristiani P. Facilitated Electron Hopping in Nanolayer Oxygen-Insensitive Glucose Biosensor for Application in a Complex Matrix. ChemElectroChem 2016. [DOI: 10.1002/celc.201600357] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
- Matteo Grattieri
- Department of Chemistry; University of Utah, 315 S 1400 E Room 2020; Salt lake City UT 84112 USA
| | - Matteo Tucci
- Department of Agriculture, DISAA; Università degli Studi di Milano; Via Celoria 2 Milan 20133 Italy
| | - Massimiliano Bestetti
- Department of Chemistry, Materials and Chemical Engineering; Politecnico di Milano; Piazza L. da Vinci 32 Milan 20133 Italy
| | - Stefano Trasatti
- Department of Chemistry; Università degli Studi di Milano; Via Golgi 19 Milan 20133 Italy
| | - Pierangela Cristiani
- Department of Sustainable Development and Energy Resources; Ricerca sul Sistema Energetico S.p.A.; Via Rubattino 54 Milan 20134 Italy
| |
Collapse
|
12
|
Santoro C, Babanova S, Erable B, Schuler A, Atanassov P. Bilirubin oxidase based enzymatic air-breathing cathode: Operation under pristine and contaminated conditions. Bioelectrochemistry 2016; 108:1-7. [DOI: 10.1016/j.bioelechem.2015.10.005] [Citation(s) in RCA: 46] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2015] [Revised: 10/16/2015] [Accepted: 10/23/2015] [Indexed: 11/25/2022]
|
13
|
Ng SR, Pang H, Chen P, Li CM, O'Hare D. A Novel Electroactive Polymer for pH-independent Oxygen Sensing. ELECTROANAL 2015. [DOI: 10.1002/elan.201500352] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
|
14
|
Three-dimensional X-ray microcomputed tomography of carbonates and biofilm on operated cathode in single chamber microbial fuel cell. Biointerphases 2015; 10:031009. [DOI: 10.1116/1.4930239] [Citation(s) in RCA: 59] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
|