1
|
Tverdokhlebova A, Sterin I, Darie CC, Katz E, Smutok O. Stimulation-Inhibition of Protein Release from Alginate Hydrogels Using Electrochemically Generated Local pH Changes. ACS APPLIED MATERIALS & INTERFACES 2022; 14:57408-57418. [PMID: 36516447 DOI: 10.1021/acsami.2c17914] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/17/2023]
Abstract
The electrochemically controlled release of proteins was studied in a Ca2+-cross-linked alginate hydrogel deposited on an electrode surface. The electrochemical oxidation of ascorbate or reduction of O2 was achieved upon applying electrical potentials +0.6 or -0.8 V (vs Ag/AgCl/KCl 3 M), respectively, resulting in decreasing or increasing pH locally near an electrode surface. The obtained local acidic solution resulted in the protonation of carboxylic groups in the alginate hydrogel and, as a result, the formation of a hydrophobic shrunken hydrogel film. Conversely, the produced alkaline local environment resulted in a hydrophilic swollen hydrogel film. The release of the proteins was effectively inhibited from the shrunk hydrogel and activated from the swollen hydrogel film. Overall, the electrochemically produced local pH changes allowed control over the biomolecule release process. While the release inhibition by applying +0.6 V was always effective and could be maintained as long as the positive potential was applied, the release activation was different depending on the protein molecular size, being more effective for smaller species, and molecule charge, being more effective for negatively charged species. The repetitive change from the inhibited to stimulated state of the biomolecule release process was obtained upon cyclic application of oxidative and reductive potentials (+0.6 V ↔ -0.8 V). The alginate hydrogel film shrinking-swelling as well as the protein release process were studied and visualized using a confocal fluorescent microscope. In order to be observed, an external surface of the alginate film and the loaded protein molecules were labeled with different fluorescent dyes, which then produced colored fluorescent images under a confocal microscope.
Collapse
Affiliation(s)
- Anna Tverdokhlebova
- Department of Chemistry and Biomolecular Science, Clarkson University, Potsdam, New York 13699-5810, United States
| | - Ilya Sterin
- Department of Chemistry and Biomolecular Science, Clarkson University, Potsdam, New York 13699-5810, United States
| | - Costel C Darie
- Department of Chemistry and Biomolecular Science, Clarkson University, Potsdam, New York 13699-5810, United States
- Biochemistry & Proteomics Laboratories, Department of Chemistry and Biomolecular Science, Clarkson University, Potsdam, New York 13699-5810, United States
| | - Evgeny Katz
- Department of Chemistry and Biomolecular Science, Clarkson University, Potsdam, New York 13699-5810, United States
| | - Oleh Smutok
- Department of Chemistry and Biomolecular Science, Clarkson University, Potsdam, New York 13699-5810, United States
| |
Collapse
|
2
|
Senechal V, Rodriguez-Hernandez J, Drummond C. Electroresponsive Weak Polyelectrolyte Brushes. Macromolecules 2022. [DOI: 10.1021/acs.macromol.1c02377] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
| | | | - Carlos Drummond
- CNRS, CRPP, UMR 5031, Univ. Bordeaux, F-33600 Pessac, France
| |
Collapse
|
3
|
Bollella P, Melman A, Katz E. Electrochemically Generated Interfacial pH Change: Application to Signal‐Triggered Molecule Release. ChemElectroChem 2020. [DOI: 10.1002/celc.202000615] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Affiliation(s)
- Paolo Bollella
- Department of Chemistry and Biomolecular ScienceClarkson University 8 Clarkson Ave. Potsdam NY 13699 USA
| | - Artem Melman
- Department of Chemistry and Biomolecular ScienceClarkson University 8 Clarkson Ave. Potsdam NY 13699 USA
| | - Evgeny Katz
- Department of Chemistry and Biomolecular ScienceClarkson University 8 Clarkson Ave. Potsdam NY 13699 USA
| |
Collapse
|
4
|
Liu Y, Gai M, Sukvanitvichai D, Frueh J, Sukhorukov GB. pH dependent degradation properties of lactide based 3D microchamber arrays for sustained cargo release. Colloids Surf B Biointerfaces 2020; 188:110826. [PMID: 32007703 DOI: 10.1016/j.colsurfb.2020.110826] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2019] [Revised: 01/23/2020] [Accepted: 01/24/2020] [Indexed: 12/18/2022]
Abstract
Encapsulation of small water soluble molecules is important in a large variety of applications, ranging from medical substance releasing implants in the field of medicine over release of catalytically active substances in the field of chemical processing to anti-corrosion agents in industry. In this work polylactic acid (PLA) based hollow-structured microchamber (MC) arrays are fabricated via one-step dip coating of a silicone rubber stamp into PLA solution. These PLA MCs are able to retain small water soluble molecules (Rhodamine B) stably entrapped within aqueous environments. It is shown, that degradation of PLA MCs strongly depends on environmental conditions like surrounding pH and follows first order degradation kinetics. This pH dependent PLA MC degradation can be utilized to control the release kinetics of encapsulated cargo.
Collapse
Affiliation(s)
- Yuechi Liu
- Key Laboratory of Micro-systems and Micro-structures Manufacturing Ministry of Education, Harbin Institute of Technology, Harbin, 150001, China
| | - Meiyu Gai
- Max Plank Institute of Polymer Research, Ackermannweg 10, 55128, Mainz, Germany; School of Engineering and Materials Science, Queen Mary University of London, Mile End Road, London, E1 4NS, United Kingdom.
| | - Dusita Sukvanitvichai
- School of Engineering and Materials Science, Queen Mary University of London, Mile End Road, London, E1 4NS, United Kingdom
| | - Johannes Frueh
- Key Laboratory of Micro-systems and Micro-structures Manufacturing Ministry of Education, Harbin Institute of Technology, Harbin, 150001, China; Department of Civil, Environmental and Geomatic Engineering, ETH Zürich, Stefano-Franscini-Platz 3, 8093, Zürich, Switzerland.
| | - Gleb B Sukhorukov
- School of Engineering and Materials Science, Queen Mary University of London, Mile End Road, London, E1 4NS, United Kingdom; Skolkovo Institute of Science and Technology, Moscow, 143025, Russia.
| |
Collapse
|
5
|
Masi M, Bollella P, Katz E. DNA Release from a Modified Electrode Triggered by a Bioelectrocatalytic Process. ACS APPLIED MATERIALS & INTERFACES 2019; 11:47625-47634. [PMID: 31794177 DOI: 10.1021/acsami.9b18427] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
DNA release from an electrode surface was stimulated by application of a mild electrical potential (0 V vs Ag/AgCl). The release process was activated by interfacial pH increase originating from H+ consumption during O2 reduction bio-electrocatalyzed by bilirubin oxidase immobilized at the electrode surface. The pH increase resulted in a change of the electrical charge from positive to negative at the surface of SiO2 nanoparticles (200 nm) associated with the electrode surface and functionalized with trigonelline and boronic acid. While the negatively charged DNA molecules were electrostatically bound to the positively charged surface, the negative charge produced upon O2 reduction resulted in the DNA repulsion and release from the modified interface. The small electrical potential for O2 reduction resulting in the interface recharge was allowed due to the bio-electrocatalysis using bilirubin oxidase enzyme. While, in the first set of experiments, the potential was applied on the modified electrode from an electrochemical instrument, later it was generated in situ by biocatalytic or photo-biocatalytic processes at a connected electrode. A multistep biocatalytic cascade generating NADH or photosynthetic process in thylakoid membranes was used to produce in situ a small potential to stimulate the DNA release catalyzed by bilirubin oxidase. The designed system can be used for different release processes triggered by various signals (electrical, biomolecular, and light signals, etc.), thus representing a general interfacial platform for the controlled release of different biomolecules and nanosize species.
Collapse
Affiliation(s)
- Madeline Masi
- Department of Chemistry and Biomolecular Science , Clarkson University , Potsdam , New York 13699-5810 , United States
| | - Paolo Bollella
- Department of Chemistry and Biomolecular Science , Clarkson University , Potsdam , New York 13699-5810 , United States
| | - Evgeny Katz
- Department of Chemistry and Biomolecular Science , Clarkson University , Potsdam , New York 13699-5810 , United States
| |
Collapse
|
6
|
Bellare M, Kadambar VK, Bollella P, Katz E, Melman A. Molecular Release Associated with Interfacial pH Change Stimulated by a Small Electrical Potential Applied. ChemElectroChem 2019. [DOI: 10.1002/celc.201901713] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Affiliation(s)
- Madhura Bellare
- Department of Chemistry and Biomolecular ScienceClarkson University Potsdam NY 13699 USA
| | | | - Paolo Bollella
- Department of Chemistry and Biomolecular ScienceClarkson University Potsdam NY 13699 USA
| | - Evgeny Katz
- Department of Chemistry and Biomolecular ScienceClarkson University Potsdam NY 13699 USA
| | - Artem Melman
- Department of Chemistry and Biomolecular ScienceClarkson University Potsdam NY 13699 USA
| |
Collapse
|
7
|
Masi M, Bollella P, Katz E. Biomolecular Release Stimulated by Electrochemical Signals at a Very Small Potential Applied. ELECTROANAL 2019. [DOI: 10.1002/elan.201900377] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Affiliation(s)
- Madeline Masi
- Department of Chemistry and Biomolecular ScienceClarkson University Potsdam NY 13699–5810 USA
| | - Paolo Bollella
- Department of Chemistry and Biomolecular ScienceClarkson University Potsdam NY 13699–5810 USA
| | - Evgeny Katz
- Department of Chemistry and Biomolecular ScienceClarkson University Potsdam NY 13699–5810 USA
| |
Collapse
|
8
|
Bellare M, Kadambar VK, Bollella P, Gamella M, Katz E, Melman A. Electrochemical Signal‐triggered Release of Biomolecules Functionalized with His‐tag Units. ELECTROANAL 2019. [DOI: 10.1002/elan.201900238] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Affiliation(s)
- Madhura Bellare
- Department of Chemistry and Biomolecular ScienceClarkson University Potsdam NY 13699 USA
| | | | - Paolo Bollella
- Department of Chemistry and Biomolecular ScienceClarkson University Potsdam NY 13699 USA
| | - Maria Gamella
- Department of Chemistry and Biomolecular ScienceClarkson University Potsdam NY 13699 USA
| | - Evgeny Katz
- Department of Chemistry and Biomolecular ScienceClarkson University Potsdam NY 13699 USA
| | - Artem Melman
- Department of Chemistry and Biomolecular ScienceClarkson University Potsdam NY 13699 USA
| |
Collapse
|
9
|
Bellare M, Kadambar VK, Bollella P, Katz E, Melman A. Electrochemically stimulated molecule release associated with interfacial pH changes. Chem Commun (Camb) 2019; 55:7856-7859. [DOI: 10.1039/c9cc03467f] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
Molecular release was activated with an electrochemical signal, resulting in the hydrolysis of a linker.
Collapse
Affiliation(s)
- Madhura Bellare
- Department of Chemistry and Biomolecular Science
- Clarkson University
- Potsdam
- USA
| | | | - Paolo Bollella
- Department of Chemistry and Biomolecular Science
- Clarkson University
- Potsdam
- USA
| | - Evgeny Katz
- Department of Chemistry and Biomolecular Science
- Clarkson University
- Potsdam
- USA
| | - Artem Melman
- Department of Chemistry and Biomolecular Science
- Clarkson University
- Potsdam
- USA
| |
Collapse
|
10
|
Honarvarfard E, Gamella M, Channaveerappa D, Darie CC, Poghossian A, Schöning MJ, Katz E. Electrochemically Stimulated Insulin Release from a Modified Graphene‐functionalized Carbon Fiber Electrode. ELECTROANAL 2017. [DOI: 10.1002/elan.201700095] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Affiliation(s)
- Elham Honarvarfard
- Department of Chemistry and Biomolecular Science Clarkson University Potsdam NY 13699–5810 USA
| | - Maria Gamella
- Department of Chemistry and Biomolecular Science Clarkson University Potsdam NY 13699–5810 USA
| | - Devika Channaveerappa
- Department of Chemistry and Biomolecular Science Clarkson University Potsdam NY 13699–5810 USA
| | - Costel C. Darie
- Department of Chemistry and Biomolecular Science Clarkson University Potsdam NY 13699–5810 USA
| | - Arshak Poghossian
- Institute of Nano- and Biotechnologies, FH Aachen, Aachen University of Applied Sciences Campus Jülich Heinrich-Mußmann-Str. 1 D-52428 Jülich Germany
- Peter Grünberg Institute (PGI-8) Research Centre Jülich GmbH D-52425 Jülich Germany
| | - Michael J. Schöning
- Institute of Nano- and Biotechnologies, FH Aachen, Aachen University of Applied Sciences Campus Jülich Heinrich-Mußmann-Str. 1 D-52428 Jülich Germany
- Peter Grünberg Institute (PGI-8) Research Centre Jülich GmbH D-52425 Jülich Germany
| | - Evgeny Katz
- Department of Chemistry and Biomolecular Science Clarkson University Potsdam NY 13699–5810 USA
| |
Collapse
|