1
|
Mohan B, Sasaki Y, Minami T. Paper-based optical sensor arrays for simultaneous detection of multi-targets in aqueous media: A review. Anal Chim Acta 2024; 1313:342741. [PMID: 38862204 DOI: 10.1016/j.aca.2024.342741] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2023] [Revised: 05/16/2024] [Accepted: 05/17/2024] [Indexed: 06/13/2024]
Abstract
Sensor arrays, which draw inspiration from the mammalian olfactory system, are fundamental concepts in high-throughput analysis based on pattern recognition. Although numerous optical sensor arrays for various targets in aqueous media have demonstrated their diverse applications in a wide range of research fields, practical device platforms for on-site analysis have not been satisfactorily established. The significant limitations of these sensor arrays lie in their solution-based platforms, which require stationary spectrophotometers to record the optical responses in chemical sensing. To address this, this review focuses on paper substrates as device components for solid-state sensor arrays. Paper-based sensor arrays (PSADs) embedded with multiple detection sites having cross-reactivity allow rapid and simultaneous chemical sensing using portable recording apparatuses and powerful data-processing techniques. The applicability of office printing technologies has promoted the realization of PSADs in real-world scenarios, including environmental monitoring, healthcare diagnostics, food safety, and other relevant fields. In this review, we discuss the methodologies of device fabrication and imaging analysis technologies for pattern recognition-driven chemical sensing in aqueous media.
Collapse
Affiliation(s)
- Binduja Mohan
- Institute of Industrial Science, The University of Tokyo, 4-6-1 Komaba, Meguro-ku, Tokyo, Japan
| | - Yui Sasaki
- Institute of Industrial Science, The University of Tokyo, 4-6-1 Komaba, Meguro-ku, Tokyo, Japan; JST, PRESTO, 4-1-8 Honcho, Kawaguchi, Saitama, Japan
| | - Tsuyoshi Minami
- Institute of Industrial Science, The University of Tokyo, 4-6-1 Komaba, Meguro-ku, Tokyo, Japan.
| |
Collapse
|
2
|
Shimada K. Correlations among Firing Rates of Tactile, Thermal, Gustatory, Olfactory, and Auditory Sensations Mimicked by Artificial Hybrid Fluid (HF) Rubber Mechanoreceptors. SENSORS (BASEL, SWITZERLAND) 2023; 23:4593. [PMID: 37430506 DOI: 10.3390/s23104593] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/28/2023] [Revised: 05/08/2023] [Accepted: 05/08/2023] [Indexed: 07/12/2023]
Abstract
In order to advance the development of sensors fabricated with monofunctional sensation systems capable of a versatile response to tactile, thermal, gustatory, olfactory, and auditory sensations, mechanoreceptors fabricated as a single platform with an electric circuit require investigation. In addition, it is essential to resolve the complicated structure of the sensor. In order to realize the single platform, our proposed hybrid fluid (HF) rubber mechanoreceptors of free nerve endings, Merkel cells, Krause end bulbs, Meissner corpuscles, Ruffini endings, and Pacinian corpuscles mimicking the bio-inspired five senses are useful enough to facilitate the fabrication process for the resolution of the complicated structure. This study used electrochemical impedance spectroscopy (EIS) to elucidate the intrinsic structure of the single platform and the physical mechanisms of the firing rate such as slow adaption (SA) and fast adaption (FA), which were induced from the structure and involved the capacitance, inductance, reactance, etc. of the HF rubber mechanoreceptors. In addition, the relations among the firing rates of the various sensations were clarified. The adaption of the firing rate in the thermal sensation is the opposite of that in the tactile sensation. The firing rates in the gustation, olfaction, and auditory sensations at frequencies of less than 1 kHz have the same adaption as in the tactile sensation. The present findings are useful not only in the field of neurophysiology, to research the biochemical reactions of neurons and brain perceptions of stimuli, but also in the field of sensors, to advance salient developments in sensors mimicking bio-inspired sensations.
Collapse
Affiliation(s)
- Kunio Shimada
- Faculty of Symbiotic Systems Sciences, Fukushima University, 1 Kanayagawa, Fukushima 960-1296, Japan
| |
Collapse
|
3
|
Shimada K. Morphological Configuration of Sensory Biomedical Receptors Based on Structures Integrated by Electric Circuits and Utilizing Magnetic-Responsive Hybrid Fluid (HF). SENSORS (BASEL, SWITZERLAND) 2022; 22:9952. [PMID: 36560321 PMCID: PMC9787367 DOI: 10.3390/s22249952] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/10/2022] [Revised: 12/14/2022] [Accepted: 12/14/2022] [Indexed: 06/17/2023]
Abstract
Biomedical receptors such as cutaneous receptors or intelligent cells with tactile, auditory, gustatory, and olfactory sensations function in the five senses of the human body. Investigations focusing on the configuration of such receptors are useful in the fields of robotics and sensors in the food industry, among others, which involve artificial organs or sensory machines. In the present study, we aimed to produce the receptors for four senses (excepting vision) by morphologically mimicking virtual human ones. The mimicked receptors were categorized into eight types of configured structure. Our proposed magnetic-responsive hybrid fluid (HF) in elastic and soft rubber and proposed electrolytic polymerization technique gave the solidified HF rubber electric characteristics of piezoelectricity and piezo-capacity, among others. On the basis of these electric characteristics, the mimicked receptors were configured in various types of electric circuits. Through experimental estimation of mechanical force, vibration, thermal, auditory, gustatory, and olfactory responses of each receptor, the optimum function of each was specified by comparison with the actual sensations of the receptors. The effect of hairs fabricated in the receptors was also clarified to viably reproduce the distinctive functions of these sensations.
Collapse
Affiliation(s)
- Kunio Shimada
- Faculty of Symbiotic Systems Sciences, Fukushima University, 1 Kanayagawa, Fukushima 960-1296, Japan
| |
Collapse
|
4
|
Shimada K. Artificial Tongue Embedded with Conceptual Receptor for Rubber Gustatory Sensor by Electrolytic Polymerization Technique with Utilizing Hybrid Fluid (HF). SENSORS (BASEL, SWITZERLAND) 2022; 22:6979. [PMID: 36146328 PMCID: PMC9502859 DOI: 10.3390/s22186979] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/31/2022] [Revised: 09/08/2022] [Accepted: 09/13/2022] [Indexed: 06/16/2023]
Abstract
The development of gustatory sensors is essential for the development of smart materials for use in robotics, and in the food, beverage, and pharmaceutical industries. We therefore designed a prototype of a rubber tongue embedded with a gustatory receptor mimicking a human tongue using our previously proposed hybrid fluid rubber (HF rubber) and an electrolytic polymerization technique. The fabricated gustatory receptor was composed of Pacinian corpuscles, which are well known and have already been elucidated as effective haptic and auditory receptors in previous studies. Moreover, the receptor has self-powered voltage generated as built-in electricity as a result of the ionized particles and molecules in the HF rubber. The utilization of a layered structure for the Pacinian corpuscles induced a typical response not only to normal and shear forces but to thermal variations. Typical gustatory characteristics, including the initial response voltage and the cyclic voltammogram form, were clearly varied by five tastes: saltiness, sourness, sweetness, bitterness, and umami. These results were due to ORP, pH, and conductivity.
Collapse
Affiliation(s)
- Kunio Shimada
- Faculty of Symbiotic Systems Sciences, Fukushima University, Fukushima 960-1296, Japan
| |
Collapse
|
5
|
Shimada K. Morphological Fabrication of Equilibrium and Auditory Sensors through Electrolytic Polymerization on Hybrid Fluid Rubber (HF Rubber) for Smart Materials of Robotics. SENSORS (BASEL, SWITZERLAND) 2022; 22:s22145447. [PMID: 35891135 PMCID: PMC9319743 DOI: 10.3390/s22145447] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/13/2022] [Revised: 07/07/2022] [Accepted: 07/20/2022] [Indexed: 05/14/2023]
Abstract
The development of auditory sensors and systems is essential in smart materials of robotics and is placed at the strategic category of mutual communication between humans and robots. We designed prototypes of the rubber-made equilibrium and auditory sensors, mimicking hair cells in the saccule and the cochlea at the vestibule of the human ear by utilizing our previously proposed technique of electrolytic polymerization on the hybrid fluid rubber (HF rubber). The fabricated artificial hair cells embedded with mimicked free nerve endings and Pacinian corpuscles, which are well-known receptors in the human skin and have already been elucidated effective in the previous study, have the intelligence of equilibrium and auditory sensing. Moreover, they have a voltage that is generated from built-in electricity caused by the ionized particles and molecules in the HF rubber due to piezoelectricity. We verified the equilibrium and auditory characteristics by measuring the changes in voltage with inclination, vibration over a wide frequency range, and sound waves. We elucidated experimentally that the intelligence has optimum morphological conditions. This work has the possibility of advancing the novel technology of state-of-the-art social robotics.
Collapse
Affiliation(s)
- Kunio Shimada
- Faculty of Symbiotic Systems Sciences, Fukushima University, 1 Kanayagawa, Fukushima 960-1296, Japan
| |
Collapse
|
6
|
Zhang C, Qu M, Fu X, Lin J. Review on Microscale Sensors with 3D Engineered Structures: Fabrication and Applications. SMALL METHODS 2022; 6:e2101384. [PMID: 35088578 DOI: 10.1002/smtd.202101384] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/05/2021] [Revised: 01/03/2022] [Indexed: 06/14/2023]
Abstract
The intelligence of modern technologies relies on perceptual systems based on microscale sensors. However, because of the traditional top-down fabrication approaches performed on planar silicon wafers, a large proportion of existing microscale sensors have 2D structures, which severely restricts their sensing capabilities. To overcome these restrictions, over the past few decades, increasing efforts have been devoted to developing new fabrication methods for microscale sensors with 3D engineered structures, from bulk chemical etching and 3D printing to molding and stress-induced assembly. Herein, the authors systematically review these fabrication methods based on the applications of the resulting 3D sensors and discuss their advantages compared to their 2D counterparts. This is followed by a perspective on the remaining challenges and possible opportunities.
Collapse
Affiliation(s)
- Cheng Zhang
- College of Engineering, Nanjing Agricultural University, Nanjing, 210031, China
| | - Menglong Qu
- College of Engineering, Nanjing Agricultural University, Nanjing, 210031, China
| | - Xiuqing Fu
- College of Engineering, Nanjing Agricultural University, Nanjing, 210031, China
| | - Jian Lin
- Department of Mechanical and Aerospace Engineering, University of Missouri, Columbia, MO, 65211, USA
- Department of Electrical Engineering and Computer Science, University of Missouri, Columbia, MO, 65211, USA
| |
Collapse
|
7
|
|
8
|
Kim K, Sim M, Lim S, Kim D, Lee D, Shin K, Moon C, Choi J, Jang JE. Tactile Avatar: Tactile Sensing System Mimicking Human Tactile Cognition. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2021; 8:2002362. [PMID: 33854875 PMCID: PMC8024994 DOI: 10.1002/advs.202002362] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/23/2020] [Revised: 12/14/2020] [Indexed: 05/24/2023]
Abstract
As a surrogate for human tactile cognition, an artificial tactile perception and cognition system are proposed to produce smooth/soft and rough tactile sensations by its user's tactile feeling; and named this system as "tactile avatar". A piezoelectric tactile sensor is developed to record dynamically various physical information such as pressure, temperature, hardness, sliding velocity, and surface topography. For artificial tactile cognition, the tactile feeling of humans to various tactile materials ranging from smooth/soft to rough are assessed and found variation among participants. Because tactile responses vary among humans, a deep learning structure is designed to allow personalization through training based on individualized histograms of human tactile cognition and recording physical tactile information. The decision error in each avatar system is less than 2% when 42 materials are used to measure the tactile data with 100 trials for each material under 1.2N of contact force with 4cm s-1 of sliding velocity. As a tactile avatar, the machine categorizes newly experienced materials based on the tactile knowledge obtained from training data. The tactile sensation showed a high correlation with the specific user's tendency. This approach can be applied to electronic devices with tactile emotional exchange capabilities, as well as advanced digital experiences.
Collapse
Affiliation(s)
- Kyungsoo Kim
- Department of Information and Communication EngineeringDaegu Gyeongbuk Institute of Science & Technology (DGIST)Daegu711‐873Korea
- Department of NeurologyUniversity of CaliforniaSan Francisco (UCSF)San FranciscoCA94158USA
| | - Minkyung Sim
- Department of Information and Communication EngineeringDaegu Gyeongbuk Institute of Science & Technology (DGIST)Daegu711‐873Korea
| | - Sung‐Ho Lim
- Department of Information and Communication EngineeringDaegu Gyeongbuk Institute of Science & Technology (DGIST)Daegu711‐873Korea
| | - Dongsu Kim
- Department of Information and Communication EngineeringDaegu Gyeongbuk Institute of Science & Technology (DGIST)Daegu711‐873Korea
| | - Doyoung Lee
- Department of Information and Communication EngineeringDaegu Gyeongbuk Institute of Science & Technology (DGIST)Daegu711‐873Korea
| | - Kwonsik Shin
- Department of Information and Communication EngineeringDaegu Gyeongbuk Institute of Science & Technology (DGIST)Daegu711‐873Korea
| | - Cheil Moon
- Department of Brain and Cognitive SciencesDaegu Gyeongbuk Institute of Science & Technology (DGIST)Daegu711–873Korea
| | - Ji‐Woong Choi
- Department of Information and Communication EngineeringDaegu Gyeongbuk Institute of Science & Technology (DGIST)Daegu711‐873Korea
| | - Jae Eun Jang
- Department of Information and Communication EngineeringDaegu Gyeongbuk Institute of Science & Technology (DGIST)Daegu711‐873Korea
| |
Collapse
|
9
|
Wang Z, Cong Y, Fu J. Stretchable and tough conductive hydrogels for flexible pressure and strain sensors. J Mater Chem B 2021; 8:3437-3459. [PMID: 32100788 DOI: 10.1039/c9tb02570g] [Citation(s) in RCA: 232] [Impact Index Per Article: 77.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Flexible pressure and strain sensors have great potential for applications in wearable and implantable devices, soft robotics and artificial skin. Compared to flexible sensors based on filler/elastomer composites, conductive hydrogels are advantageous due to their biomimetic structures and properties, as well as biocompatibility. Numerous chemical and structural designs provide unlimited opportunities to tune the properties and performance of conductive hydrogels to match various demands for practical applications. Many electronically and ionically conductive hydrogels have been developed to fabricate pressure and strain sensors with different configurations, including resistance type and capacitance type. The sensitivity, reliability and stability of hydrogel sensors are dependent on their network structures and mechanical properties. This review focuses on tough conductive hydrogels for flexible sensors. Representative strategies to prepare stretchable, strong, tough and self-healing hydrogels are briefly reviewed since these strategies are illuminating for the development of tough conductive hydrogels. Then, a general account on various conductive hydrogels is presented and discussed. Recent advances in tough conductive hydrogels with well designed network structures and their sensory performance are discussed in detail. A series of conductive hydrogel sensors and their application in wearable devices are reviewed. Some perspectives on flexible conductive hydrogel sensors and their applications are presented at the end.
Collapse
Affiliation(s)
- Zhenwu Wang
- School of Materials Science and Engineering, Sun Yat-sen University, 135 Xingang Road West, Guangzhou 510275, China.
| | | | | |
Collapse
|
10
|
Applications of reticular diversity in metal–organic frameworks: An ever-evolving state of the art. Coord Chem Rev 2021. [DOI: 10.1016/j.ccr.2020.213655] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
|
11
|
Jayathilaka WADM, Qi K, Qin Y, Chinnappan A, Serrano-García W, Baskar C, Wang H, He J, Cui S, Thomas SW, Ramakrishna S. Significance of Nanomaterials in Wearables: A Review on Wearable Actuators and Sensors. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2019; 31:e1805921. [PMID: 30589117 DOI: 10.1002/adma.201805921] [Citation(s) in RCA: 207] [Impact Index Per Article: 41.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/12/2018] [Revised: 10/23/2018] [Indexed: 05/05/2023]
Abstract
Together with the evolution of digital health care, the wearable electronics field has evolved rapidly during the past few years and is expected to be expanded even further within the first few years of the next decade. As the next stage of wearables is predicted to move toward integrated wearables, nanomaterials and nanocomposites are in the spotlight of the search for novel concepts for integration. In addition, the conversion of current devices and attachment-based wearables into integrated technology may involve a significant size reduction while retaining their functional capabilities. Nanomaterial-based wearable sensors have already marked their presence with a significant distinction while nanomaterial-based wearable actuators are still at their embryonic stage. This review looks into the contribution of nanomaterials and nanocomposites to wearable technology with a focus on wearable sensors and actuators.
Collapse
Affiliation(s)
| | - Kun Qi
- Centre for Nanofiber and Nanotechnology, Department of Mechanical Engineering, National University of Singapore, 119260, Singapore
- School of Textile and Clothing, Jiangnan University, Wuxi, 214122, China
| | - Yanli Qin
- Centre for Nanofiber and Nanotechnology, Department of Mechanical Engineering, National University of Singapore, 119260, Singapore
- Key Laboratory of Semiconductor Photovoltaic Technology of Inner Mongolia Autonomous Region, School of Physical Science and Technology, Inner Mongolia University, Hohhot, 010021, China
| | - Amutha Chinnappan
- Centre for Nanofiber and Nanotechnology, Department of Mechanical Engineering, National University of Singapore, 119260, Singapore
| | - William Serrano-García
- Centre for Nanofiber and Nanotechnology, Department of Mechanical Engineering, National University of Singapore, 119260, Singapore
- Advanced Materials Bio & Integration Research Laboratory, Department of Electrical Engineering, University of South Florida - Tampa, FL, 33620, USA
| | - Chinnappan Baskar
- THDC Institute of Hydropower Engineering and Technology Tehri, Uttarakhand Technical University, Dehradun, Uttarakhand, 248007, India
| | - Hongbo Wang
- School of Textile and Clothing, Jiangnan University, Wuxi, 214122, China
| | - Jianxin He
- Collaborative Innovation Center of Textile and Garment Industry, Zhengzhou, Henan, 450007, China
- Provincial Key Laboratory of Functional Textile Materials, Zhongyuan University of Technology, Zhengzhou, Henan, 450007, China
| | - Shizhong Cui
- Provincial Key Laboratory of Functional Textile Materials, Zhongyuan University of Technology, Zhengzhou, Henan, 450007, China
| | - Sylvia W Thomas
- Advanced Materials Bio & Integration Research Laboratory, Department of Electrical Engineering, University of South Florida - Tampa, FL, 33620, USA
| | - Seeram Ramakrishna
- Centre for Nanofiber and Nanotechnology, Department of Mechanical Engineering, National University of Singapore, 119260, Singapore
| |
Collapse
|
12
|
Kownacka AE, Vegelyte D, Joosse M, Anton N, Toebes BJ, Lauko J, Buzzacchera I, Lipinska K, Wilson DA, Geelhoed-Duijvestijn N, Wilson CJ. Clinical Evidence for Use of a Noninvasive Biosensor for Tear Glucose as an Alternative to Painful Finger-Prick for Diabetes Management Utilizing a Biopolymer Coating. Biomacromolecules 2018; 19:4504-4511. [PMID: 30350599 PMCID: PMC6234487 DOI: 10.1021/acs.biomac.8b01429] [Citation(s) in RCA: 76] [Impact Index Per Article: 12.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
Diabetes is a metabolic condition that is exponentially increasing worldwide. Current monitoring methods for diabetes are invasive, painful, and expensive. Herein, we present the first multipatient clinical trial that demonstrates clearly that tear fluid may be a valuable marker for systemic glucose measurements. The NovioSense Glucose Sensor, worn under the lower eye lid (inferior conjunctival fornix), is reported to continuously measure glucose levels in the basal tear fluid with good correlation to blood glucose values, showing clear clinical feasibility in both animals and humans. Furthermore, the polysaccharide coated device previously reported by our laboratory when worn, does not induce pain or irritation. In a phase II clinical trial, six patients with type 1 Diabetes Mellitus were enrolled and the capability of the device to measure glucose in the tear fluid was evaluated. The NovioSense Glucose Sensor gives a stable signal and the results correlate well to blood glucose values obtained from finger-prick measurements determined by consensus error grid analysis.
Collapse
Affiliation(s)
- Alicja E Kownacka
- NovioSense B.V., NovioTech Campus, Transistorweg 5 , Nijmegen 6534 AT , The Netherlands
| | - Dovile Vegelyte
- NovioSense B.V., NovioTech Campus, Transistorweg 5 , Nijmegen 6534 AT , The Netherlands
| | - Maurits Joosse
- Haaglanden Medisch Centrum (HMC) , Lijnbaan 32 , Den Haag 2512 VA , The Netherlands
| | - Nicoleta Anton
- Universitatea de Medicina si Farmacie , Grigore T. Popa Str. Universitatii nr.16 , 700115 Iasi , Romania
| | - B Jelle Toebes
- NovioSense B.V., NovioTech Campus, Transistorweg 5 , Nijmegen 6534 AT , The Netherlands
| | - Jan Lauko
- NovioSense B.V., NovioTech Campus, Transistorweg 5 , Nijmegen 6534 AT , The Netherlands
| | - Irene Buzzacchera
- NovioSense B.V., NovioTech Campus, Transistorweg 5 , Nijmegen 6534 AT , The Netherlands
| | - Katarzyna Lipinska
- NovioSense B.V., NovioTech Campus, Transistorweg 5 , Nijmegen 6534 AT , The Netherlands
| | - Daniela A Wilson
- Radboud University , Heyendaalsweg 135 , 6525 AJ , Nijmegen , The Netherlands
| | | | - Christopher J Wilson
- NovioSense B.V., NovioTech Campus, Transistorweg 5 , Nijmegen 6534 AT , The Netherlands
| |
Collapse
|
13
|
Cao Y, Li T, Gu Y, Luo H, Wang S, Zhang T. Fingerprint-Inspired Flexible Tactile Sensor for Accurately Discerning Surface Texture. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2018; 14:e1703902. [PMID: 29504238 DOI: 10.1002/smll.201703902] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/09/2017] [Revised: 01/07/2018] [Indexed: 05/19/2023]
Abstract
Inspired by the epidermal-dermal and outer microstructures of the human fingerprint, a novel flexible sensor device is designed to improve haptic perception and surface texture recognition, which is consisted of single-walled carbon nanotubes, polyethylene, and polydimethylsiloxane with interlocked and outer micropyramid arrays. The sensor shows high pressure sensitivity (-3.26 kPa-1 in the pressure range of 0-300 Pa), and it can detect the shear force changes induced by the dynamic interaction between the outer micropyramid structure on the sensor and the tested material surface, and the minimum dimension of the microstripe that can be discerned is as low as 15 µm × 15 µm (interval × width). To demonstrate the texture discrimination capability, the sensors are tested for accurately discerning various surface textures, such as the textures of different fabrics, Braille characters, the inverted pyramid patterns, which will have great potential in robot skins and haptic perception, etc.
Collapse
Affiliation(s)
- Yudong Cao
- i-Lab, Suzhou Institute of Nano-Tech and Nano-Bionics, Chinese Academy of Sciences, 398 Ruoshui Road, Suzhou, 215123, P. R. China
- College of Life Sciences, University of Chinese Academy of Sciences, No. 19(A) Yuquan Road, Shijingshan District, Beijing, 100049, P. R. China
| | - Tie Li
- i-Lab, Suzhou Institute of Nano-Tech and Nano-Bionics, Chinese Academy of Sciences, 398 Ruoshui Road, Suzhou, 215123, P. R. China
| | - Yang Gu
- i-Lab, Suzhou Institute of Nano-Tech and Nano-Bionics, Chinese Academy of Sciences, 398 Ruoshui Road, Suzhou, 215123, P. R. China
- College of Life Sciences, University of Chinese Academy of Sciences, No. 19(A) Yuquan Road, Shijingshan District, Beijing, 100049, P. R. China
| | - Hui Luo
- i-Lab, Suzhou Institute of Nano-Tech and Nano-Bionics, Chinese Academy of Sciences, 398 Ruoshui Road, Suzhou, 215123, P. R. China
| | - Shuqi Wang
- i-Lab, Suzhou Institute of Nano-Tech and Nano-Bionics, Chinese Academy of Sciences, 398 Ruoshui Road, Suzhou, 215123, P. R. China
| | - Ting Zhang
- i-Lab, Suzhou Institute of Nano-Tech and Nano-Bionics, Chinese Academy of Sciences, 398 Ruoshui Road, Suzhou, 215123, P. R. China
| |
Collapse
|
14
|
Arakawa T, Xie R, Seshima F, Toma K, Mitsubayashi K. Air bio-battery with a gas/liquid porous diaphragm cell for medical and health care devices. Biosens Bioelectron 2017; 103:171-175. [PMID: 29287734 DOI: 10.1016/j.bios.2017.12.016] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2017] [Revised: 10/30/2017] [Accepted: 12/08/2017] [Indexed: 01/22/2023]
Abstract
Powering future generations of medical and health care devices mandates the transcutaneous transfer of energy or harvesting energy from the human body fluid. Glucose-driven bio fuel cells (bio-batteries) demonstrate promise as they produce electrical energy from glucose, which is a substrate presents in physiological fluids. Enzymatic biofuel cells can convert chemical energy into electrical energy using enzymes as catalysts. In this study, an air bio-battery was developed for healthcare and medical applications, consisting of a glucose-driven enzymatic biofuel cell using a direct gas-permeable membrane or a gas/liquid porous diaphragm. The power generation characteristics included a maximum current density of 285μA/cm2 and maximum power density of 70.7μW/cm2 in the presence of 5mmol/L of glucose in solution. In addition, high-performance, long-term-stabilized power generation was achieved using the gas/liquid porous diaphragm for the reactions between oxygen and enzyme. This system can be powered using 5mmol/L of glucose, the value of which is similar to that of the blood sugar range in humans.
Collapse
Affiliation(s)
- Takahiro Arakawa
- Department of Biomedical Devices and Instrumentation, Institute of Biomaterials and Bioengineering, Tokyo Medical and Dental University, 2-3-10 Kanda-Surugadai, Chiyoda-ku, Tokyo 101-0062, Japan
| | - Rui Xie
- Graduate school of Medical and Dental Sciences, Tokyo Medical and Dental University, 1-5-45 Yushima, Bunkyo-ku, Tokyo 113-8549, Japan
| | - Fumiya Seshima
- Graduate school of Medical and Dental Sciences, Tokyo Medical and Dental University, 1-5-45 Yushima, Bunkyo-ku, Tokyo 113-8549, Japan
| | - Koji Toma
- Department of Biomedical Devices and Instrumentation, Institute of Biomaterials and Bioengineering, Tokyo Medical and Dental University, 2-3-10 Kanda-Surugadai, Chiyoda-ku, Tokyo 101-0062, Japan
| | - Kohji Mitsubayashi
- Department of Biomedical Devices and Instrumentation, Institute of Biomaterials and Bioengineering, Tokyo Medical and Dental University, 2-3-10 Kanda-Surugadai, Chiyoda-ku, Tokyo 101-0062, Japan; Graduate school of Medical and Dental Sciences, Tokyo Medical and Dental University, 1-5-45 Yushima, Bunkyo-ku, Tokyo 113-8549, Japan.
| |
Collapse
|
15
|
Kongwong P, Morozova K, Ferrentino G, Poonlarp P, Scampicchio M. Rapid Determination of the Antioxidant Capacity of Lettuce by an E-Tongue Based on Flow Injection Coulometry. ELECTROANAL 2017. [DOI: 10.1002/elan.201700354] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Affiliation(s)
- Pratsanee Kongwong
- Free University of Bozen-Bolzano; Faculty of Science and Technology; Universitätsplatz 5 39100 Bolzano Italy
- Division of Food Science and Technology; Faculty of Agro-Industry Chiang Mai University, Chiang Mai; 50100 Thailand
| | - Ksenia Morozova
- Free University of Bozen-Bolzano; Faculty of Science and Technology; Universitätsplatz 5 39100 Bolzano Italy
| | - Giovanna Ferrentino
- Free University of Bozen-Bolzano; Faculty of Science and Technology; Universitätsplatz 5 39100 Bolzano Italy
| | - Pichaya Poonlarp
- Division of Food Engineering; Faculty of Agro-Industry Chiang Mai University; Chiang Mai 50100 Thailand
| | - Matteo Scampicchio
- Free University of Bozen-Bolzano; Faculty of Science and Technology; Universitätsplatz 5 39100 Bolzano Italy
| |
Collapse
|
16
|
Liu Y, He K, Chen G, Leow WR, Chen X. Nature-Inspired Structural Materials for Flexible Electronic Devices. Chem Rev 2017; 117:12893-12941. [DOI: 10.1021/acs.chemrev.7b00291] [Citation(s) in RCA: 448] [Impact Index Per Article: 64.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Affiliation(s)
- Yaqing Liu
- Innovative Centre for Flexible
Devices (iFLEX), School of Materials Science and Engineering, Nanyang Technological University, 50 Nanyang Avenue, 639798, Singapore
| | - Ke He
- Innovative Centre for Flexible
Devices (iFLEX), School of Materials Science and Engineering, Nanyang Technological University, 50 Nanyang Avenue, 639798, Singapore
| | - Geng Chen
- Innovative Centre for Flexible
Devices (iFLEX), School of Materials Science and Engineering, Nanyang Technological University, 50 Nanyang Avenue, 639798, Singapore
| | - Wan Ru Leow
- Innovative Centre for Flexible
Devices (iFLEX), School of Materials Science and Engineering, Nanyang Technological University, 50 Nanyang Avenue, 639798, Singapore
| | - Xiaodong Chen
- Innovative Centre for Flexible
Devices (iFLEX), School of Materials Science and Engineering, Nanyang Technological University, 50 Nanyang Avenue, 639798, Singapore
| |
Collapse
|