1
|
Wang D, Shen L, Liu W, Cao X, Wang Q. High -Sensitive Detection of Malachite Green Based on Surface-Enhanced Electrochemiluminescence. J Fluoresc 2024:10.1007/s10895-023-03563-y. [PMID: 38193951 DOI: 10.1007/s10895-023-03563-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2023] [Accepted: 12/19/2023] [Indexed: 01/10/2024]
Abstract
This article introduces a novel unlabeled surface-enhanced electrochemiluminescence (SEECL) sensor for malachite green (MG) detection. The SEECL sensor was prepared by modifying the Ru(bpy)32+ doped gold-SiO2 core-shell nanocomposites (Au@SiO2-Ru(bpy)32+) on the gold electrode. Ru(bpy)32+ of nanocomposites can not only emit electrochemiluminescence (ECL) with electrochemical reaction, but also induce the local surface plasmon resonance (LSPR) of gold core. That is beneficial to enhance the ECL signa of sensor. However, in the existence of MG, the luminescence of sensor would be quenched by the fluorescence resonance energy transfer (FRET) between MG and Ru(bpy)32+. In this paper, both fluorescence and ECL of the Au@SiO2-Ru(bpy)32+ were investigated for MG detection. And the results show that the SEECL sensor has high sensitive to MG. Under the optimal experimental conditions, the minimum detection concentration could be achieved about 1.0 nM of MG, which fully meets the China national standard detection requirements of veterinary drug residue in seafood.
Collapse
Affiliation(s)
- Daifang Wang
- Fujian Vocational College of Bioengineering, Fuzhou, Fujian Province, 350002, China.
| | - Ligong Shen
- Fujian Vocational College of Bioengineering, Fuzhou, Fujian Province, 350002, China
| | - Wenjun Liu
- Fujian Vocational College of Bioengineering, Fuzhou, Fujian Province, 350002, China
| | - Xiao Cao
- Fujian Vocational College of Bioengineering, Fuzhou, Fujian Province, 350002, China
| | - Qianwen Wang
- Fujian Vocational College of Bioengineering, Fuzhou, Fujian Province, 350002, China
| |
Collapse
|
2
|
Strategies of tailored nanomaterials for electrochemiluminescence signal enhancements. Curr Opin Colloid Interface Sci 2022. [DOI: 10.1016/j.cocis.2022.101621] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
3
|
Bushira FA, Kitte SA, Wang Y, Li H, Wang P, Jin Y. Plasmon-Boosted Cu-Doped TiO 2 Oxygen Vacancy-Rich Luminol Electrochemiluminescence for Highly Sensitive Detection of Alkaline Phosphatase. Anal Chem 2021; 93:15183-15191. [PMID: 34743510 DOI: 10.1021/acs.analchem.1c03842] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
In this study, an effective oxygen vacancy (Ov)-involved luminol-dissolved oxygen (O2) electrochemiluminescence (luminol-DO ECL) system was developed and exploited for ECL sensing applications through significant plasmon enhancement of the Ov-involved weak luminol-DO ECL signals by the combined use of Cu-doped TiO2 oxygen vacancy and a Au@SiO2 nanomembrane. The results disclosed that the ECL response of the corresponding system could be synergistically boosted, and the plausible underlying mechanism has been discussed. Furthermore, for the first time, the developed system has been successfully applied for the highly sensitive detection of alkaline phosphatase with a low limit of detection of 0.005 U/L, with an excellent linear range from 0.005 to 10 U/L, as well as good stability and reproducibility.
Collapse
Affiliation(s)
- Fuad Abduro Bushira
- State Key Laboratory of Electroanalytical Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, 5625 Renmin Street, Changchun 130022, P.R. China.,University of Science and Technology of China, No. 96 JinZhai Road, Hefei, Anhui 230026, P.R. China
| | - Shimeles Addisu Kitte
- State Key Laboratory of Electroanalytical Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, 5625 Renmin Street, Changchun 130022, P.R. China
| | - Yong Wang
- State Key Laboratory of Electroanalytical Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, 5625 Renmin Street, Changchun 130022, P.R. China.,University of Science and Technology of China, No. 96 JinZhai Road, Hefei, Anhui 230026, P.R. China
| | - Haijuan Li
- State Key Laboratory of Electroanalytical Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, 5625 Renmin Street, Changchun 130022, P.R. China
| | - Ping Wang
- State Key Laboratory of Electroanalytical Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, 5625 Renmin Street, Changchun 130022, P.R. China
| | - Yongdong Jin
- State Key Laboratory of Electroanalytical Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, 5625 Renmin Street, Changchun 130022, P.R. China.,University of Science and Technology of China, No. 96 JinZhai Road, Hefei, Anhui 230026, P.R. China
| |
Collapse
|
4
|
Bushira FA, Kitte SA, Xu C, Li H, Zheng L, Wang P, Jin Y. Two-Dimensional-Plasmon-Boosted Iron Single-Atom Electrochemiluminescence for the Ultrasensitive Detection of Dopamine, Hemin, and Mercury. Anal Chem 2021; 93:9949-9957. [PMID: 34218661 DOI: 10.1021/acs.analchem.1c02232] [Citation(s) in RCA: 30] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
Single-atom catalysts (SACs) have recently been exploited for luminol-dissolved oxygen electrochemiluminescence (ECL); however, they still suffer from low sensitivity and narrow detection range for a real sample assay. In this work, we boost markedly the ECL response of the iron SAC (Fe-SAC)-based system, for the first time, by the excitation of two-dimensional plasmons derived from the Au@SiO2 nanomembrane. The plausible mechanism of plasmon enhancement in the Fe-SAC ECL system has been discussed. The constructed Fe-SAC ECL system has been applied for the ECL detection of dopamine, hemin, and mercury (Hg2+), with pretty low limits of detection of 0.1, 0.7, and 0.13 nM and wider linear ranges of 0.001-1.0, 0.001-10, and 0.01-0.5 nM, respectively, under optimal conditions.
Collapse
Affiliation(s)
- Fuad Abduro Bushira
- State Key Laboratory of Electroanalytical Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, 5625 Renmin Street, Changchun 130022, China.,University of Science and Technology of China, No. 96, JinZhai Road, Hefei, Anhui 230026, China.,Department of Chemistry, College of Natural Sciences, Jimma University, P.O. Box 378, Jimma, Ethiopia
| | - Shimeles Addisu Kitte
- State Key Laboratory of Electroanalytical Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, 5625 Renmin Street, Changchun 130022, China.,Department of Chemistry, College of Natural Sciences, Jimma University, P.O. Box 378, Jimma, Ethiopia
| | - Chen Xu
- State Key Laboratory of Electroanalytical Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, 5625 Renmin Street, Changchun 130022, China.,University of Science and Technology of China, No. 96, JinZhai Road, Hefei, Anhui 230026, China
| | - Haijuan Li
- State Key Laboratory of Electroanalytical Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, 5625 Renmin Street, Changchun 130022, China
| | - Lirong Zheng
- Beijing Synchrotron Radiation Facility, Institute of High Energy Physics, Chinese Academy of Sciences, Beijing 100049, China
| | - Ping Wang
- State Key Laboratory of Electroanalytical Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, 5625 Renmin Street, Changchun 130022, China
| | - Yongdong Jin
- State Key Laboratory of Electroanalytical Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, 5625 Renmin Street, Changchun 130022, China.,University of Science and Technology of China, No. 96, JinZhai Road, Hefei, Anhui 230026, China
| |
Collapse
|
5
|
Liu G, Gao H, Chen J, Shao C, Chen F. An Ultra‐sensitive Electrochemiluminescent Detection of Carcinoembryonic Antigen Using a Hollowed‐out Electrode. ELECTROANAL 2021. [DOI: 10.1002/elan.202060624] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Affiliation(s)
- Gen Liu
- College of Chemistry and Material Science Huaibei Normal University Huaibei 235000 China
- State Key Laboratory of Analytical Chemistry for Life Science Nanjing University Nanjing 210023 China
- Henan Key Laboratory of Biomolecular Recognition and Sensing Shangqiu Normal University Shangqiu 476000 China
| | - Hui Gao
- College of Chemistry and Material Science Huaibei Normal University Huaibei 235000 China
| | - Jiajia Chen
- College of Chemistry and Material Science Huaibei Normal University Huaibei 235000 China
| | - Congying Shao
- College of Chemistry and Material Science Huaibei Normal University Huaibei 235000 China
| | - Feifei Chen
- College of Chemistry and Material Science Huaibei Normal University Huaibei 235000 China
| |
Collapse
|
6
|
A comparison of PMT-based and CCD-based sensors for electrochemiluminescence detection of sunset yellow in soft drinks. Food Chem 2021; 362:130219. [PMID: 34091170 DOI: 10.1016/j.foodchem.2021.130219] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2021] [Revised: 05/16/2021] [Accepted: 05/25/2021] [Indexed: 11/23/2022]
Abstract
The use of artificial colorants in food is highly regulated due to their potential to harm human health. Thus, it is crucial to detect these substances effectively to ensure conformance with industrial standards. In this work, we prepared a photomultiplier tube (PMT)-based electrochemiluminescence (ECL) sensor and a charged coupled device (CCD)-based ECL sensor and compared their merits in the detection of sunset yellow (SY) dye. The sensors used C,N quantum dot-embedded g-C3N4 nanosheets (QDs@NSs) as the ECL agent and K2S2O8 as the coreactant. SY was analyzed on the basis of amplification in the QDs@NHs-K2S2O8 ECL system. The PMT-based sensor realized ultrasensitive detection using a single electrode, especially at low concentrations of SY. A CCD-based sensor imaged the ECL phenomenon of an electrode array and provided the advantages of high throughput and time savings. Under optimized conditions, both sensors exhibited high specificity, reproducibility and stability; detection limits of 20 nM with PMT detection and 5 μM with CCD detection were determined for SY, with detection ranging over at least two decades. The practical feasibilities of these systems were confirmed by satisfactory detection of SY in real drink samples.
Collapse
|
7
|
Ding L, Xu S, Huang D, Chen L, Kannan P, Guo L, Lin Z. Surface-enhanced electrochemiluminescence combined with resonance energy transfer for sensitive carcinoembryonic antigen detection in exhaled breath condensates. Analyst 2020; 145:6524-6531. [PMID: 32760976 DOI: 10.1039/d0an00864h] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
The detection of biomarkers in exhaled breath condensates (EBCs) is regarded as a promising non-invasive diagnostic approach. However, the ultralow concentration of biomarkers in EBCs is a great challenge. Herein, a sensitive dual signal amplification strategy was developed based on surface-enhanced electrochemiluminescence (SEECL) combined with resonance energy transfer (RET). Gold nanoparticles-functionalized graphite-like carbon nitride nanohybrids (Au-g-C3N4 NHs) could be used as an energy transfer donor because of the good overlap between its emission peak and the absorption peak of tris(2,2'-bipyridine)ruthenium dichloride (Ru(bpy)3Cl2) at 460 nm. Gold-silicon dioxide core-shell nanoparticles doped with Ru(bpy)32+(Au@SiO2-Ru) were employed as an energy transfer acceptor emitting at 620 nm. Moreover, the signals at 620 nm emitted by Ru (bpy)32+ were enhanced by 5 times, attributed to the localized surface plasmon resonance (LSPR) of gold nanoparticles (Au NPs). The detection of carcinoembryonic antigen (CEA) was performed by using two aptamers as the recognition unit; whereby aptamer 1 (Apt1) was modified on the surface of Au-g-C3N4 NHs, and aptamer 2 (Apt2) was banded on the surface of Au@SiO2-Ru. In the presence of CEA, a sandwich structure was formed between Au-g-C3N4 NHs-Apt1-CEA and Apt2-Au@SiO2-Ru, which resulted in an ultrasensitive detection of CEA. The proposed electrochemiluminescence sensor showed a wide linear relationship with the CEA concentration in the range from 1.0 pg mL-1 to 5.0 ng mL-1, with a limit of detection (LOD) of 0.3 pg mL-1. Finally, the practicality of the proposed sensor was demonstrated to detect CEA in EBCs, and the obtained results were in good agreement with the enzyme-linked immunosorbent assay (ELISA) method.
Collapse
Affiliation(s)
- Li Ding
- Ministry of Education Key Laboratory for Analytical Science of Food Safety and Biology, Fujian Provincial Key Laboratory of Analysis and Detection for Food Safety, College of Chemistry, Fuzhou University, Fuzhou, Fujian Province 350116, China.
| | | | | | | | | | | | | |
Collapse
|
8
|
Dinel M, Tartaggia S, Wallace GQ, Boudreau D, Masson J, Polo F. The Fundamentals of Real‐Time Surface Plasmon Resonance/Electrogenerated Chemiluminescence. Angew Chem Int Ed Engl 2019; 58:18202-18206. [DOI: 10.1002/anie.201909806] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2019] [Revised: 09/30/2019] [Indexed: 12/26/2022]
Affiliation(s)
- Marie‐Pier Dinel
- Department of ChemistryUniversité de Montréal C.P. 6128 Succ. Centre-Ville Montreal Qc H3C 3J7 Canada
| | - Stefano Tartaggia
- Farmacologia Sperimentale e ClinicaIRCCS Centro di Riferimento Oncologico Via Franco Gallini 2 33081 Aviano Italy
| | - Gregory Q. Wallace
- Department of ChemistryUniversité de Montréal C.P. 6128 Succ. Centre-Ville Montreal Qc H3C 3J7 Canada
| | - Denis Boudreau
- Department of Chemistry and Centre for Optics, Photonics and Lasers (COPL)Université Laval 1045, av. de la Médecine Québec Qc G1V 0A6 Canada
| | - Jean‐Francois Masson
- Department of ChemistryUniversité de Montréal C.P. 6128 Succ. Centre-Ville Montreal Qc H3C 3J7 Canada
| | - Federico Polo
- Department of Molecular Sciences and NanosystemsCa' Foscari University of Venice Via Torino 155B 30172 Venezia Italy
| |
Collapse
|
9
|
Cao N, Zeng P, Zhao F, Zeng B. Au@SiO2@RuDS nanocomposite based plasmon-enhanced electrochemiluminescence sensor for the highly sensitive detection of glutathione. Talanta 2019; 204:402-408. [DOI: 10.1016/j.talanta.2019.06.030] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2019] [Revised: 06/05/2019] [Accepted: 06/08/2019] [Indexed: 12/11/2022]
|
10
|
Dinel M, Tartaggia S, Wallace GQ, Boudreau D, Masson J, Polo F. The Fundamentals of Real‐Time Surface Plasmon Resonance/Electrogenerated Chemiluminescence. Angew Chem Int Ed Engl 2019. [DOI: 10.1002/ange.201909806] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Affiliation(s)
- Marie‐Pier Dinel
- Department of ChemistryUniversité de Montréal C.P. 6128 Succ. Centre-Ville Montreal Qc H3C 3J7 Canada
| | - Stefano Tartaggia
- Farmacologia Sperimentale e ClinicaIRCCS Centro di Riferimento Oncologico Via Franco Gallini 2 33081 Aviano Italy
| | - Gregory Q. Wallace
- Department of ChemistryUniversité de Montréal C.P. 6128 Succ. Centre-Ville Montreal Qc H3C 3J7 Canada
| | - Denis Boudreau
- Department of Chemistry and Centre for Optics, Photonics and Lasers (COPL)Université Laval 1045, av. de la Médecine Québec Qc G1V 0A6 Canada
| | - Jean‐Francois Masson
- Department of ChemistryUniversité de Montréal C.P. 6128 Succ. Centre-Ville Montreal Qc H3C 3J7 Canada
| | - Federico Polo
- Department of Molecular Sciences and NanosystemsCa' Foscari University of Venice Via Torino 155B 30172 Venezia Italy
| |
Collapse
|
11
|
Lu HJ, Xu CH, Xu JJ, Chen HY. Metallic Inverse Opals: An Electrochemiluminescence enhanced Substrate for Sensitive Bioanalysis. Anal Chem 2019; 91:14757-14764. [DOI: 10.1021/acs.analchem.9b04228] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Affiliation(s)
- Hai-Jie Lu
- State Key Laboratory of Analytical Chemistry for Life Science and Collaborative Innovation Center of Chemistry for Life Sciences, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, China
| | - Cong-Hui Xu
- State Key Laboratory of Analytical Chemistry for Life Science and Collaborative Innovation Center of Chemistry for Life Sciences, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, China
| | - Jing-Juan Xu
- State Key Laboratory of Analytical Chemistry for Life Science and Collaborative Innovation Center of Chemistry for Life Sciences, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, China
| | - Hong-Yuan Chen
- State Key Laboratory of Analytical Chemistry for Life Science and Collaborative Innovation Center of Chemistry for Life Sciences, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, China
| |
Collapse
|
12
|
Sun Y, Fan J, Cui L, Ke W, Zheng F, Zhao Y. Fluorometric nanoprobes for simultaneous aptamer-based detection of carcinoembryonic antigen and prostate specific antigen. Mikrochim Acta 2019; 186:152. [PMID: 30712215 DOI: 10.1007/s00604-019-3281-4] [Citation(s) in RCA: 38] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2018] [Accepted: 01/23/2019] [Indexed: 02/05/2023]
Abstract
A "turn-on" fluorometric assay based on the combined effects of fluorescence resonance energy transfer (FRET) and internal filter effect (IFE) is described for the rapid and ultrasensitive detection of both carcinoembryonic antigen (CEA) and prostate specific antigen (PSA). Their unique porous structures and high specific surface enable mesoporous silica nanoparticles (MSNs) to load a large number of CdTe quantum dots (QDs). These amplify the fluorescence signal and provide a platform to fabricate more distinctly fluorescent MSNs (QD-MSNs). Two kinds of QD-MSNs with the maximum emission wavelengths at 590 nm (orange) and 731 nm (dark red) were fabricated and served as two types of fluorescent probes for the dual detection. Two aptamers were covalently connected to fluorescent MSNs as the recognition unit to warrant the selectivity of assay. The fluorescence of QD-MSNs can be quenched by molybdenum disulfide nanosheets (MoS2) due to FRET mechanism, IFE also contributed to the the reduction of fluorescence intensity. The fluorescence of QD-MSNs was further recovered in the presence of CEA and PSA attributing to the excellent specificity of aptamers. A "turn-on" fluorescent two-channel nanoprobe is introduced for simultaneous quantification of CEA and PSA. The respective limits of detection (at S/N = 3) are 0.7 fg•mL-1 for CEA and 0.9 fg•mL-1 for PSA. Graphical abstract Schematic presentation of the turn-on fluorescent nanoprobes for simultaneous detection of CEA and PSA.
Collapse
Affiliation(s)
- Yali Sun
- Key Lab of Synthetic and Biological Colloids, Ministry of Education, School of Chemical and Material Engineering, Jiangnan University, Wuxi, 214122, Jiangsu, China
| | - Jianfeng Fan
- Wuxi Children's Hospital, Jiangsu, 214023, China
| | - Linyan Cui
- Key Lab of Synthetic and Biological Colloids, Ministry of Education, School of Chemical and Material Engineering, Jiangnan University, Wuxi, 214122, Jiangsu, China
| | - Wei Ke
- Key Lab of Synthetic and Biological Colloids, Ministry of Education, School of Chemical and Material Engineering, Jiangnan University, Wuxi, 214122, Jiangsu, China
| | - Fangjie Zheng
- Key Lab of Synthetic and Biological Colloids, Ministry of Education, School of Chemical and Material Engineering, Jiangnan University, Wuxi, 214122, Jiangsu, China
| | - Yuan Zhao
- Key Lab of Synthetic and Biological Colloids, Ministry of Education, School of Chemical and Material Engineering, Jiangnan University, Wuxi, 214122, Jiangsu, China.
| |
Collapse
|
13
|
Bertoncello P, Ugo P. Recent Advances in Electrochemiluminescence with Quantum Dots and Arrays of Nanoelectrodes. ChemElectroChem 2017. [DOI: 10.1002/celc.201700201] [Citation(s) in RCA: 58] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Paolo Bertoncello
- College of Engineering; Swansea University; Bay Campus Swansea SA1 8EN United Kingdom
| | - Paolo Ugo
- Department of Molecular Sciences and Nanosystems; University Ca' Foscari Venice; via Torino 155 30172 Venezia-Mestre Italy
| |
Collapse
|