1
|
Ramos DO, Crapnell RD, Asra R, Bernalte E, Oliveira ACM, Muñoz RAA, Richter EM, Jones AM, Banks CE. Conductive Polypropylene Additive Manufacturing Feedstock: Application to Aqueous Electroanalysis and Unlocking Nonaqueous Electrochemistry and Electrosynthesis. ACS APPLIED MATERIALS & INTERFACES 2024; 16. [PMID: 39358698 PMCID: PMC11492246 DOI: 10.1021/acsami.4c12967] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/02/2024] [Revised: 09/23/2024] [Accepted: 09/24/2024] [Indexed: 10/04/2024]
Abstract
Additive manufacturing electrochemistry is an ever-expanding field; however, it is limited to aqueous environments due to the conductive filaments currently available. Herein, the production of a conductive poly(propylene) filament, which unlocks the door to organic electrochemistry and electrosynthesis, is reported. A filament with 40 wt % carbon black possessed enhanced thermal stability, excellent low-temperature flexibility, and high conductivity. The filament produced highly reproducible additive manufactured electrodes that were electrochemically characterized, showing a k0 of 2.00 ± 0.04 × 10-3 cm s-1. This material was then applied to three separate electrochemical applications. First, the electroanalytical sensing of colchicine within environmental waters, where a limit of detection of 10 nM was achieved before being applied to tap, bottled, and river water. Second, the electrodes were stable in organic solvents for 100 cyclic voltammograms and 15 days. Finally, these were applied toward an electrosynthetic reaction of chlorpromazine, where the electrodes were stable for 24-h experiments, outperforming a glassy carbon electrode, and were able to be reused while maintaining a good electrochemical performance. This material can revolutionize the field of additive manufacturing electrochemistry and expand research into a variety of new fields.
Collapse
Affiliation(s)
- David
L. O. Ramos
- Faculty
of Science and Engineering, Manchester Metropolitan
University, Dalton Building,
Chester Street, Manchester M1 5GD, Great Britain
- Institute
of Chemistry, Federal University of Uberlândia, Uberlândia, Minas
Gerais 38400-902, Brazil
| | - Robert D. Crapnell
- Faculty
of Science and Engineering, Manchester Metropolitan
University, Dalton Building,
Chester Street, Manchester M1 5GD, Great Britain
| | - Ridho Asra
- School
of Pharmacy, University of Birmingham, Edgbaston, Birmingham B15 2TT, United
Kingdom
| | - Elena Bernalte
- Faculty
of Science and Engineering, Manchester Metropolitan
University, Dalton Building,
Chester Street, Manchester M1 5GD, Great Britain
| | - Ana C. M. Oliveira
- Faculty
of Science and Engineering, Manchester Metropolitan
University, Dalton Building,
Chester Street, Manchester M1 5GD, Great Britain
- Institute
of Chemistry, Federal University of Uberlândia, Uberlândia, Minas
Gerais 38400-902, Brazil
| | - Rodrigo A. A. Muñoz
- Institute
of Chemistry, Federal University of Uberlândia, Uberlândia, Minas
Gerais 38400-902, Brazil
| | - Eduardo M. Richter
- Institute
of Chemistry, Federal University of Uberlândia, Uberlândia, Minas
Gerais 38400-902, Brazil
| | - Alan M. Jones
- School
of Pharmacy, University of Birmingham, Edgbaston, Birmingham B15 2TT, United
Kingdom
| | - Craig E. Banks
- Faculty
of Science and Engineering, Manchester Metropolitan
University, Dalton Building,
Chester Street, Manchester M1 5GD, Great Britain
| |
Collapse
|
2
|
Teerasong S, Praditweangkum W, Chompoosor A. A new mechanism for resonance Rayleigh scattering detection of minoxidil based on catalytic oxidation of silver nanoparticles. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2022; 275:121147. [PMID: 35306307 DOI: 10.1016/j.saa.2022.121147] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/20/2022] [Revised: 03/03/2022] [Accepted: 03/11/2022] [Indexed: 06/14/2023]
Abstract
This work presents a new method for minoxidil detection based on silver nanoparticle (AgNP) oxidation. Minoxidil, which is a pyrimidine N-oxide, can be reduced to its corresponding pyrimidine via a redox reaction. In this system, acetate buffer serves as a proton source. AgNPs act as electron donors that contribute electrons to the reaction, producing Ag+. Consequently, the sizes and numbers of AgNPs in the system decrease, which results in a decline in their resonance Rayleigh scattering (RRS). By monitoring the RRS intensity at 409 nm, a change in intensity was linearly related to the minoxidil concentration over a concentration range of 0.5 - 5.0 mM. The detection limit was 0.35 mM. This approach is simple and rapid. It is done by directly mixing the drug and AgNPs in an acidic buffer. The reaction was completed within 2 min. This proposed method was successfully utilized for quantification of minoxidil in topical hair-growth formulations.
Collapse
Affiliation(s)
- Saowapak Teerasong
- Department of Chemistry and Applied Analytical Chemistry Research Unit, School of Science, King Mongkut's Institute of Technology Ladkrabang, Bangkok 10520, Thailand; Flow Innovation-Research for Science and Technology Laboratories (FIRST Labs), Thailand.
| | - Wiboon Praditweangkum
- Department of Chemistry and Applied Analytical Chemistry Research Unit, School of Science, King Mongkut's Institute of Technology Ladkrabang, Bangkok 10520, Thailand
| | - Apiwat Chompoosor
- Department of Chemistry, Faculty of Science, Ramkhamhaeng University, Bangkok 10240, Thailand
| |
Collapse
|
3
|
Haššo M, Švorc Ľ. Batch injection analysis in tandem with electrochemical detection: the recent trends and an overview of the latest applications (2015–2020). MONATSHEFTE FUR CHEMIE 2022; 153:985-1000. [PMID: 35221380 PMCID: PMC8863510 DOI: 10.1007/s00706-022-02898-9] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/27/2021] [Accepted: 02/03/2022] [Indexed: 12/24/2022]
Abstract
The purpose of the proposed review is to refer the contemporary capability of automated analytical systems, in particular batch injection analysis (BIA) in connection with electrochemical detection, for widespread applications in analytical chemistry. This combination recently represents an efficient tool for improvement of method parameters, such as speed, selectivity, and sampling rate for sensing of miscellaneous organic and inorganic substances. The review is focused on conception and usage of BIA in tandem with electrochemical detection utilizing various techniques, namely amperometry, voltammetry, and multiple pulse amperometry, as well as design of electrochemical cells constructed for BIA systems is discussed. Finally, this paper also summarizes the comprehensive overview of works published from 2015 to 2020 dealing with the electrochemical determination of different analytes by BIA in various matrices.
Collapse
Affiliation(s)
- Marek Haššo
- Institute of Analytical Chemistry, Faculty of Chemical and Food Technology, Slovak University of Technology in Bratislava, 812 37 Bratislava, Slovak Republic
| | - Ľubomír Švorc
- Institute of Analytical Chemistry, Faculty of Chemical and Food Technology, Slovak University of Technology in Bratislava, 812 37 Bratislava, Slovak Republic
| |
Collapse
|
4
|
Nano optical and electrochemical sensors and biosensors for detection of narrow therapeutic index drugs. Mikrochim Acta 2021; 188:411. [PMID: 34741213 DOI: 10.1007/s00604-021-05003-9] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2021] [Accepted: 08/24/2021] [Indexed: 01/02/2023]
Abstract
For the first time, a comprehensive review is presented on the quantitative determination of narrow therapeutic index drugs (NTIDs) by nano optical and electrochemical sensors and biosensors. NTIDs have a narrow index between their effective doses and those at which they produce adverse toxic effects. Therefore, accurate determination of these drugs is very important for clinicians to provide a clear judgment about drug therapy for patients. Routine analytical techniques have limitations such as being expensive, laborious, and time-consuming, and need a skilled user and therefore the nano/(bio)sensing technology leads to high interest.
Collapse
|
5
|
Wang Y, Ma X, Qiao X, Yang P, Sheng Q, Zhou M, Yue T. Perspectives for Recognition and Rapid Detection of Foodborne Pathogenic Bacteria Based on Electrochemical Sensors. EFOOD 2021. [DOI: 10.2991/efood.k.210621.001] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/01/2022] Open
|
6
|
Sultan MA, Abou El-Alamin MM, Wark AW, Azab MM. Detection and quantification of warfarin in pharmaceutical dosage form and in spiked human plasma using surface enhanced Raman scattering. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2020; 228:117533. [PMID: 31753661 DOI: 10.1016/j.saa.2019.117533] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/09/2019] [Revised: 08/21/2019] [Accepted: 09/13/2019] [Indexed: 06/10/2023]
Abstract
Analytical approaches for the quantitation of warfarin in plasma are high in demand. In this study, a novel surface enhanced Raman scattering (SERS) technique for the quantification of the widely used anticoagulant warfarin sodium in pharmaceutical dosage form and in spiked human plasma was developed. The colloidal-based SERS measurements were carefully optimized considering the laser wavelength, the type of metal nanoparticles, their surface functionalization and concentration as well as the time required for warfarin to associate with the metal surface. Poly(diallyldimethylammonium chloride) coated silver nanoparticles (PDDA-AgNPs) were established as a substrate which greatly enhanced the weak warfarin Raman signal with high reproducibility. The limit of detection was calculated in both water and human plasma to be 0.56 nM (0.17 ngmL-1) and 0.25 nM (0.08 ngmL-1) respectively, with a high degree of accuracy and reproducibility. The proposed method is simple, economical, and easily applied for routine application requiring only small plasma samples and also could be potentially useful for pharmacokinetic research on warfarin.
Collapse
Affiliation(s)
- Maha A Sultan
- Analytical Chemistry Department, Faculty of Pharmacy, Helwan University, 11795, Cairo, Egypt
| | - Maha M Abou El-Alamin
- Analytical Chemistry Department, Faculty of Pharmacy, Helwan University, 11795, Cairo, Egypt
| | - Alastair W Wark
- Centre for Molecular Nanometrology, Dept. of Pure & Applied Chemistry, Technology and Innovation Centre, 99 George St, University of Strathclyde, Glasgow, G1 1RD, UK
| | - Marwa M Azab
- Analytical Chemistry Department, Faculty of Pharmacy, Helwan University, 11795, Cairo, Egypt; Centre for Molecular Nanometrology, Dept. of Pure & Applied Chemistry, Technology and Innovation Centre, 99 George St, University of Strathclyde, Glasgow, G1 1RD, UK.
| |
Collapse
|
7
|
Ören Varol T, Anik Ü. Fabrication of multi-walled carbon nanotube–metallic nanoparticle hybrid nanostructure based electrochemical platforms for sensitive and practical colchicine detection. NEW J CHEM 2019. [DOI: 10.1039/c9nj03227d] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
A MWCNT–Au–Pt hybrid nanostructure was used in the fabrication of electrochemical colchicine sensors for the first time.
Collapse
Affiliation(s)
- Tuğba Ören Varol
- Muğla Sıtkı Koçman University
- Faculty of Science
- Chemistry Department
- 48000 Kötekli
- Turkey
| | - Ülkü Anik
- Muğla Sıtkı Koçman University
- Faculty of Science
- Chemistry Department
- 48000 Kötekli
- Turkey
| |
Collapse
|