1
|
Kim JH, Choi J, Kim J, Kim J. Enhanced near-infrared electrochemiluminescence of Au nanoclusters treated with piperidine. Bioelectrochemistry 2022; 147:108192. [DOI: 10.1016/j.bioelechem.2022.108192] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2022] [Revised: 06/10/2022] [Accepted: 06/11/2022] [Indexed: 11/02/2022]
|
2
|
Gunasekera B, Abou Diwan C, Altawallbeh G, Kalil H, Maher S, Xu S, Bayachou M. Functional Layer-by-Layer Thin Films of Inducible Nitric Oxide (NO) Synthase Oxygenase and Polyethylenimine: Modulation of Enzyme Loading and NO-Release Activity. ACS APPLIED MATERIALS & INTERFACES 2018; 10:7745-7755. [PMID: 29359547 DOI: 10.1021/acsami.7b17575] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
Nitric oxide (NO) release counteracts platelet aggregation and prevents the thrombosis cascade in the inner walls of blood vessels. NO-release coatings also prevent thrombus formation on the surface of blood-contacting medical devices. Our previous work has shown that inducible nitric oxide synthase (iNOS) films release NO fluxes upon enzymatic conversion of the substrate l-arginine. In this work, we report on the modulation of enzyme loading in layer-by-layer (LbL) thin films of inducible nitric oxide synthase oxygenase (iNOSoxy) on polyethylenimine (PEI). The layer of iNOSoxy is electrostatically adsorbed onto the PEI layer. The pH of the iNOSoxy solution affects the amount of enzyme adsorbed. The overall negative surface charge of iNOSoxy in solution depends on the pH and hence determines the density of adsorbed protein on the positively charged PEI layer. We used buffered iNOSoxy solutions adjusted to pHs 8.6 and 7.0, while saline PEI solution was used at pH 7.0. Atomic force microscopy imaging of the outermost layer shows higher protein adsorption with iNOSoxy at pH 8.6 than with a solution of iNOSoxy at pH 7.0. Graphite electrodes with PEI/iNOSoxy films show higher catalytic currents for nitric oxide reduction mediated by iNOSoxy. The higher enzyme loading translates into higher NO flux when the enzyme-modified surface is exposed to a solution containing the substrate and a source of electrons. Spectrophotometric assays showed higher NO fluxes with iNOSoxy/PEI films built at pH 8.6 than with films built at pH 7.0. Fourier transform infrared analysis of iNOSoxy adsorbed on PEI at pH 8.6 and 7.0 shows structural differences of iNOSoxy in films, which explains the observed changes in enzymatic activity. Our findings show that pH provides a strategy to optimize the NOS loading and enzyme activity in NOS-based LbL thin films, which enables improved NO release with minimum layers of PEI/NOS.
Collapse
Affiliation(s)
- Bhagya Gunasekera
- Department of Chemistry , Cleveland State University , 2399 Euclid Avenue SR 397 , Cleveland , Ohio 44120 , United States
| | - Charbel Abou Diwan
- Department of Chemistry , Cleveland State University , 2399 Euclid Avenue SR 397 , Cleveland , Ohio 44120 , United States
| | - Ghaith Altawallbeh
- Department of Chemistry , Cleveland State University , 2399 Euclid Avenue SR 397 , Cleveland , Ohio 44120 , United States
| | - Haitham Kalil
- Department of Chemistry , Cleveland State University , 2399 Euclid Avenue SR 397 , Cleveland , Ohio 44120 , United States
| | - Shaimaa Maher
- Department of Chemistry , Cleveland State University , 2399 Euclid Avenue SR 397 , Cleveland , Ohio 44120 , United States
| | - Song Xu
- Keysight Technologies , 1400 Foutaingrove Parkway , Santa Rosa 95403 , California , United States
| | - Mekki Bayachou
- Department of Chemistry , Cleveland State University , 2399 Euclid Avenue SR 397 , Cleveland , Ohio 44120 , United States
- Department of Pathobiology , Lerner Research Institute , The Cleveland Clinic , Cleveland , Ohio 44106 , United States
| |
Collapse
|
3
|
Guo W, Liu Y, Cao Z, Su B. Imaging Analysis Based on Electrogenerated Chemiluminescence. JOURNAL OF ANALYSIS AND TESTING 2017. [DOI: 10.1007/s41664-017-0013-9] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|