1
|
Dubourg G, Pavlović Z, Bajac B, Kukkar M, Finčur N, Novaković Z, Radović M. Advancement of metal oxide nanomaterials on agri-food fronts. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 928:172048. [PMID: 38580125 DOI: 10.1016/j.scitotenv.2024.172048] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/27/2023] [Revised: 03/03/2024] [Accepted: 03/26/2024] [Indexed: 04/07/2024]
Abstract
The application of metal oxide nanomaterials (MOx NMs) in the agrifood industry offers innovative solutions that can facilitate a paradigm shift in a sector that is currently facing challenges in meeting the growing requirements for food production, while safeguarding the environment from the impacts of current agriculture practices. This review comprehensively illustrates recent advancements and applications of MOx for sustainable practices in the food and agricultural industries and environmental preservation. Relevant published data point out that MOx NMs can be tailored for specific properties, enabling advanced design concepts with improved features for various applications in the agrifood industry. Applications include nano-agrochemical formulation, control of food quality through nanosensors, and smart food packaging. Furthermore, recent research suggests MOx's vital role in addressing environmental challenges by removing toxic elements from contaminated soil and water. This mitigates the environmental effects of widespread agrichemical use and creates a more favorable environment for plant growth. The review also discusses potential barriers, particularly regarding MOx toxicity and risk evaluation. Fundamental concerns about possible adverse effects on human health and the environment must be addressed to establish an appropriate regulatory framework for nano metal oxide-based food and agricultural products.
Collapse
Affiliation(s)
- Georges Dubourg
- University of Novi Sad, Center for Sensor Technologies, Biosense Institute, Dr Zorana Đinđića 1, 21000 Novi Sad, Serbia.
| | - Zoran Pavlović
- University of Novi Sad, Center for Sensor Technologies, Biosense Institute, Dr Zorana Đinđića 1, 21000 Novi Sad, Serbia
| | - Branimir Bajac
- University of Novi Sad, Center for Sensor Technologies, Biosense Institute, Dr Zorana Đinđića 1, 21000 Novi Sad, Serbia
| | - Manil Kukkar
- University of Novi Sad, Center for Sensor Technologies, Biosense Institute, Dr Zorana Đinđića 1, 21000 Novi Sad, Serbia
| | - Nina Finčur
- University of Novi Sad Faculty of Sciences, Department of Chemistry, Biochemistry and Environmental Protection, Trg Dositeja Obradovića 3, 21000 Novi Sad, Serbia
| | - Zorica Novaković
- University of Novi Sad, Center for Sensor Technologies, Biosense Institute, Dr Zorana Đinđića 1, 21000 Novi Sad, Serbia
| | - Marko Radović
- University of Novi Sad, Center for Sensor Technologies, Biosense Institute, Dr Zorana Đinđića 1, 21000 Novi Sad, Serbia
| |
Collapse
|
2
|
Kumar P, Rajan R, Upadhyaya K, Behl G, Xiang XX, Huo P, Liu B. Metal oxide nanomaterials based electrochemical and optical biosensors for biomedical applications: Recent advances and future prospectives. ENVIRONMENTAL RESEARCH 2024; 247:118002. [PMID: 38151147 DOI: 10.1016/j.envres.2023.118002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/16/2023] [Revised: 12/06/2023] [Accepted: 12/19/2023] [Indexed: 12/29/2023]
Abstract
The amalgamation of nanostructures with modern electrochemical and optical techniques gave rise to interesting devices, so-called biosensors. A biosensor is an analytical tool that incorporates various biomolecules with an appropriate physicochemical transducer. Over the past few years, metal oxide nanomaterials (MONMs) have significantly stimulated biosensing research due to their desired functionalities, versatile chemical stability, and low cost along with their unique optical, catalytic, electrical, and adsorption properties that provide an attractive platform for linking the biomolecules, for example, antibodies, nucleic acids, enzymes, and receptor proteins as sensing elements with the transducer for the detection of signals or signal amplifications. The signals to be measured are in direct proportionate to the concentration of the bioanalyte. Because of their simplicity, cost-effectiveness, portability, quick analysis, higher sensitivity, and selectivity against a broad range of biosamples, MONMs-based electrochemical and optical biosensing platforms are exhaustively explored as powerful early-diagnosis tools for point of care applications. Herein, we made a bibliometric analysis of past twenty years (2004-2023) on the application of MONMs as electrochemical and optical biosensing units using Web of Science database and the results of which clearly reveal the increasing number of publications since 2004. Geographical area distribution analysis of these publications shows that China tops the list followed by the United States of America and India. In this review, we first describe the electrochemical and optical properties of MONMs that are crucial for the creation of extremely stable, specific, and sensitive sensors with desirable characteristics. Then, the biomedical applications of MONMs-based bare and hybrid electrochemical and optical biosensing frameworks are highlighted in the light of recent literature. Finally, current limitations and future challenges in the field of biosensing technology are addressed.
Collapse
Affiliation(s)
- Parveen Kumar
- Laboratory of Functional Molecules and Materials, School of Physics and Optoelectronic Engineering, Shandong University of Technology, Xincun West Road 266, Zibo, 255000, China; School of Pharmacy, University College Cork, T12 K8AF, Cork, Ireland
| | - Ramachandran Rajan
- Translational Medical Center, Zibo Central Hospital, Zibo, 255036, Shandong, China
| | - Kapil Upadhyaya
- Chemical Physiology & Biochemistry Department, Oregon Health & Science University, Portland, OR, 97239, USA
| | - Gautam Behl
- Eirgen Pharma Ltd., Westside Business Park, Waterford, Ireland
| | - Xin-Xin Xiang
- Translational Medical Center, Zibo Central Hospital, Zibo, 255036, Shandong, China
| | - Peipei Huo
- Laboratory of Functional Molecules and Materials, School of Physics and Optoelectronic Engineering, Shandong University of Technology, Xincun West Road 266, Zibo, 255000, China.
| | - Bo Liu
- Laboratory of Functional Molecules and Materials, School of Physics and Optoelectronic Engineering, Shandong University of Technology, Xincun West Road 266, Zibo, 255000, China.
| |
Collapse
|
3
|
Malik S, Singh J, Goyat R, Saharan Y, Chaudhry V, Umar A, Ibrahim AA, Akbar S, Ameen S, Baskoutas S. Nanomaterials-based biosensor and their applications: A review. Heliyon 2023; 9:e19929. [PMID: 37809900 PMCID: PMC10559358 DOI: 10.1016/j.heliyon.2023.e19929] [Citation(s) in RCA: 21] [Impact Index Per Article: 21.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2023] [Revised: 09/05/2023] [Accepted: 09/06/2023] [Indexed: 10/10/2023] Open
Abstract
A sensor can be called ideal or perfect if it is enriched with certain characteristics viz., superior detections range, high sensitivity, selectivity, resolution, reproducibility, repeatability, and response time with good flow. Recently, biosensors made of nanoparticles (NPs) have gained very high popularity due to their excellent applications in nearly all the fields of science and technology. The use of NPs in the biosensor is usually done to fill the gap between the converter and the bioreceptor, which is at the nanoscale. Simultaneously the uses of NPs and electrochemical techniques have led to the emergence of biosensors with high sensitivity and decomposition power. This review summarizes the development of biosensors made of NPssuch as noble metal NPs and metal oxide NPs, nanowires (NWs), nanorods (NRs), carbon nanotubes (CNTs), quantum dots (QDs), and dendrimers and their recent advancement in biosensing technology with the expansion of nanotechnology.
Collapse
Affiliation(s)
- Sumit Malik
- Department of Chemistry, Maharishi Markandeshwar (Deemed to be University), Mullana, Ambala, 133203, Haryana, India
| | - Joginder Singh
- Department of Chemistry, Maharishi Markandeshwar (Deemed to be University), Mullana, Ambala, 133203, Haryana, India
| | - Rohit Goyat
- Department of Chemistry, Maharishi Markandeshwar (Deemed to be University), Mullana, Ambala, 133203, Haryana, India
| | - Yajvinder Saharan
- Department of Chemistry, Maharishi Markandeshwar (Deemed to be University), Mullana, Ambala, 133203, Haryana, India
| | - Vivek Chaudhry
- Department of Chemistry, Maharishi Markandeshwar (Deemed to be University), Mullana, Ambala, 133203, Haryana, India
| | - Ahmad Umar
- Department of Chemistry, Faculty of Science and Arts, and Promising Centre for Sensors and Electronic Devices (PCSED)Najran University, Najran, 11001, Kingdom of Saudi Arabia
- Department of Materials Science and Engineering, The Ohio State University, Columbus, OH, 43210, USA
- Department of Materials Science and Engineering, The Ohio State University, Columbus, OH, 43210, USA
| | - Ahmed A. Ibrahim
- Department of Chemistry, Faculty of Science and Arts, and Promising Centre for Sensors and Electronic Devices (PCSED)Najran University, Najran, 11001, Kingdom of Saudi Arabia
| | - Sheikh Akbar
- Department of Materials Science and Engineering, The Ohio State University, Columbus, OH, 43210, USA
| | - Sadia Ameen
- Advanced Materials and Devices Laboratory, Department of Bio-Convergence Science, Advanced Science Campus, Jeonbuk National University, 56212, Jeonju, Republic of Korea
| | - Sotirios Baskoutas
- Department of Materials Science, University of Patras, 26500, Patras, Greece
| |
Collapse
|
4
|
A highly-sensitive electrocatalytic measurement of nitrate ions in soil and different fruit vegetables at the surface of palladium nanoparticles modified DVD using the open bipolar system. Microchem J 2019. [DOI: 10.1016/j.microc.2019.04.067] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
|
5
|
Yan S, Abhilash KP, Tang L, Yang M, Ma Y, Xia Q, Guo Q, Xia H. Research Advances of Amorphous Metal Oxides in Electrochemical Energy Storage and Conversion. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2019; 15:e1804371. [PMID: 30548915 DOI: 10.1002/smll.201804371] [Citation(s) in RCA: 40] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/20/2018] [Revised: 11/23/2018] [Indexed: 06/09/2023]
Abstract
Amorphous metal oxides (AMOs) have aroused great enthusiasm across multiple energy areas over recent years due to their unique properties, such as the intrinsic isotropy, versatility in compositions, absence of grain boundaries, defect distribution, flexible nature, etc. Here, the materials engineering of AMOs is systematically reviewed in different electrochemical applications and recent advances in understanding and developing AMO-based high-performance electrodes are highlighted. Attention is focused on the important roles that AMOs play in various energy storage and conversion technologies, such as active materials in metal-ion batteries and supercapacitors as well as active catalysts in water splitting, metal-air batteries, and fuel cells. The improvements of electrochemical performance in metal-ion batteries and supercapacitors are reviewed regarding the enhancement in active sites, mechanical strength, and defect distribution of amorphous structures. Furthermore, the high electrochemical activities boosted by AMOs in various fundamental reactions are elaborated on and they are related to the electrocatalytic behaviors in water splitting, metal-air batteries, and fuel cells. The applications in electrochromism and high-conducting sensors are also briefly discussed. Finally, perspectives on the existing challenges of AMOs for electrochemical applications are proposed, together with several promising future research directions.
Collapse
Affiliation(s)
- Shihan Yan
- School of Materials Science and Engineering, Nanjing University of Science and Technology, Nanjing, 210094, China
- Herbert Gleiter Institute of Nanoscience, Nanjing University of Science and Technology, Nanjing, 210094, China
| | - K P Abhilash
- School of Materials Science and Engineering, Nanjing University of Science and Technology, Nanjing, 210094, China
- Herbert Gleiter Institute of Nanoscience, Nanjing University of Science and Technology, Nanjing, 210094, China
| | - Lingyu Tang
- School of Materials Science and Engineering, Nanjing University of Science and Technology, Nanjing, 210094, China
- Herbert Gleiter Institute of Nanoscience, Nanjing University of Science and Technology, Nanjing, 210094, China
| | - Mei Yang
- School of Materials Science and Engineering, Nanjing University of Science and Technology, Nanjing, 210094, China
- Herbert Gleiter Institute of Nanoscience, Nanjing University of Science and Technology, Nanjing, 210094, China
| | - Yifan Ma
- School of Materials Science and Engineering, Nanjing University of Science and Technology, Nanjing, 210094, China
- Herbert Gleiter Institute of Nanoscience, Nanjing University of Science and Technology, Nanjing, 210094, China
| | - Qiuying Xia
- School of Materials Science and Engineering, Nanjing University of Science and Technology, Nanjing, 210094, China
- Herbert Gleiter Institute of Nanoscience, Nanjing University of Science and Technology, Nanjing, 210094, China
| | - Qiubo Guo
- School of Materials Science and Engineering, Nanjing University of Science and Technology, Nanjing, 210094, China
- Herbert Gleiter Institute of Nanoscience, Nanjing University of Science and Technology, Nanjing, 210094, China
| | - Hui Xia
- School of Materials Science and Engineering, Nanjing University of Science and Technology, Nanjing, 210094, China
- Herbert Gleiter Institute of Nanoscience, Nanjing University of Science and Technology, Nanjing, 210094, China
| |
Collapse
|
6
|
In Situ Metalorganic Deposition of Silver Nanoparticles on Gold Substrate and Square Wave Voltammetry: A Highly Efficient Combination for Nanomolar Detection of Nitrate Ions in Sea Water. CHEMOSENSORS 2018. [DOI: 10.3390/chemosensors6040050] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
The electro-reduction of nitrate ions in artificial sea water was investigated at a gold substrate (EAu) functionalized by silver nanoparticles (AgNPs). These AgNPs were generated in situ on the gold substrate by the direct decomposition of the metalorganic N,N′-diisopropylacetamidinate silver precursor [Ag(Amd)] in the liquid phase. Very small and well dispersed AgNPs were deposited on the gold electrode and then used as working electrode (EAu/AgNPs). Square wave voltammetry (SWV) was successfully employed to detect nitrate ions (NO3−) with a detection limit (LOD) of 0.9 nmol∙L−1 in artificial sea water (pH = 6.0) without pre-concentration or pH adjustment.
Collapse
|
7
|
George JM, Antony A, Mathew B. Metal oxide nanoparticles in electrochemical sensing and biosensing: a review. Mikrochim Acta 2018; 185:358. [DOI: 10.1007/s00604-018-2894-3] [Citation(s) in RCA: 157] [Impact Index Per Article: 26.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2018] [Accepted: 06/26/2018] [Indexed: 12/25/2022]
|
8
|
Ali MA, Mondal K, Wang Y, Jiang H, Mahal NK, Castellano MJ, Sharma A, Dong L. In situ integration of graphene foam-titanium nitride based bio-scaffolds and microfluidic structures for soil nutrient sensors. LAB ON A CHIP 2017; 17:274-285. [PMID: 28009868 DOI: 10.1039/c6lc01266c] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/06/2023]
Abstract
It is challenging to integrate porous graphene foam (GF) and GF-based nanocomposites into microfluidic channels and even create microfluidic structures within these materials. This is because their irregular interior pore shape and geometry, rough exterior surface, and relatively large material thickness make it difficult to perform conventional photolithography and etching. This challenge has largely hindered the potential of using GF-based materials in microfluidics-based sensors. Here we present a simple approach to create well-defined flow-through channels within or across the GF-based materials, using a liquid-phase photopolymerization method. This method allows embedding of a nanocomposite-based scaffold of GF and titanium nitride nanofibers (GF-TiN NFs) into a channel structure, to realize flow-through microfluidic electrochemical sensors for detecting nitrate ions in agricultural soils. The unique GF-TiN nanocomposite provides high electrochemical reactivity, high electron transfer rate, improved loading capacity of receptor biomolecules, and large surface area, serving as an efficient electrochemical sensing interface with the help of immobilized specific enzyme molecules. The microfluidic sensor provides an ultralow limit of detection of 0.01 mg L-1, a wide dynamic range from 0.01 to 442 mg L-1, and a high sensitivity of 683.3 μA mg-1 L cm-2 for nitrate ions in real soil solution samples. The advantageous features of the GF-TiN nanocomposite, in conjunction with the in situ integration approach, will enable a promising microfluidic sensor platform to monitor soil ions for nutrient management towards sustainable agriculture.
Collapse
Affiliation(s)
- Md Azahar Ali
- Department of Electrical and Computer Engineering, Iowa State University, Ames, Iowa 50011, USA.
| | - Kunal Mondal
- Department of Chemical and Biomolecular Engineering, North Carolina State University, Raleigh, North Carolina 27695, USA
| | - Yifei Wang
- Department of Electrical and Computer Engineering, Iowa State University, Ames, Iowa 50011, USA.
| | - Huawei Jiang
- Department of Electrical and Computer Engineering, Iowa State University, Ames, Iowa 50011, USA.
| | - Navreet K Mahal
- Department of Agronomy, Iowa State University, Ames, Iowa 50011, USA
| | | | - Ashutosh Sharma
- Department of Chemical Engineering, Indian Institute of Technology Kanpur, Kanpur 208016, India
| | - Liang Dong
- Department of Electrical and Computer Engineering, Iowa State University, Ames, Iowa 50011, USA.
| |
Collapse
|
9
|
Development of a Novel Cu(II) Complex Modified Electrode and a Portable Electrochemical Analyzer for the Determination of Dissolved Oxygen (DO) in Water. CHEMOSENSORS 2016. [DOI: 10.3390/chemosensors4020007] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|