1
|
Lahcen AA, Slaughter G. Nanomaterial-based electrochemical sensors for anti-HIV drug monitoring: Innovations, challenges, and prospects. J Pharm Biomed Anal 2025; 258:116727. [PMID: 39914329 DOI: 10.1016/j.jpba.2025.116727] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2024] [Revised: 01/16/2025] [Accepted: 02/01/2025] [Indexed: 03/10/2025]
Abstract
Monitoring human immunodeficiency virus (HIV) and anti-HIV drugs is critical for optimizing treatment outcomes and preventing drug resistance. Accurate detection and quantification of anti-HIV drugs are essential to ensure appropriate dosing, enhancing patient care and therapeutic efficacy. Electrochemical biosensors have emerged as a pivotal tool in this context, offering high sensitivity, specificity, and rapid response times. Leveraging advancements in nanomaterials, these sensors provide reliable and efficient solutions for point-of-care (POC) applications in clinical and environmental settings. This review presents a comprehensive analysis of recent innovations in electrochemical sensor technologies for anti-HIV drug detection and quantification, focusing on nanomaterial-based platforms. It addresses the challenges of developing and implementing these technologies, including matrix effects, stability, and scalability. Furthermore, the review explores future directions, emphasizing the integration of sensors into POC systems and their potential to revolutionize personalized HIV treatment and pharmaceutical monitoring.
Collapse
Affiliation(s)
- Abdellatif Ait Lahcen
- Center for Bioelectronics, Old Dominion University, Norfolk, VA 23508, United States
| | - Gymama Slaughter
- Center for Bioelectronics, Old Dominion University, Norfolk, VA 23508, United States.
| |
Collapse
|
2
|
Baluchová S, Mamaloukou A, Koldenhof RH, Buijnsters JG. Modification-free boron-doped diamond as a sensing material for direct and reliable detection of the antiretroviral drug nevirapine. Electrochim Acta 2023. [DOI: 10.1016/j.electacta.2023.142238] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/16/2023]
|
3
|
Sahoo K, Varshney N, Das T, Mahto SK, Kumar M. Copper oxide nanoparticle: multiple functionalities in photothermal therapy and electrochemical energy storage. APPLIED NANOSCIENCE 2023. [DOI: 10.1007/s13204-023-02768-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
|
4
|
Tito GS, Abolanle AS, Kuvarega AT, Mamba BB, Feleni U. Nickel Selenide Quantum dot Reactor for Electro‐oxidation of Nevirapine in Wastewater. ChemistrySelect 2022. [DOI: 10.1002/slct.202202294] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Ginny S. Tito
- Institute for Nanotechnology and Water Sustainability College of Science Engineering and Technology University of South Africa Florida Campus 1710 Johannesburg South Africa
| | - Adekunle S. Abolanle
- Obafemi Awolowo University Department of Chemistry Ibadan Road 220005, lle-lfe Osun Nigeria
| | - Alex T. Kuvarega
- Institute for Nanotechnology and Water Sustainability College of Science Engineering and Technology University of South Africa Florida Campus 1710 Johannesburg South Africa
| | - Bhekie B. Mamba
- Institute for Nanotechnology and Water Sustainability College of Science Engineering and Technology University of South Africa Florida Campus 1710 Johannesburg South Africa
| | - Usisipho Feleni
- Institute for Nanotechnology and Water Sustainability College of Science Engineering and Technology University of South Africa Florida Campus 1710 Johannesburg South Africa
| |
Collapse
|
5
|
Electroanalytical sensors for antiretroviral drugs determination in pharmaceutical and biological samples: A review. J Electroanal Chem (Lausanne) 2022. [DOI: 10.1016/j.jelechem.2022.116621] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
6
|
Electroanalytical Methods for Determination of Antiviral Drugs in Pharmaceutical Formulation and Biological Fluids: A Review. CHINESE JOURNAL OF ANALYTICAL CHEMISTRY 2022. [DOI: 10.1016/j.cjac.2022.100063] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
7
|
Hassan Pour B, Haghnazari N, Keshavarzi F, Ahmadi E, Zarif BR. A sensitive sensor based on molecularly imprinted polypyrrole on reduced graphene oxide modified glassy carbon electrode for nevirapine analysis. ANALYTICAL METHODS : ADVANCING METHODS AND APPLICATIONS 2021; 13:4767-4777. [PMID: 34569556 DOI: 10.1039/d1ay00500f] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
A molecularly imprinted polymer (MIP) sensor was offered for nevirapine (NVP) analysis based on the electropolymerization of pyrrole (Py) on electrochemically reduced graphene oxide (ErGO) immobilized on a glassy carbon electrode (GCE). Electrochemical impedance spectroscopy (EIS), scanning electron microscopy (SEM) and atomic force microscope (AFM) were applied to characterize the proposed sensor (MIP/ErGO/GCE). The electrochemical operation of this sensor for NVP analysis was tested using differential pulse voltammetry (DPV) and cyclic voltammetry (CV) methods in an alkaline medium. The prepared MIP/ErGO/GCE exhibited better analytical performance than other modified electrodes toward NVP detection. The offered sensor depicted a linearity range between 0.005 µM and 400 µM with a limit of detection (LOD) of 2 nM under optimal conditions. Notably, the offered sensor illustrated excellent selectivity, good reproducibility, acceptable repeatability, and reliable long-term performance. These experiments depicted the constructed sensor as a favorable and good sensing element towards NVP monitoring in pharmaceutical and serum samples.
Collapse
Affiliation(s)
- Bayazid Hassan Pour
- Department of Biology, Sanandaj Branch, Islamic Azad University, Sanandaj, Iran.
| | - Nahid Haghnazari
- Department of Biology, Sanandaj Branch, Islamic Azad University, Sanandaj, Iran.
| | - Fatemeh Keshavarzi
- Department of Biology, Sanandaj Branch, Islamic Azad University, Sanandaj, Iran.
| | - Elahe Ahmadi
- Department of Chemistry, Kermanshah Branch, Islamic Azad University, Kermanshah, Iran
| | | |
Collapse
|
8
|
Selcuk O, Demir Y, Erkmen C, Yıldırım S, Uslu B. Analytical Methods for Determination of Antiviral Drugs in Different Matrices: Recent Advances and Trends. Crit Rev Anal Chem 2021; 52:1662-1693. [PMID: 33983841 DOI: 10.1080/10408347.2021.1908111] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
Abstract
Viruses are the main pathogenic substances that cause severe diseases in humans and other living things. They are among the most common microorganisms, and consequently, antiviral drugs have emerged to prevent and treat viral infections. Antiviral drugs are an essential drug group considering their prescription and consumption rates for different diseases and indications. Therefore, it is crucial to develop accurate and precise analytical methods to detect antiviral drugs in various matrices. Chromatographic techniques are used frequently for the quantification purpose since they allow simultaneous determination of antivirals. Electrochemical methods have also gained importance since the analysis can be performed quickly without the need for pretreatment. Spectrophotometric and spectrofluorimetric methods are used because they are simple, inexpensive, and less time-consuming methods. The purpose of this review is to present an overview of the analysis of currently used antiviral drugs from 2010 to 2021. Since studies on antiviral drugs are numerous, selected publications were reviewed in this article. The analysis of antiviral drugs was divided into three main groups: chromatographic, spectrometric, and electrochemical methods which were applied to different matrices, including pharmaceutical, biological, and environmental samples.
Collapse
Affiliation(s)
- Ozge Selcuk
- Department of Analytical Chemistry, Faculty of Pharmacy, Ankara University, Ankara, Turkey
| | - Yeliz Demir
- Department of Analytical Chemistry, Faculty of Pharmacy, Ankara University, Ankara, Turkey
| | - Cem Erkmen
- Department of Analytical Chemistry, Faculty of Pharmacy, Ankara University, Ankara, Turkey
| | - Sercan Yıldırım
- Department of Analytical Chemistry, Faculty of Pharmacy, Karadeniz Technical University, Trabzon, Turkey
| | - Bengi Uslu
- Department of Analytical Chemistry, Faculty of Pharmacy, Ankara University, Ankara, Turkey
| |
Collapse
|
9
|
Green synthesis of nonprecious metal-doped copper hydroxide nanoparticles for construction of a dopamine sensor. Future Med Chem 2021; 13:715-729. [PMID: 33709796 DOI: 10.4155/fmc-2020-0333] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
Background: Copper oxide nanoparticles doped with nonprecious metal species (Ni and Mn) were synthesized. Method: A glassy carbon electrode (GCE) was modified by drop-casting of nanostructure suspensions, constructing Ni:Cu(OH)2/GCE, Mn:Cu(OH)2/GCE and Cu(OH)2/GCE. Results: The voltammetric oxidation of dopamine (DA) by the constructed electrodes confirmed that the electrocatalytic oxidation of DA is a reversible, pH-dependent, diffusion-controlled process; the best response was obtained by Mn:Cu(OH)2/GCE. A sensitive calibration graph (0.664 μA/μM) was produced for DA in the concentration range of 0.3-10.0 μM, with a detection limit of 79 nM using Mn:Cu(OH)2/GCE. Conclusion: The Mn:Cu(OH)2/GCE possessed an accurate response toward DA with an acceptable selectivity, stability and antifouling effect, revealing the applicability of the Mn:Cu(OH)2/GCE for DA analysis in biological samples.
Collapse
|
10
|
Massumi S, Ahmadi E, Akbari A, Gholivand MB. Highly sensitive and selective sensor based on molecularly imprinted polymer for voltammetric determination of Nevirapine in biological samples. J Electroanal Chem (Lausanne) 2020. [DOI: 10.1016/j.jelechem.2020.114508] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
|
11
|
Okumu FO, Silwana B, Matoetoe MC. Application of MWCNT/Ag‐Pt Nanocomposite Modified GCE for the Detection of Nevirapine in Pharmaceutical Formulation and Biological Samples. ELECTROANAL 2020. [DOI: 10.1002/elan.202060374] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Affiliation(s)
- Fredrick O. Okumu
- Department of Chemistry Cape Peninsula University of Technology Tennant Street, P.O. Box 652. Cape Town South Africa
| | - Bongiwe Silwana
- Department of Chemistry Cape Peninsula University of Technology Tennant Street, P.O. Box 652. Cape Town South Africa
| | - Mangaka C. Matoetoe
- Department of Chemistry Cape Peninsula University of Technology Tennant Street, P.O. Box 652. Cape Town South Africa
| |
Collapse
|
12
|
Ghalkhani M, Kaya SI, Bakirhan NK, Ozkan Y, Ozkan SA. Application of Nanomaterials in Development of Electrochemical Sensors and Drug Delivery Systems for Anticancer Drugs and Cancer Biomarkers. Crit Rev Anal Chem 2020; 52:481-503. [DOI: 10.1080/10408347.2020.1808442] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Affiliation(s)
- Masoumeh Ghalkhani
- Department of Chemistry, Faculty of Science, Shahid Rajaee Teacher Training University, Tehran, Iran
| | - Sariye Irem Kaya
- Department of Analytical Chemistry, Faculty of Pharmacy, Ankara University, Ankara, Turkey
- Gulhane Faculty of Pharmacy, Department of Analytical Chemistry, University of Health Sciences, Ankara, Turkey
| | - Nurgul K. Bakirhan
- Gulhane Faculty of Pharmacy, Department of Analytical Chemistry, University of Health Sciences, Ankara, Turkey
| | - Yalcin Ozkan
- Gulhane Faculty of Pharmacy, Department of Pharmaceutical Technology, University of Health Sciences, Ankara, Turkey
| | - Sibel A. Ozkan
- Department of Analytical Chemistry, Faculty of Pharmacy, Ankara University, Ankara, Turkey
| |
Collapse
|
13
|
Green synthesis of Cu/Cu2O/CuO nanostructures and the analysis of their electrochemical properties. SN APPLIED SCIENCES 2020. [DOI: 10.1007/s42452-020-2704-5] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
|
14
|
TiO2 Nanoparticles Decorated Graphene Nanoribbons for Voltammetric Determination of an Anti-HIV Drug Nevirapine. J CHEM-NY 2020. [DOI: 10.1155/2020/3932715] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
Abstract
In the present study, electrochemical behavior of nevirapine on a glassy carbon electrode (GCE) modified with TiO2 nanoparticles decorated graphene nanoribbons was investigated. Characterization of different components used for modifications was achieved using Fourier transform infrared spectroscopy (FT-IR) and scanning electron microscopy (SEM). The electrochemical behavior of nevirapine on the modified electrodes was examined using cyclic voltammetry (CV), electrochemical impedance spectroscopy (EIS), chronoamperometry (CA), and differential pulse voltammetry (DPV). A considerable oxidation potential decrease of +352 mV for nevirapine in 0.1 M phosphate-buffered saline (PBS), pH 11.0, was achieved due to synergy offered by graphene nanoribbons and TiO2 compared to graphene nanoribbons (+252 mV) and TiO2 (−37 mV), all with respect to the glassy carbon electrode. Under optimized conditions, DPV gave linear calibrations over the range of 0.020–0.14 µM. The detection limit was calculated as 0.043 µM. The developed sensor was used for determination of nevirapine in a pharmaceutical formulation successfully.
Collapse
|
15
|
Vo TG, Chang SJ, Chiang CY. Anion-induced morphological regulation of cupric oxide nanostructures and their application as co-catalysts for solar water splitting. Dalton Trans 2020; 49:1765-1775. [PMID: 32016198 DOI: 10.1039/c9dt04626g] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Morphological control of nanomaterials is essential for their properties and potential applications, and many strategies have been developed. In this work, a new strategy for simultaneously preparing and modulating the morphological structure evolution of copper layered hydroxyl salts and oxides is introduced. By changing the nature of the anions in the electroplating solution, significant variations in the size and porosity of nanosheets are achieved. Porous CuO nanosheets with a higher surface area were obtained by the use of copper nitrate as a copper source, while CuO nanoflakes were produced from copper sulfate. Photoanodes combining these porous CuO nanomaterials and a typical light absorber (BiVO4) exhibited good morphology-dependent activities for photoelectrochemical water splitting. The composite electrode displays a negative shift of 180 mV for the onset potential and an approximately 2-fold enhancement in the photocurrent compared to the bare BiVO4. The charge recombination rate in the photoelectrode with the porous CuO nanosheets was significantly lower than the bare photoanode due to the favorable electron diffusion path and effective charge collection. This research offers an effective method for constructing a highly active photoelectrocatalytic system for overall water splitting.
Collapse
Affiliation(s)
- Truong-Giang Vo
- Department of Chemical Engineering, National Taiwan University of Science and Technology, Taipei-106, Taiwan.
| | - Shu-Ju Chang
- Department of Chemical Engineering, National Taiwan University of Science and Technology, Taipei-106, Taiwan.
| | - Chia-Ying Chiang
- Department of Chemical Engineering, National Taiwan University of Science and Technology, Taipei-106, Taiwan.
| |
Collapse
|
16
|
Ahmadi E, Eyvani MR, Riahifar V, Momeneh H, Karami C. Amperometric determination of nevirapine by GCE modified with c-MWCNTs and synthesized 11-mercaptoundecanoyl hydrazinecarbothioamide coated silver nanoparticles. Microchem J 2019. [DOI: 10.1016/j.microc.2019.02.054] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
|
17
|
Verma N, Kumar N. Synthesis and Biomedical Applications of Copper Oxide Nanoparticles: An Expanding Horizon. ACS Biomater Sci Eng 2019; 5:1170-1188. [DOI: 10.1021/acsbiomaterials.8b01092] [Citation(s) in RCA: 133] [Impact Index Per Article: 22.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Affiliation(s)
- Nishant Verma
- National Centre for Flexible Electronics, Indian Institute of Technology, Kanpur, Kalyanpur, Kanpur, Uttar Pradesh−208016, India
| | - Nikhil Kumar
- Department of Biotechnology, National Institute of Technology, Raipur, G.E. Road, Opposite Science College, Raipur, Chhattisgarh−492010, India
| |
Collapse
|
18
|
Tiwari P, Nirala NR, Prakash R. Determination of the Anti‐HIV Drug Nevirapine Using Electroactive 2D Material Pd@rGO Decorated with MoS
2
Quantum Dots. ChemistrySelect 2018. [DOI: 10.1002/slct.201702250] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Preeti Tiwari
- School of Materials Science and Technology, Indian Institute of Technology (Banaras Hindu University) Varanasi-221005 India
| | - Narsingh R. Nirala
- School of Materials Science and Technology, Indian Institute of Technology (Banaras Hindu University) Varanasi-221005 India
| | - Rajiv Prakash
- School of Materials Science and Technology, Indian Institute of Technology (Banaras Hindu University) Varanasi-221005 India
| |
Collapse
|
19
|
A novel voltammetric sensor for nevirapine, based on modified graphite electrode by MWCNs/poly(methylene blue)/gold nanoparticle. Anal Biochem 2017; 527:4-12. [PMID: 28366640 DOI: 10.1016/j.ab.2017.03.018] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2017] [Revised: 03/18/2017] [Accepted: 03/23/2017] [Indexed: 11/23/2022]
Abstract
In the present study, a graphite electrode (GE) modified by conductive film (containing functionalized multi-walled carbon nanotubes (f-MWCNTs), poly methylene blue p(MB) and gold nanoparticles (AuNPs)) was introduced for determination of nevirapine (NVP) as an anti-HIV drug by applying the differential pulse anodic stripping voltammetry (DPASV) technique. Modification of the electrode was investigated by scanning electron microscopy (SEM) and impedance electrochemical spectroscopy (EIS). All electrochemical effective parameters on detection of NVP were optimized and the oxidation peak current of drug was used for its monitoring. The obtained results confirmed that the oxidation peak currents increased linearly by increasing in NVP concentrations in the range of 0.1-50 μM and a detection limit of 53 nM was achieved. The proposed sensor (AuNPs/p(MB)/f-MWCNTs/GE) was successfully applied for the determination of NVP in blood serum and pharmaceutical samples. It revealed the excellent stability, repeatability and reproducibility as well.
Collapse
|