1
|
Pratap Singh Raman A, Thakur G, Pandey G, Kumari K, Singh P. An Updated Review on Functionalized Graphene as Sensitive Materials in Sensing of Pesticides. Chem Biodivers 2024; 21:e202302080. [PMID: 38578653 DOI: 10.1002/cbdv.202302080] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2023] [Revised: 04/02/2024] [Accepted: 04/05/2024] [Indexed: 04/06/2024]
Abstract
Numerous chemical pesticides were employed for a long time to manage pests, but their uncontrolled application harmed the health and the environment. Accurately quantifying pesticide residues is essential for risk evaluation and regulatory purposes. Numerous analytical methods have been developed and utilized to achieve sensitive and specific detection of pesticides in intricate sampl es like water, soil, food, and air. Electrochemical sensors based on amperometry, potentiometry, or impedance spectroscopy offer portable, rapid, and sensitive detection suitable for on-site analysis. This study examines the potential of electrochemical sensors for the accurate evaluation of various effects of pesticides. Emphasizing the use of Graphene (GR), Graphene Oxide (GO), Reduced Graphene Oxide (rGO), and Graphdiyne composites, the study highlights their enhanced performance in pesticide sensing by stating the account of many actual sensors that have been made for specific pesticides. Computational studies provide valuable insights into the adsorption kinetics, binding energies, and electronic properties of pesticide-graphene complexes, guiding the design and optimization of graphene-based sensors with improved performance. Furthermore, the discussion extends to the emerging field of biopesticides. While the GR/GO/rGO based sensors hold immense future prospects, and their existing limitations have also been discussed, which need to be solved with future research.
Collapse
Affiliation(s)
- Anirudh Pratap Singh Raman
- Department of Chemistry, Atma Ram Sanatan Dharma College, University of Delhi, Delhi, India
- Department of Chemistry, Faculty of Engineering and Technology, SRM Institute of Science and Technology, Delhi- NCR Campus, Delhi-Merrut Road, Modinagar, Ghaziabad, UP, India
| | - Gauri Thakur
- Department of Chemistry, Atma Ram Sanatan Dharma College, University of Delhi, Delhi, India
- Department of Chemistry, Indian Institute of Technology, Madras, India
| | - Garima Pandey
- Department of Chemistry, Faculty of Engineering and Technology, SRM Institute of Science and Technology, Delhi- NCR Campus, Delhi-Merrut Road, Modinagar, Ghaziabad, UP, India
| | - Kamlesh Kumari
- Department of Zoology, University of Delhi, Delhi, India
| | - Prashant Singh
- Department of Chemistry, Atma Ram Sanatan Dharma College, University of Delhi, Delhi, India
- Department of Chemistry, Faculty of Engineering and Technology, SRM Institute of Science and Technology, Delhi- NCR Campus, Delhi-Merrut Road, Modinagar, Ghaziabad, UP, India
| |
Collapse
|
2
|
Crapnell RD, Adarakatti PS, Banks CE. Electroanalytical overview: the sensing of carbendazim. ANALYTICAL METHODS : ADVANCING METHODS AND APPLICATIONS 2023; 15:4811-4826. [PMID: 37721714 DOI: 10.1039/d3ay01053h] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/19/2023]
Abstract
Carbendazim is a broad-spectrum systemic fungicide that is used to control various fungal diseases in agriculture, horticulture, and forestry. Carbendazim is also used in post-harvest applications to prevent fungal growth on fruits and vegetables during storage and transportation. Carbendazim is regulated in many countries and banned in others, thus, there is a need for the sensing of carbendazim to ensure that high levels are avoided which can result in potential health risks. One approach is the use of electroanalytical sensors which present a rapid, but highly selective and sensitive output, whilst being economical and providing portable sensing platforms to support on-site analysis. In this minireview, we report on the electroanalytical sensing of carbendazim overviewing recent advances, helping to elucidate the electrochemical mechanism and provide conclusions and future perspectives of this field.
Collapse
Affiliation(s)
- Robert D Crapnell
- Faculty of Science and Engineering, Manchester Metropolitan University, Chester Street, Manchester M1 5GD, UK.
| | - Prashanth S Adarakatti
- Faculty of Science and Engineering, Manchester Metropolitan University, Chester Street, Manchester M1 5GD, UK.
| | - Craig E Banks
- Faculty of Science and Engineering, Manchester Metropolitan University, Chester Street, Manchester M1 5GD, UK.
| |
Collapse
|
3
|
Zhang C, Qiu M, Wang J, Liu Y. Recent Advances in Nanoparticle-Based Optical Sensors for Detection of Pesticide Residues in Soil. BIOSENSORS 2023; 13:bios13040415. [PMID: 37185490 PMCID: PMC10136432 DOI: 10.3390/bios13040415] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/31/2023] [Revised: 03/11/2023] [Accepted: 03/17/2023] [Indexed: 05/17/2023]
Abstract
The excessive and unreasonable use of pesticides has adversely affected the environment and human health. The soil, one of the most critical natural resources supporting human survival and development, accumulates large amounts of pesticide residues. Compared to traditional spectrophotometry analytical methods, nanoparticle-based sensors stand out for their simplicity of operation as well as their high sensitivity and low detection limits. In this review, we focus primarily on the functions that various nanoparticles have and how they can be used to detect various pesticide residues in soil. A detailed discussion was conducted on the properties of nanoparticles, including their color changeability, Raman enhancement, fluorescence enhancement and quenching, and catalysis. We have also systematically reviewed the methodology for detecting insecticides, herbicides, and fungicides in soil by using nanoparticles.
Collapse
Affiliation(s)
- Chunhong Zhang
- Xi'an Key Laboratory of Advanced Control and Intelligent Process, School of Automation, Xi'an University of Posts & Telecommunications, Xi'an 710121, China
| | - Mingle Qiu
- Xi'an Key Laboratory of Advanced Control and Intelligent Process, School of Automation, Xi'an University of Posts & Telecommunications, Xi'an 710121, China
| | - Jinglin Wang
- Key Laboratory of Applied Surface and Colloid Chemistry, Ministry of Education, School of Chemistry and Chemical Engineering, Shaanxi Normal University, Xi'an 710062, China
| | - Yongchun Liu
- Key Laboratory of Applied Surface and Colloid Chemistry, Ministry of Education, School of Chemistry and Chemical Engineering, Shaanxi Normal University, Xi'an 710062, China
| |
Collapse
|
4
|
Ilager D, Shetti NP, Foucaud Y, Badawi M, Aminabhavi TM. Graphene/g-carbon nitride (GO/g-C 3N 4) nanohybrids as a sensor material for the detection of methyl parathion and carbendazim. CHEMOSPHERE 2022; 292:133450. [PMID: 34979209 DOI: 10.1016/j.chemosphere.2021.133450] [Citation(s) in RCA: 21] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/03/2021] [Revised: 11/25/2021] [Accepted: 12/24/2021] [Indexed: 06/14/2023]
Abstract
The widespread use of methyl parathion (MP) and carbendazim (CBZ) as pesticide molecules for controlling pests and protect crops has added pollution issues; excess usage of these can lead to atmospheric pollution through contaminating water and soil sources. In the present study, detection of these compounds at the trace level was achieved by employing graphene oxide (GO) and graphitic carbon nitride (g-C3N4) nanohybrid electrode assembly (GO/g-C3N4/GCE). The X-ray diffraction (XRD), Transmission Electron Microscopy (TEM), and Atomic Force Microscopy (AFM) techniques were also used to characterize the materials developed to reveal their purity, crystal structure, and morphology. The complete voltammetric behavior of these analytes was investigated using cyclic voltammetic (CV) and square wave voltammetry (SWV) techniques. The influence of pH was studied and it was noticed that electrochemical response was the highest at pH 7.0 for MP and at pH 4.2 for CBZ. Density Functional Theory (DFT) calculations could help us to understand the adsorption behavior of MP and CBZ onto the GO and g-C3N4 before their degradation due to the electrochemical reactions. SWV technique was helpful in the trace level detection of MP and CBZ. Linearity plots were obtained in the range of concentration from 8.0 × 10-8 M to 1.0 × 10-4 M with a limit of detection 0.824 nM for MP and 1.0 × 10-8 M to 2.5 × 10-4 M for CBZ with the detection limit of 2.82 nM. Significance of the developed method in the field of agricultural and environmental domains was successfully investigated by monitoring MP and CBZ in water and soil samples, and the obtained results suggested the selectivity, stability, and reproducibility of the newly developed GO/g-C3N4/GCE electrode assembly.
Collapse
Affiliation(s)
- Davalasab Ilager
- Department of Chemistry, K.L.E. Institute of Technology, Hubballi, 580 027, Karnataka, India
| | - Nagaraj P Shetti
- School of Advanced Sciences, KLE Technological University, Vidyanagar, Hubballi, 580 031, Karnataka, India.
| | | | | | - Tejraj M Aminabhavi
- School of Advanced Sciences, KLE Technological University, Vidyanagar, Hubballi, 580 031, Karnataka, India
| |
Collapse
|
5
|
Fozing Mekeuo GA, Despas C, Péguy Nanseu‐Njiki C, Walcarius A, Ngameni E. Preparation of Functionalized
Ayous
Sawdust‐carbon Nanotubes Composite for the Electrochemical Determination of Carbendazim Pesticide. ELECTROANAL 2021. [DOI: 10.1002/elan.202100262] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Affiliation(s)
- Ghislaine Ariane Fozing Mekeuo
- Laboratoire de Chimie Analytique, Faculté des Sciences Université de Yaoundé I BP 812 Yaoundé Cameroun
- Université de Lorraine, CNRS LCPME F-54000 Nancy France
| | | | | | | | - Emmanuel Ngameni
- Laboratoire de Chimie Analytique, Faculté des Sciences Université de Yaoundé I BP 812 Yaoundé Cameroun
| |
Collapse
|
6
|
Ilager D, Seo H, Kalanur SS, Shetti NP, Aminabhavi TM. A novel sensor based on WO 3·0.33H 2O nanorods modified electrode for the detection and degradation of herbicide, carbendazim. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2021; 279:111611. [PMID: 33187775 DOI: 10.1016/j.jenvman.2020.111611] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/19/2020] [Revised: 10/26/2020] [Accepted: 11/01/2020] [Indexed: 06/11/2023]
Abstract
In the present-day scenario, it is necessary to establish more flexible, effective and selective analytical methods that are easy to operate and less expensive. Cyclic voltammetry (CV) can be a useful technique to assess minute quantity of pollutants and in this work, an effort has been made to detect the trace quantification from the environmental samples. Herein, electrochemical sensor was fabricated using tungsten oxide nanorod (WO3·0.33H2O) for sensitive detection of fungicide, carbendazim (CBZ). Under optimal conditions, while studying the effect of pH on peak current, the highest peak current was observed at pH 4.2. The degradation of CBZ followed the mixed diffusion-adsorption controlled and quasi-reversible processess at the WO3·0.33H2O/GC electrode surface. Using WO3·0.33H2O/GCE sensor in SWV provided the lowest limit of detection (LOD) and limit of quantification (LOQ) values of 2.21 × 10-8 M and 7.37 × 10-8 M, respectively over the concentration ranges of 1.0 × 10-7 M to 2.5 × 10-4 M. The proposed method demonstrates potential applicability of the fabricated sensor for soil and water samples analysis in the management of creating a benign environment.
Collapse
Affiliation(s)
- Davalasab Ilager
- Center for Electrochemical Science & Materials, Department of Chemistry, K. L. E. Institute of Technology, Gokul, Hubballi 580027, Karnataka, India
| | - Hyungtak Seo
- Department of Materials Science & Engineering, Ajou University, Suwon 16499, Republic of Korea
| | - Shankara S Kalanur
- Department of Materials Science & Engineering, Ajou University, Suwon 16499, Republic of Korea.
| | - Nagaraj P Shetti
- Center for Electrochemical Science & Materials, Department of Chemistry, K. L. E. Institute of Technology, Gokul, Hubballi 580027, Karnataka, India.
| | - Tejraj M Aminabhavi
- Pharmaceutical Engineering, SET's College of Pharmacy, Dharwad, 580-007, India
| |
Collapse
|
7
|
Oliveira TM, Ribeiro FW, Sousa CP, Salazar-Banda GR, de Lima-Neto P, Correia AN, Morais S. Current overview and perspectives on carbon-based (bio)sensors for carbamate pesticides electroanalysis. Trends Analyt Chem 2020. [DOI: 10.1016/j.trac.2019.115779] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
|
8
|
Zhou Y, Li Y, Han P, Dang Y, Zhu M, Li Q, Fu Y. A novel low-dimensional heteroatom doped Nd2O3 nanostructure for enhanced electrochemical sensing of carbendazim. NEW J CHEM 2019. [DOI: 10.1039/c9nj02778e] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
Reasonable design and synthesis of high-efficiency nanocatalysts are of great significance for studying the electrocatalytic analysis of fungicides.
Collapse
Affiliation(s)
- Yuanzhen Zhou
- School of Chemistry and Chemical Engineering
- Xi'an University of Architecture and Technology
- Xi'an
- China
| | - Yang Li
- School of Chemistry and Chemical Engineering
- Xi'an University of Architecture and Technology
- Xi'an
- China
| | - Ping Han
- School of Chemistry and Chemical Engineering
- Xi'an University of Architecture and Technology
- Xi'an
- China
| | - Yuan Dang
- School of Chemistry and Chemical Engineering
- Xi'an University of Architecture and Technology
- Xi'an
- China
| | - Mengyi Zhu
- School of Chemistry and Chemical Engineering
- Xi'an University of Architecture and Technology
- Xi'an
- China
| | - Qian Li
- School of Chemistry and Chemical Engineering
- Xi'an University of Architecture and Technology
- Xi'an
- China
| | - Yile Fu
- School of Chemistry and Chemical Engineering
- Xi'an University of Architecture and Technology
- Xi'an
- China
| |
Collapse
|
9
|
Yanke JGM, Dedzo GK, Ngameni E. Solvent Effect on the Grafting of an Organophilic Silane Onto Smectite-type Clay: Application as Electrode Modifiers for Pesticide Detection. ELECTROANAL 2017. [DOI: 10.1002/elan.201700144] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Affiliation(s)
| | - Gustave Kenne Dedzo
- Laboratory of Analytical Chemistry; Faculty of Science; University of Yaounde I; B.P. 812 Yaoundé Cameroon
| | - Emmanuel Ngameni
- Laboratory of Analytical Chemistry; Faculty of Science; University of Yaounde I; B.P. 812 Yaoundé Cameroon
| |
Collapse
|
10
|
Arruda GJ, Lima FD, Cardoso CAL. Ultrasensitive determination of carbendazim in water and orange juice using a carbon paste electrode. JOURNAL OF ENVIRONMENTAL SCIENCE AND HEALTH. PART. B, PESTICIDES, FOOD CONTAMINANTS, AND AGRICULTURAL WASTES 2016; 51:534-539. [PMID: 27176928 DOI: 10.1080/03601234.2016.1170550] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/05/2023]
Abstract
A carbon paste electrode was used for the electrochemical quantification of carbendazim in water and orange juice samples. Carbendazim oxidation on the electrode surface was found to be controlled by adsorption. The novel electrochemical procedure for carbendazim quantification employed differential pulse voltammetry using a carbon paste electrode under optimal conditions. Carbendazim oxidation currents were linear at concentrations of 2.84 to 45.44 µg L(-1), with a limit of detection of 0.96 µg L(-1). The proposed method was applied to carbendazim quantification in ultrapurified water, river water, and orange juice. Recovery rates in water and orange juice samples were in the 97%-101% range, indicating that the method can be employed to determine carbendazim in these matrices, with advantages including shorter analysis time and lower cost than routine methods such as chromatography or spectroscopy. The electrode showed good reproducibility, remarkable stability, and especially good surface renewability by simple mechanical polishing. The recovery rates observed were highly concordant with those obtained for high-performance liquid chromatography, having a relative standard deviation of less than 1.3%.
Collapse
Affiliation(s)
- Gilberto J Arruda
- a Chemistry Program, Universidade Estadual de Mato Grosso do Sul , Dourados , MS , Brazil
| | - Fábio De Lima
- b Institute of Chemistry, Universidade Federal de Mato Grosso do Sul , Campo Grande , MS , Brazil
| | - Claudia A L Cardoso
- a Chemistry Program, Universidade Estadual de Mato Grosso do Sul , Dourados , MS , Brazil
| |
Collapse
|