1
|
Liu Y, Zhang Y, Niu J, Nie L, Huang S, Liu H, Yuan S, Zhou Q. Selective fluorescent probe for sensitive determination of bisphenol A based on molecularly imprinted polymers decorated carbon dots derived from citric acid and ethylenediamine. CHEMOSPHERE 2023; 324:138303. [PMID: 36871803 DOI: 10.1016/j.chemosphere.2023.138303] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/18/2023] [Revised: 02/22/2023] [Accepted: 03/02/2023] [Indexed: 06/18/2023]
Abstract
Bisphenol A (BPA) is an endocrine disrupting chemical and poses a grave threat to the human health. Herein, a fluorescent probe constructed with molecularly imprinted polymers decorated carbon dots (CDs@MIPs) was proposed for determination of BPA with high selectivity. The CDs@MIPs were constructed using BPA, 4-vinylpyridine and ethylene glycol dimethacrylate as template, functional monomer and cross linker, respectively. The obtained fluorescent probe not only owned a highly selective recognition function derived from MIPs but also displayed an excellent sensitivity for sensing BPA stemmed from CDs. The fluorescence intensity of CDs@MIPs was varied before and after the removal of BPA templates. The fluorescent decrease fraction of the fluorescent probe demonstrates a nice linearity in BPA concentration range of 10-2000 nM (r2 = 0.9998) and the detection limit is as low as 1.5 nM. The fluorescent probe was triumphantly utilized to sense the level of BPA in real aqueous and plastic samples with good results. Moreover, the fluorescent probe offered a wonderful means for fast identification and sensitive detection of BPA from environmental aqueous samples.
Collapse
Affiliation(s)
- Yongli Liu
- State Key Laboratory of Heavy Oil Processing, College of Chemical Engineering and Environment, China University of Petroleum-Beijing, Beijing, 102249, PR China; School of Environment, Henan Key Laboratory for Environmental Pollution Control, Key Laboratory for Yellow River and Huai River Water Environmental and Pollution Control, Ministry of Education, Henan Normal University, Xinxiang, Henan, 453007, PR China
| | - Yue Zhang
- State Key Laboratory of Heavy Oil Processing, College of Chemical Engineering and Environment, China University of Petroleum-Beijing, Beijing, 102249, PR China
| | - Jingwen Niu
- State Key Laboratory of Heavy Oil Processing, College of Chemical Engineering and Environment, China University of Petroleum-Beijing, Beijing, 102249, PR China
| | - Linchun Nie
- State Key Laboratory of Heavy Oil Processing, College of Chemical Engineering and Environment, China University of Petroleum-Beijing, Beijing, 102249, PR China
| | - Shiyu Huang
- State Key Laboratory of Heavy Oil Processing, College of Chemical Engineering and Environment, China University of Petroleum-Beijing, Beijing, 102249, PR China
| | - Huanhuan Liu
- School of Environment, Henan Key Laboratory for Environmental Pollution Control, Key Laboratory for Yellow River and Huai River Water Environmental and Pollution Control, Ministry of Education, Henan Normal University, Xinxiang, Henan, 453007, PR China
| | - Shuai Yuan
- State Key Laboratory of Heavy Oil Processing, College of Chemical Engineering and Environment, China University of Petroleum-Beijing, Beijing, 102249, PR China
| | - Qingxiang Zhou
- State Key Laboratory of Heavy Oil Processing, College of Chemical Engineering and Environment, China University of Petroleum-Beijing, Beijing, 102249, PR China.
| |
Collapse
|
2
|
Chen Y, Li W, Li J, Zhuo S, Jiao S, Wang S, Sun J, Li Q, Zheng T. Stable three-dimensional porous silicon-carbon-gold composite film for enrichment and directly electrochemical detection of bisphenol A. Microchem J 2021. [DOI: 10.1016/j.microc.2021.106881] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
|
3
|
Tsekeli TR, Tshwenya L, Sebokolodi TI, Ndlovu T, Arotiba OA. An Electrochemical Aptamer Biosensor for Bisphenol A on a Carbon Nanofibre‐silver Nanoparticle Immobilisation Platform. ELECTROANAL 2021. [DOI: 10.1002/elan.202100167] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Affiliation(s)
- Tebogo R. Tsekeli
- Department of Chemical Sciences University of Johannesburg Doornfontein 2028 South Africa
| | - Luthando Tshwenya
- Department of Chemical Sciences University of Johannesburg Doornfontein 2028 South Africa
| | | | - Thabile Ndlovu
- Department of Chemistry University of Eswatini Kwaluseni M201 Eswatini
| | - Omotayo A. Arotiba
- Department of Chemical Sciences University of Johannesburg Doornfontein 2028 South Africa
- Centre for Nanomaterials Science Research University of Johannesburg Johannesburg 2028 South Africa
| |
Collapse
|
4
|
Tsekeli T, Sebokolodi TI, Karimi-Maleh H, Arotiba OA. A Silver-Loaded Exfoliated Graphite Nanocomposite Anti-Fouling Electrochemical Sensor for Bisphenol A in Thermal Paper Samples. ACS OMEGA 2021; 6:9401-9409. [PMID: 33869920 PMCID: PMC8047760 DOI: 10.1021/acsomega.0c05836] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/01/2020] [Accepted: 02/22/2021] [Indexed: 05/24/2023]
Abstract
Silver nanoparticles (AgNPs) were synthesized separately and loaded onto the expanded layers of exfoliated graphite (EG) to form a silver nanoparticle-exfoliated graphite nanocomposite (AgNPs-EG). The AgNPs-EG was compressed into a pellet (0.6 cm in diameter) and used to prepare an electrochemical sensor for bisphenol A (BPA) in standard samples and in thermal paper. The synthesized materials were characterized by ultraviolet-visible spectrophotometry, X-ray diffraction spectroscopy, scanning electron microscopy, and energy-dispersive X-ray. The electrochemical behavior of BPA on the AgNPs-EG sensor was investigated by cyclic voltammetry and square wave voltammetry. Under optimized experimental conditions, the oxidation peak current was linearly proportional to bisphenol A concentrations in the range from 5.0 to100 μM, with a coefficient of determination (R2 ) of 0.9981. The obtained limit of detection of the method was 0.23 μM. The fabricated sensor was able to overcome electrode fouling with good reproducibility (RSD = 2.62%, n = 5) by mechanical polishing of the electrode on emery paper. The proposed method was successfully applied to determine bisphenol A in thermal paper samples and demonstrated good accuracy of 93.1 to 113% recovery.
Collapse
Affiliation(s)
- Tebogo
R. Tsekeli
- Department
of Chemical Sciences, University of Johannesburg, Doornfontein, Johannesburg 2028, South Africa
| | - Tsholofelo I. Sebokolodi
- Department
of Chemical Sciences, University of Johannesburg, Doornfontein, Johannesburg 2028, South Africa
| | - Hassan Karimi-Maleh
- Department
of Chemical Sciences, University of Johannesburg, Doornfontein, Johannesburg 2028, South Africa
- University
of Electronic Science and Technology of China, Chengdu 611731, China
| | - Omotayo A. Arotiba
- Department
of Chemical Sciences, University of Johannesburg, Doornfontein, Johannesburg 2028, South Africa
- Centre
for Nanomaterials Science Research, University
of Johannesburg, Johannesburg 2028, South Africa
| |
Collapse
|
5
|
Electrochemical sensor for the quantification of iodide in urine of pregnant women. Mikrochim Acta 2020; 187:591. [PMID: 33025245 DOI: 10.1007/s00604-020-04488-0] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2020] [Accepted: 08/16/2020] [Indexed: 01/09/2023]
Abstract
An electrochemical method has been developed to determine iodide in urine using an electrode modified with silver oxide microparticles-poly acrylic acid/poly vinyl alcohol (Ag2OMPs-PAA/PVA). Silver oxide particles were formed by electrochemical oxidation via cyclic voltammetry. The modified electrode exhibited an excellent response to iodide detection by cathodic stripping voltammetry. The fabrication and operation conditions were optimized in terms of PVA concentration, K2HPO4 concentration, amount of AgMPs-PAA/PVA, number of cycles for oxide formation, electrolyte, applied potential (vs. Ag/AgCl), and time. Under the optimum conditions, iodide determination produced a linear range from 1 to 40 μM. The limit of detection was 0.3 μM. Precision was found to be within 7.4% RSD. The developed method was applied to the determination of iodide in urine samples of pregnant women with satisfying recoveries (86 ± 1 to 108 ± 1%). Graphical abstract.
Collapse
|
6
|
Krishchenko IM, Manoilov ÉG, Kravchenko SA, Snopok BA. Resonant Optical Phenomena in Heterogeneous Plasmon Nanostructures of Noble Metals: A Review. THEOR EXP CHEM+ 2020. [DOI: 10.1007/s11237-020-09642-6] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
|
7
|
Promsuwan K, Kanatharana P, Thavarungkul P, Limbut W. Nitrite amperometric sensor for gunshot residue screening. Electrochim Acta 2020. [DOI: 10.1016/j.electacta.2019.135309] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|
8
|
Minimally Invasive Glucose Monitoring Using a Highly Porous Gold Microneedles-Based Biosensor: Characterization and Application in Artificial Interstitial Fluid. Catalysts 2019. [DOI: 10.3390/catal9070580] [Citation(s) in RCA: 50] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023] Open
Abstract
In this paper, we present the first highly porous gold (h-PG) microneedles-based second-generation biosensor for minimally invasive monitoring of glucose in artificial interstitial fluid (ISF). A highly porous microneedles-based electrode was prepared by a simple electrochemical self-templating method that involves two steps, gold electrodeposition and hydrogen bubbling at the electrode, which were realized by applying a potential of −2 V versus a saturated calomel electrode (SCE). The highly porous gold surface of the microneedles was modified by immobilization of 6-(ferrocenyl)hexanethiol (FcSH) as a redox mediator and subsequently by immobilization of a flavin adenine dinucleotide glucose dehydrogenase (FAD-GDH) enzyme using a drop-casting method. The microneedles-based FcSH/FAD-GDH biosensor allows for the detection of glucose in artificial interstitial fluid with an extended linear range (0.1–10 mM), high sensitivity (50.86 µA cm−2 mM−1), stability (20% signal loss after 30 days), selectivity (only ascorbic acid showed a response about 10% of glucose signal), and a short response time (3 s). These properties were favourably compared to other microneedles-based glucose biosensors reported in the literature. Finally, the microneedle-arrays-based second-generation biosensor for glucose detection was tested in artificial interstitial fluid opportunely spiked with different concentrations of glucose (simulating healthy physiological conditions while fasting and after lunch) and by placing the electrode into a simulated chitosan/agarose hydrogel skin model embedded in the artificial ISF (continuous glucose monitoring). The obtained current signals had a lag-time of about 2 min compared to the experiments in solution, but they fit perfectly into the linearity range of the biosensor (0.1–10 mM). These promising results show that the proposed h-PG microneedles-based sensor could be used as a wearable, disposable, user-friendly, and automated diagnostic tool for diabetes patients.
Collapse
|
9
|
Baran N, Gebavi H, Mikac L, Ristić D, Gotić M, Syed KA, Ivanda M. Sensing Properties of Oxidized Nanostructured Silicon Surface on Vaporized Molecules. SENSORS 2019; 19:s19010119. [PMID: 30609660 PMCID: PMC6339164 DOI: 10.3390/s19010119] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/29/2018] [Revised: 12/23/2018] [Accepted: 12/28/2018] [Indexed: 11/16/2022]
Abstract
Porous silicon has been intensely studied for the past several decades and its applications were found in photovoltaics, biomedicine, and sensors. An important aspect for sensing devices is their long–term stability. One of the more prominent changes that occur with porous silicon as it is exposed to atmosphere is oxidation. In this work we study the influence of oxidation on the sensing properties of porous silicon. Porous silicon layers were prepared by electrochemical etching and oxidized in a tube furnace. We observed that electrical resistance of oxidized samples rises in response to the increasing ambient concentration of organic vapours and ammonia gas. Furthermore, we note the sensitivity is dependent on the oxygen treatment of the porous layer. This indicates that porous silicon has a potential use in sensing of organic vapours and ammonia gas when covered with an oxide layer.
Collapse
Affiliation(s)
- Nikola Baran
- Laboratory for Molecular Physics and Synthesis of New Materials, Ruđer Bošković Institute, Bijenička 54, 10000 Zagreb, Croatia.
| | - Hrvoje Gebavi
- Laboratory for Molecular Physics and Synthesis of New Materials, Ruđer Bošković Institute, Bijenička 54, 10000 Zagreb, Croatia.
| | - Lara Mikac
- Laboratory for Molecular Physics and Synthesis of New Materials, Ruđer Bošković Institute, Bijenička 54, 10000 Zagreb, Croatia.
| | - Davor Ristić
- Laboratory for Molecular Physics and Synthesis of New Materials, Ruđer Bošković Institute, Bijenička 54, 10000 Zagreb, Croatia.
| | - Marijan Gotić
- Laboratory for Molecular Physics and Synthesis of New Materials, Ruđer Bošković Institute, Bijenička 54, 10000 Zagreb, Croatia.
| | - Kamran Ali Syed
- Laboratory for Molecular Physics and Synthesis of New Materials, Ruđer Bošković Institute, Bijenička 54, 10000 Zagreb, Croatia.
| | - Mile Ivanda
- Laboratory for Molecular Physics and Synthesis of New Materials, Ruđer Bošković Institute, Bijenička 54, 10000 Zagreb, Croatia.
| |
Collapse
|
10
|
Ulubay Karabiberoğlu Ş. Sensitive Voltammetric Determination of Bisphenol A Based on a Glassy Carbon Electrode Modified with Copper Oxide-Zinc Oxide Decorated on Graphene Oxide. ELECTROANAL 2018. [DOI: 10.1002/elan.201800415] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
|
11
|
Kashefi-Kheyrabadi L, Kim J, Gwak H, Hyun KA, Bae NH, Lee SJ, Jung HI. A microfluidic electrochemical aptasensor for enrichment and detection of bisphenol A. Biosens Bioelectron 2018; 117:457-463. [DOI: 10.1016/j.bios.2018.06.036] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2018] [Revised: 06/01/2018] [Accepted: 06/20/2018] [Indexed: 12/13/2022]
|
12
|
In Situ Determination of Bisphenol A in Beverage Using a Molybdenum Selenide/Reduced Graphene Oxide Nanoparticle Composite Modified Glassy Carbon Electrode. SENSORS 2018; 18:s18051660. [PMID: 29789453 PMCID: PMC5982353 DOI: 10.3390/s18051660] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/03/2018] [Revised: 05/10/2018] [Accepted: 05/11/2018] [Indexed: 12/30/2022]
Abstract
Due to the endocrine disturbing effects of bisphenol A (BPA) on organisms, rapid detection has become one of the most important techniques for monitoring its levels in the aqueous solutions associated with plastics and human beings. In this paper, a glassy carbon electrode (GCE) modified with molybdenum selenide/reduced graphene oxide (MoSe₂/rGO) was fabricated for in situ determination of bisphenol A in several beverages. The surface area of the electrode dramatically increases due to the existence of ultra-thin nanosheets in a flower-like structure of MoSe₂. Adding phosphotungstic acid in the electrolyte can significantly enhance the repeatability (RSD = 0.4%) and reproducibility (RSD = 2.2%) of the electrode. Under the optimized condition (pH = 6.5), the linear range of BPA was from 0.1 μM⁻100 μM and the detection limit was 0.015 μM (S/N = 3). When using the as-prepared electrode for analyzing BPA in beverage samples without any pretreatments, the recoveries ranged from 98⁻107%, and the concentrations were from below the detection limit to 1.7 μM, indicating its potential prospect for routine analysis of BPA.
Collapse
|
13
|
Gholivand MB, Akbari A. A novel and high sensitive MWCNTs-nickel carbide/hollow fiber-pencil graphite modified electrode for in situ ultra-trace analysis of bisphenol A. J Electroanal Chem (Lausanne) 2018. [DOI: 10.1016/j.jelechem.2018.03.065] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
|