1
|
Kaya SI, Cetinkaya A, Ozkan SA. Carbon Nanomaterial-Based Drug Sensing Platforms Using State-of-the-
Art Electroanalytical Techniques. CURR ANAL CHEM 2022. [DOI: 10.2174/1573411016999200802024629] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Background:
Currently, nanotechnology and nanomaterials are considered as the most popular and outstanding
research subjects in scientific fields ranging from environmental studies to drug analysis. Carbon nanomaterials such as
carbon nanotubes, graphene, carbon nanofibers etc. and non-carbon nanomaterials such as quantum dots, metal
nanoparticles, nanorods etc. are widely used in electrochemical drug analysis for sensor development. Main aim of drug
analysis with sensors is developing fast, easy to use and sensitive methods. Electroanalytical techniques such as
voltammetry, potentiometry, amperometry etc. which measure electrical parameters such as current or potential in an
electrochemical cell are considered economical, highly sensitive and versatile techniques.
Methods:
Most recent researches and studies about electrochemical analysis of drugs with carbon-based nanomaterials were
analyzed. Books and review articles about this topic were reviewed.
Results:
The most significant carbon-based nanomaterials and electroanalytical techniques were explained in detail. In
addition to this; recent applications of electrochemical techniques with carbon nanomaterials in drug analysis was expressed
comprehensively. Recent researches about electrochemical applications of carbon-based nanomaterials in drug sensing were
given in a table.
Conclusion:
Nanotechnology provides opportunities to create functional materials, devices and systems using
nanomaterials with advantageous features such as high surface area, improved electrode kinetics and higher catalytic
activity. Electrochemistry is widely used in drug analysis for pharmaceutical and medical purposes. Carbon nanomaterials
based electrochemical sensors are one of the most preferred methods for drug analysis with high sensitivity, low cost and
rapid detection.
Collapse
Affiliation(s)
- S. Irem Kaya
- Department of Analytical Chemistry, Faculty of Pharmacy, Ankara University, 06560, Ankara,Turkey
| | - Ahmet Cetinkaya
- Department of Analytical Chemistry, Faculty of Pharmacy, Ankara University, 06560, Ankara,Turkey
| | - Sibel A. Ozkan
- Department of Analytical Chemistry, Faculty of Pharmacy, Ankara University, 06560, Ankara,Turkey
| |
Collapse
|
2
|
Murtada K, Moreno V. Nanomaterials-based electrochemical sensors for the detection of aroma compounds - towards analytical approach. J Electroanal Chem (Lausanne) 2020. [DOI: 10.1016/j.jelechem.2020.113988] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
|
3
|
Physicochemical Analysis and Essential Oils Extraction of the Gorse (Ulex europaeus) and French Broom (Genista monspessulana), Two Highly Invasive Species in the Colombian Andes. SUSTAINABILITY 2019. [DOI: 10.3390/su12010057] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Gorse (Ulex europaeus) and French broom (Genista monspessulana) are two highly invasive species that have become a threat to tropical countries, especially in Andean ecosystems. This research focused on providing a physicochemical characterization and essential oils extraction of both species to better understand their potential valorization and guide further environmental management efforts. For this purpose, the following analyses were conducted for both species: higher heat value (HHV), elemental analysis, proximate analysis, thermogravimetric analysis to obtain constituent natural polymers (hemicellulose, cellulose, and lignin), and extraction of essential oils and other interest chemical compounds through supercritical fluids. Ecological closeness was found between the two species mostly regarding HHV, fixed carbon, and volatile matter, which calls for similar potential uses. Both species were also found to be suitable for combustion processes, gasification, extraction of chemical compounds, and use of lignocellulosic content; however, only U. europaeus appeared suitable for activated carbon obtention. Therefore, this work provided relevant data that can be used as preliminary basis to establish strong scientifically-based management and control strategies for these two invasive species. We recommend focusing primarily on thermal processes such as pyrolysis, gasification, or combustion, and also essential oils extractions of acetic acid, dodecanoic acid, anagyrine, amylene hydrate, caulophylline, and maltol in the future.
Collapse
|
4
|
Zhao K, Liu L, Zheng Q, Gao F, Chen X, Yang Z, Qin Y, Yu Y. Differentiating between ageing times of typical Chinese liquors by steady-state microelectrode voltammetry. Microchem J 2019. [DOI: 10.1016/j.microc.2019.104244] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
|
5
|
Esteban-Fernández A, Ibañez C, Simó C, Bartolomé B, Moreno-Arribas MV. An Ultrahigh-Performance Liquid Chromatography–Time-of-Flight Mass Spectrometry Metabolomic Approach to Studying the Impact of Moderate Red-Wine Consumption on Urinary Metabolome. J Proteome Res 2018; 17:1624-1635. [DOI: 10.1021/acs.jproteome.7b00904] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Affiliation(s)
- Adelaida Esteban-Fernández
- Instituto de Investigación en Ciencias de la Alimentación (CIAL), CSIC-UAM, Nicolás Cabrera, 9 Campus de Cantoblanco, CEI UAM+CSIC, 28049 Madrid, Spain
| | - Clara Ibañez
- IMDEA Alimentación, Carretera de Canto Blanco no. 8, 28049 Madrid, Spain
| | - Carolina Simó
- Instituto de Investigación en Ciencias de la Alimentación (CIAL), CSIC-UAM, Nicolás Cabrera, 9 Campus de Cantoblanco, CEI UAM+CSIC, 28049 Madrid, Spain
| | - Begoña Bartolomé
- Instituto de Investigación en Ciencias de la Alimentación (CIAL), CSIC-UAM, Nicolás Cabrera, 9 Campus de Cantoblanco, CEI UAM+CSIC, 28049 Madrid, Spain
| | - M. Victoria Moreno-Arribas
- Instituto de Investigación en Ciencias de la Alimentación (CIAL), CSIC-UAM, Nicolás Cabrera, 9 Campus de Cantoblanco, CEI UAM+CSIC, 28049 Madrid, Spain
| |
Collapse
|
6
|
Li X, Kan X. A ratiometric strategy -based electrochemical sensing interface for the sensitive and reliable detection of imidacloprid. Analyst 2018; 143:2150-2156. [DOI: 10.1039/c8an00111a] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
A ratiometric electrochemical sensor was developed for selective and sensitive detection of imidacloprid. Modified poly(thionine) provided a built-in correction to endow the sensor with good accuracy and stability.
Collapse
Affiliation(s)
- Xueyan Li
- College of Chemistry and Materials Science
- Anhui Key Laboratory of Chemo-Biosensing
- Anhui Normal University
- Wuhu 241000
- P.R. China
| | - Xianwen Kan
- College of Chemistry and Materials Science
- Anhui Key Laboratory of Chemo-Biosensing
- Anhui Normal University
- Wuhu 241000
- P.R. China
| |
Collapse
|
7
|
Altunay N, Gürkan R, Orhan U. Indirect determination of the flavor enhancer maltol in foods and beverages through flame atomic absorption spectrometry after ultrasound assisted-cloud point extraction. Food Chem 2017; 235:308-317. [DOI: 10.1016/j.foodchem.2017.05.066] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2016] [Revised: 05/06/2017] [Accepted: 05/14/2017] [Indexed: 11/25/2022]
|
8
|
Li J, Hao H, Guo N, Wang N, Hao Y, Luan Y, Chen K, Huang X. Solubility and thermodynamic properties of maltol in different pure solvents. J Mol Liq 2017. [DOI: 10.1016/j.molliq.2017.08.054] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
|
9
|
Zeng Y, Zhu Z, Du D, Lin Y. Nanomaterial-based electrochemical biosensors for food safety. J Electroanal Chem (Lausanne) 2016. [DOI: 10.1016/j.jelechem.2016.10.030] [Citation(s) in RCA: 101] [Impact Index Per Article: 11.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
|
10
|
Rao H, Ma Y, Xue Z, Du X, Zhao G, Li S. Amperometric Determination of Maltol using a Cobalt Oxide-Assembled MCM-41 Composite-Modified Glassy Carbon Electrode. ANAL LETT 2016. [DOI: 10.1080/00032719.2016.1225749] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
Affiliation(s)
- Honghong Rao
- College of Chemistry & Environmental Engineering, Lanzhou City University, Lanzhou, P. R. China
| | - Yaya Ma
- College of Chemistry & Environmental Engineering, Lanzhou City University, Lanzhou, P. R. China
| | - Zhonghua Xue
- College of Chemistry & Environmental Engineering, Lanzhou City University, Lanzhou, P. R. China
| | - Xinzhen Du
- College of Chemistry and Chemical Engineering, Northwest Normal University, Lanzhou, P. R. China
| | - Guohu Zhao
- College of Chemistry & Environmental Engineering, Lanzhou City University, Lanzhou, P. R. China
| | - Shenyin Li
- College of Chemistry & Environmental Engineering, Lanzhou City University, Lanzhou, P. R. China
| |
Collapse
|