Josypcuk B, Tvorynska S. Electrochemical flow-through biosensors based on microfiber enzymatic filter discs placed at printed electrodes.
Bioelectrochemistry 2024;
157:108663. [PMID:
38359574 DOI:
10.1016/j.bioelechem.2024.108663]
[Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2023] [Revised: 01/15/2024] [Accepted: 02/01/2024] [Indexed: 02/17/2024]
Abstract
A new type of electrochemical biosensors in a flow injection system with printed electrodes were developed and tested. A filter disc (7 mm diameter) with immobilized enzyme was placed at the printed electrode. This conception combines the advantages of biosensors with a bioreceptor at the electrode surface and systems with spatially separated enzymatic and detection parts. Filters of different composition (glass, quartz, and cellulose), thickness, porosity, and ways of binding enzyme to their surface were tested. Only covalent bonds throughout a filter-aminosilane-glutaraldehyde-enzyme chain ensured a long-time and reproducible biosensor response. The developed method of biosensor preparation has been successfully applied to enzymes glucose oxidase, laccase and choline oxidase. The dependences of peak current on detection potential, flow rate, injection volume, analyte concentration as well as biosensor lifetime and reproducibility were investigated for glucose oxidase biosensor. The sensitivity of measurements was two or more times higher than that of biosensor with a mini-reactor filled by powder with immobilized enzyme. The developed biosensor with laccase was tested by determining dopamine in the pharmaceutical infusion product Tensamin®. Results of the analysis (40.0 ± 0.7 mg mL-1, SD = 0.8 mg mL-1, RSD = 1.85 %, N = 11) show a good agreement with the manufacturer's declared value.
Collapse