1
|
Suo Z, Liang R, Liu R, Wei M, He B, Jiang L, Sun X, Jin H. A convenient paper-based fluorescent aptasensor for high-throughput detection of Pb 2+ in multiple real samples (water-soil-food). Anal Chim Acta 2023; 1239:340714. [PMID: 36628769 DOI: 10.1016/j.aca.2022.340714] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2022] [Revised: 12/04/2022] [Accepted: 12/07/2022] [Indexed: 12/13/2022]
Abstract
Lead ion (Pb2+) is one of the most toxic and widely polluted heavy metal ions. Given the potential health risks and economic losses associated with Pb2+, the rapid detection of Pb2+ using fluorescent aptasensors is of significant importance in evaluating food safety. A rapid, facile and economic fluorescent aptasensor using convenient paper as the sensing substrate was designed to high-throughput detect Pb2+ in complex samples within about 45 min. The Pb2+ changed the conformation of FAM-modified Apt from a random coil to a stable G-quadruplex structure. And then Dabcyl-labeled cDNA was added to form double-stranded DNA with the Apt that did not form a G-quadruplex structure, resulting in a weak fluorescence due to the fluorescence resonance energy transfer (FRET). The fluorescent aptasensor showed a positive correlation with Pb2+ concentration, and a linear relationship was obtained in the range of 0.01-10 μM with LOD of 6.1 nM. In addition, this method has been successfully used for the determination of Pb2+ in water, soil and various foods containing complex substrates. Meanwhile, the high-throughput detection of Pb2+ has also reached an acceptable level. Therefore, this convenient strategy has potential application value for on-site rapid detection of Pb2+.
Collapse
Affiliation(s)
- Zhiguang Suo
- College of Food Science and Technology, Henan Key Laboratory of Cereal and Oil Food Safety Inspection and Control, Henan University of Technology, Zhengzhou, 450001, China.
| | - Ruirui Liang
- College of Food Science and Technology, Henan Key Laboratory of Cereal and Oil Food Safety Inspection and Control, Henan University of Technology, Zhengzhou, 450001, China
| | - Ruike Liu
- College of Food Science and Technology, Henan Key Laboratory of Cereal and Oil Food Safety Inspection and Control, Henan University of Technology, Zhengzhou, 450001, China
| | - Min Wei
- College of Food Science and Technology, Henan Key Laboratory of Cereal and Oil Food Safety Inspection and Control, Henan University of Technology, Zhengzhou, 450001, China
| | - Baoshan He
- College of Food Science and Technology, Henan Key Laboratory of Cereal and Oil Food Safety Inspection and Control, Henan University of Technology, Zhengzhou, 450001, China
| | - Liying Jiang
- College of Electrical and Information Engineering, Zhengzhou University of Light Industry, Zhengzhou, 450002, China
| | - Xiaoxia Sun
- Henan Institute of Product Quality Supervision and Inspection, Zhengzhou, 450002, China
| | - Huali Jin
- College of Food Science and Technology, Henan Key Laboratory of Cereal and Oil Food Safety Inspection and Control, Henan University of Technology, Zhengzhou, 450001, China
| |
Collapse
|
2
|
Perdigones F, Quero JM. Printed Circuit Boards: The Layers' Functions for Electronic and Biomedical Engineering. MICROMACHINES 2022; 13:460. [PMID: 35334752 PMCID: PMC8952574 DOI: 10.3390/mi13030460] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/20/2022] [Revised: 03/08/2022] [Accepted: 03/14/2022] [Indexed: 01/25/2023]
Abstract
This paper describes the fabrication opportunities that Printed Circuit Boards (PCBs) offer for electronic and biomedical engineering. Historically, PCB substrates have been used to support the components of the electronic devices, linking them using copper lines, and providing input and output pads to connect the rest of the system. In addition, this kind of substrate is an emerging material for biomedical engineering thanks to its many interesting characteristics, such as its commercial availability at a low cost with very good tolerance and versatility, due to its multilayer characteristics; that is, the possibility of using several metals and substrate layers. The alternative uses of copper, gold, Flame Retardant 4 (FR4) and silver layers, together with the use of vias, solder masks and a rigid and flexible substrate, are noted. Among other uses, these characteristics have been using to develop many sensors, biosensors and actuators, and PCB-based lab-on chips; for example, deoxyribonucleic acid (DNA) amplification devices for Polymerase Chain Reaction (PCR). In addition, several applications of these devices are going to be noted in this paper, and two tables summarizing the layers' functions are included in the discussion: the first one for metallic layers, and the second one for the vias, solder mask, flexible and rigid substrate functions.
Collapse
|
3
|
Daly R, Narayan T, Shao H, O’Riordan A, Lovera P. Platinum-Based Interdigitated Micro-Electrode Arrays for Reagent-Free Detection of Copper. SENSORS 2021; 21:s21103544. [PMID: 34069670 PMCID: PMC8161293 DOI: 10.3390/s21103544] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/01/2021] [Revised: 05/10/2021] [Accepted: 05/13/2021] [Indexed: 12/15/2022]
Abstract
Water is a precious resource that is under threat from a number of pressures, including, for example, release of toxic compounds, that can have damaging effect on ecology and human health. The current methods of water quality monitoring are based on sample collection and analysis at dedicated laboratories. Recently, electrochemical-based methods have attracted a lot of attention for environmental sensing owing to their versatility, sensitivity and their ease of integration with cost effective, smart and portable readout systems. In the present work, we report on the fabrication and characterization of platinum-based interdigitated microband electrodes arrays, and their application for trace detection of copper. Using square wave voltammetry after acidification with mineral acids, a limit of detection of 0.8 μg/L was achieved. Copper detection was also undertaken on river water samples and compared with standard analytical techniques. The possibility of controlling the pH at the surface of the sensors—thereby avoiding the necessity to add mineral acids—was investigated. By applying potentials to drive the water splitting reaction at one comb of the sensor’s electrode (the protonator), it was possible to lower the pH in the vicinity of the sensing electrode. Detection of standard copper solutions down to 5 μg/L (ppb) using this technique is reported. This reagent free method of detection opens the way for autonomous, in situ monitoring of pollutants in water bodies.
Collapse
|
4
|
Stortini AM, Baldo MA, Moro G, Polo F, Moretto LM. Bio- and Biomimetic Receptors for Electrochemical Sensing of Heavy Metal Ions. SENSORS (BASEL, SWITZERLAND) 2020; 20:E6800. [PMID: 33260737 PMCID: PMC7731017 DOI: 10.3390/s20236800] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/05/2020] [Revised: 11/25/2020] [Accepted: 11/26/2020] [Indexed: 02/07/2023]
Abstract
Heavy metals ions (HMI), if not properly handled, used and disposed, are a hazard for the ecosystem and pose serious risks for human health. They are counted among the most common environmental pollutants, mainly originating from anthropogenic sources, such as agricultural, industrial and/or domestic effluents, atmospheric emissions, etc. To face this issue, it is necessary not only to determine the origin, distribution and the concentration of HMI but also to rapidly (possibly in real-time) monitor their concentration levels in situ. Therefore, portable, low-cost and high performing analytical tools are urgently needed. Even though in the last decades many analytical tools and methodologies have been designed to this aim, there are still several open challenges. Compared with the traditional analytical techniques, such as atomic absorption/emission spectroscopy, inductively coupled plasma mass spectrometry and/or high-performance liquid chromatography coupled with electrochemical or UV-VIS detectors, bio- and biomimetic electrochemical sensors provide high sensitivity, selectivity and rapid responses within portable and user-friendly devices. In this review, the advances in HMI sensing in the last five years (2016-2020) are addressed. Key examples of bio and biomimetic electrochemical, impedimetric and electrochemiluminescence-based sensors for Hg2+, Cu2+, Pb2+, Cd2+, Cr6+, Zn2+ and Tl+ are described and discussed.
Collapse
Affiliation(s)
| | | | | | | | - Ligia Maria Moretto
- Department of Molecular Science and Nanosystems, Ca’ Foscari University of Venice, Via Torino 155, 30172 Venice, Italy; (A.M.S.); (M.A.B.); (G.M.); (F.P.)
| |
Collapse
|
5
|
Feng Y, Xiao S, Xiong X, Wang H, Kong F, Li Y, Zhang Y, Chen L. An Impedimetric Aptasensor Based on a Novel Line‐Pad‐Line Electrode for the Determination of VEGF
165. ELECTROANAL 2020. [DOI: 10.1002/elan.202060030] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
Affiliation(s)
- Ying Feng
- College of Medical InformaticsChongqing Medical University Chongqing 400010
| | - Shan Xiao
- Department of OncologyThe People's Hospital of Zhongjiang Sichuan 618100 China
| | - Xingliang Xiong
- College of Medical InformaticsChongqing Medical University Chongqing 400010
| | - Honglei Wang
- College of Medical InformaticsChongqing Medical University Chongqing 400010
| | - Fankai Kong
- College of Medical InformaticsChongqing Medical University Chongqing 400010
| | - Yang Li
- College of Medical InformaticsChongqing Medical University Chongqing 400010
| | - Yan Zhang
- College of Medical InformaticsChongqing Medical University Chongqing 400010
| | - Longcong Chen
- College of Medical InformaticsChongqing Medical University Chongqing 400010
| |
Collapse
|
6
|
Bhamore JR, Park TJ, Kailasa SK. Glutathione-capped Syzygium cumini carbon dot-amalgamated agarose hydrogel film for naked-eye detection of heavy metal ions. J Anal Sci Technol 2020. [DOI: 10.1186/s40543-020-00208-8] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022] Open
Abstract
AbstractDevelopment of a facile and sensitive analytical tool for the detection of heavy metal ions is still a challenging task because of interference from other chemical species. In this work, glutathione (GSH)-capped Syzygium cumini carbon dots (CDs) have been integrated with agarose hydrogel film and used as an amalgamated solid probe for sensing of different metal ions (Pb2+, Fe3+, and Mn2+). The synthesis of a solid sensing platform is based on the electrostatic interactions between GSH-capped Syzygium cumini CDs and agarose hydrogel. The developed hydrogel-based solid probe exhibited good linearities with the concentration ranges of metal ions from 0.005 to 0.075, 0.0075 to 0.1, and 0.0075 to 0.1 mM with detection limits of 1.3, 2.5, and 2.1 μM for Pb2+, Fe3+, and Mn2+ ions, respectively.
Collapse
|
7
|
A new impedimetric sensor based on anionic intercalator for detection of lead ions with low cost and high sensitivity. J Electroanal Chem (Lausanne) 2018. [DOI: 10.1016/j.jelechem.2018.09.022] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
|
8
|
Zhu L, Xu Y, Ali I, Liu L, Wu H, Lu Z, Liu Q. Solid-State Nanopore Single-Molecule Sensing of DNAzyme Cleavage Reaction Assisted with Nucleic Acid Nanostructure. ACS APPLIED MATERIALS & INTERFACES 2018; 10:26555-26565. [PMID: 30016075 DOI: 10.1021/acsami.8b09505] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/03/2023]
Abstract
The detection and investigation of biomolecules at a single-molecule level is important for improving diagnosis in biomedicine. Solid-state nanopores are a unique tool that have the potential to accomplish this task because they are label-free and require only low sample consumption. However, the event-readouts of current small polymer molecules are still limited because of its relatively large size and low signal-to-noise ratios. Here, we present a rapid sensing approach for the detection of GR-5 DNAzyme cleaving specific substrate reactions using relatively larger size silicon nitride nanopores by introducing a type of nucleic acid nanostructure (DNA tetrahedron) as a carrier. The proposed method is convenient and sensitive enough to detect the cleavage reactions by identifying translocation events before and after reactions with nanomolar concentrations of the target sample. Furthermore, this assay was also carried out by using larger size nanopores (60 nm diameter) to achieve the DNAzyme cleavage sensing with the same sample concentration. This approach can improve event detectability of other smaller molecules' translocation, which opens up a wide range of applications for analytes detection by incorporating solid-state nanopores. Nucleic acid nanostructure-assisted nanopore sensing can promote the development of single-molecule studies.
Collapse
Affiliation(s)
- Libo Zhu
- State Key Laboratory of Bioelectronics, School of Biological Science and Medical Engineering , Southeast University , No. 2, Sipailou , Nanjing 210096 , People's Republic of China
| | - Ying Xu
- State Key Laboratory of Bioelectronics, School of Biological Science and Medical Engineering , Southeast University , No. 2, Sipailou , Nanjing 210096 , People's Republic of China
| | - Irshad Ali
- State Key Laboratory of Bioelectronics, School of Biological Science and Medical Engineering , Southeast University , No. 2, Sipailou , Nanjing 210096 , People's Republic of China
| | - Liping Liu
- State Key Laboratory of Bioelectronics, School of Biological Science and Medical Engineering , Southeast University , No. 2, Sipailou , Nanjing 210096 , People's Republic of China
- Guizhou Institute of Technology , Guiyang , Guizhou 550003 , People's Republic of China
| | - Hongwen Wu
- State Key Laboratory of Bioelectronics, School of Biological Science and Medical Engineering , Southeast University , No. 2, Sipailou , Nanjing 210096 , People's Republic of China
- Department of Medical Devices , First Affiliated Hospital of Nanchang University , Nanchang 330006 , China
| | - Zuhong Lu
- State Key Laboratory of Bioelectronics, School of Biological Science and Medical Engineering , Southeast University , No. 2, Sipailou , Nanjing 210096 , People's Republic of China
| | - Quanjun Liu
- State Key Laboratory of Bioelectronics, School of Biological Science and Medical Engineering , Southeast University , No. 2, Sipailou , Nanjing 210096 , People's Republic of China
| |
Collapse
|
9
|
Dai X, Wu S, Li S. Progress on electrochemical sensors for the determination of heavy metal ions from contaminated water. ACTA ACUST UNITED AC 2018. [DOI: 10.1080/22243682.2018.1425904] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
Affiliation(s)
- Xiangzi Dai
- Institute of Polymer Materials, School of Materials Science & Engineering, Jiangsu University, Zhenjiang, P. R. China
| | - Shuping Wu
- Institute of Polymer Materials, School of Materials Science & Engineering, Jiangsu University, Zhenjiang, P. R. China
| | - Songjun Li
- Institute of Polymer Materials, School of Materials Science & Engineering, Jiangsu University, Zhenjiang, P. R. China
| |
Collapse
|
10
|
Zhang Q, Cui H, Xiong X, Chen J, Wang Y, Shen J, Luo Y, Chen L. QCM-nanomagnetic beads biosensor for lead ion detection. Analyst 2018; 143:549-554. [DOI: 10.1039/c7an01498h] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
A QCM biosensor combined with NMBs has been proposed for Pb2+detection with a lower detection limit of 0.3 pM.
Collapse
Affiliation(s)
- Qingli Zhang
- Department of Biomedical Engineering
- Chongqing Medical University
- Chongqing
- China
| | - Haixia Cui
- Department of Biomedical Engineering
- Chongqing Medical University
- Chongqing
- China
| | - Xingliang Xiong
- Department of Biomedical Engineering
- Chongqing Medical University
- Chongqing
- China
| | - Jun Chen
- School of Public Health and Management
- Chongqing Medical University
- Chongqing
- China
| | - Ying Wang
- School of Medical Information Engineering
- Jining Medical University
- China
| | - Jia Shen
- Department of Biomedical Engineering
- Chongqing Medical University
- Chongqing
- China
| | - Yiting Luo
- Department of Biomedical Engineering
- Chongqing Medical University
- Chongqing
- China
| | - Longcong Chen
- Department of Biomedical Engineering
- Chongqing Medical University
- Chongqing
- China
| |
Collapse
|
11
|
Cruz de Castro A, França AS, Rojas A, Cavalheiro ÉTG, Marques EP, Marques ALB. Electrochemical Sensor Based on NiAlPO-5 for Determination of Cu2+
in Ethanol Biofuel. ELECTROANAL 2017. [DOI: 10.1002/elan.201700287] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Affiliation(s)
- Aleff Cruz de Castro
- Department of Chemical Technology; Federal University of Maranhão; São Luís - MA Brazil
| | | | - Alex Rojas
- Department of Chemical Technology; Federal University of Maranhão; São Luís - MA Brazil
| | | | - Edmar Pereira Marques
- Department of Chemical Technology; Federal University of Maranhão; São Luís - MA Brazil
| | | |
Collapse
|
12
|
McGhee CE, Loh KY, Lu Y. DNAzyme sensors for detection of metal ions in the environment and imaging them in living cells. Curr Opin Biotechnol 2017; 45:191-201. [PMID: 28458112 DOI: 10.1016/j.copbio.2017.03.002] [Citation(s) in RCA: 89] [Impact Index Per Article: 11.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2017] [Revised: 02/28/2017] [Accepted: 03/02/2017] [Indexed: 12/17/2022]
Abstract
The on-site and real-time detection of metal ions is important for environmental monitoring and for understanding the impact of metal ions on human health. However, developing sensors selective for a wide range of metal ions that can work in the complex matrices of untreated samples and cells presents significant challenges. To meet these challenges, DNAzymes, an emerging class of metal ion-dependent enzymes selective for almost any metal ion, have been functionalized with fluorophores, nanoparticles and other imaging agents and incorporated into sensors for the detection of metal ions in environmental samples and for imaging metal ions in living cells. Herein, we highlight the recent developments of DNAzyme-based fluorescent, colorimetric, SERS, electrochemical and electrochemiluminscent sensors for metal ions for these applications.
Collapse
Affiliation(s)
- Claire E McGhee
- Department of Chemistry, University of Illinois at Urbana-Champaign, Urbana, IL 61801, United States
| | - Kang Yong Loh
- Department of Chemistry, University of Illinois at Urbana-Champaign, Urbana, IL 61801, United States
| | - Yi Lu
- Department of Chemistry, University of Illinois at Urbana-Champaign, Urbana, IL 61801, United States.
| |
Collapse
|