1
|
Hu J, Li J, Guo Q, Du G, Li C, Li R, Zhou R, He H. Visual Detection of Dopamine with CdS/ZnS Quantum Dots Bearing by ZIF-8 and Nanofiber Membranes. Int J Mol Sci 2024; 25:10346. [PMID: 39408675 PMCID: PMC11476674 DOI: 10.3390/ijms251910346] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2024] [Revised: 09/16/2024] [Accepted: 09/23/2024] [Indexed: 10/20/2024] Open
Abstract
Dopamine (DA) is a widely present, calcium cholinergic neurotransmitter in the body, playing important roles in the central nervous system and cardiovascular system. Developing fast and sensitive DA detection methods is of great significance. Fluorescence-based methods have attracted much attention due to their advantages of easy operation, a fast response speed, and high sensitivity. This study prepared hydrophilic and high-performance CdS/ZnS quantum dots (QDs) for DA detection. The waterborne CdS/ZnS QDs were synthesized in one step using the amphiphilic polymer PEI-g-C14, obtained by grafting tetradecane (C14) to polyethyleneimine (PEI), as a template. The polyacrylonitrile nanofiber membrane (PAN-NFM) was prepared by electrospinning (e-spinning), and a metal organic frame (ZIF-8) was deposited in situ on the surface of the PAN-NFM. The CdS/ZnS QDs were loaded onto this substrate (ZIF-8@PAN-NFM). The results showed that after the deposition of ZIF-8, the water contact angle of the hydrophobic PAN-NFM decreased to within 40°. The nanofiber membrane loaded with QDs also exhibited significant changes in fluorescence in the presence of DA at different concentrations, which could be applied as a fast detection method of DA with high sensitivity. Meanwhile, the fluorescence on this PAN-NFM could be visually observed as it transitioned from a blue-green color to colorless, making it suitable for the real-time detection of DA.
Collapse
Affiliation(s)
- Jiadong Hu
- Industrial Research Institute of Nonwovens & Technical Textiles, College of Textiles & Clothing, Qingdao University, Qingdao 266071, China; (J.H.); (R.Z.)
| | - Jiaxin Li
- College of Life Sciences, Qingdao University, Qingdao 266071, China; (J.L.); (Q.G.); (G.D.); (R.L.)
| | - Qunqun Guo
- College of Life Sciences, Qingdao University, Qingdao 266071, China; (J.L.); (Q.G.); (G.D.); (R.L.)
| | - Guicai Du
- College of Life Sciences, Qingdao University, Qingdao 266071, China; (J.L.); (Q.G.); (G.D.); (R.L.)
| | - Changming Li
- Schneider Institute of Industrial Technology, Qingdao University, Qingdao 266071, China
| | - Ronggui Li
- College of Life Sciences, Qingdao University, Qingdao 266071, China; (J.L.); (Q.G.); (G.D.); (R.L.)
| | - Rong Zhou
- Industrial Research Institute of Nonwovens & Technical Textiles, College of Textiles & Clothing, Qingdao University, Qingdao 266071, China; (J.H.); (R.Z.)
| | - Hongwei He
- Industrial Research Institute of Nonwovens & Technical Textiles, College of Textiles & Clothing, Qingdao University, Qingdao 266071, China; (J.H.); (R.Z.)
| |
Collapse
|
2
|
Song SS, Liu W, Bao JY, Zhu HT, Wang AJ, Song P, Yuan PX, Feng JJ. Photodynamic-Assisted Electrochemiluminescence Enhancement toward Advanced BODIPY for Precision Diagnosis of Parkinson. Anal Chem 2024; 96:8586-8593. [PMID: 38728058 DOI: 10.1021/acs.analchem.4c00607] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/29/2024]
Abstract
Nowadays, signal enhancement is imperative to increase sensitivity of advanced ECL devices for expediting their promising applications in clinic. In this work, photodynamic-assisted electrochemiluminescence (PDECL) device was constructed for precision diagnosis of Parkinson, where an advanced emitter was prepared by electrostatically linking 2,6-dimethyl-8-(3-carboxyphenyl)4,4'-difluoroboradiazene (BET) with 1-butyl-3-methylimidazole tetrafluoroborate ([BMIm][BF4]). Specifically, protoporphyrin IX (PPIX) can trigger the photodynamic reaction under light irradiation with a wavelength of 450 nm to generate lots of singlet oxygen (1O2), showing a 2.43-fold magnification in the ECL responses. Then, the aptamer (Apt) was assembled on the functional BET-[BMIm] for constructing a "signal off" ECL biosensor. Later on, the PPIX was embedded into the G-quadruplex (G4) of the Apt to magnify the ECL signals for bioanalysis of α-synuclein (α-syn) under light excitation. In the optimized surroundings, the resulting PDECL sensor has a broad linear range of 100.0 aM ∼ 10.0 fM and a low limit of detection (LOD) of 63 aM, coupled by differentiating Parkinson patients from normal individuals according to the receiver operating characteristic (ROC) curve analysis of actual blood samples. Such research holds great promise for synthesis of other advanced luminophores, combined with achieving an early clinical diagnosis.
Collapse
Affiliation(s)
- Shu-Shu Song
- Key Laboratory of the Ministry of Education for Advanced Catalysis Materials, College of Chemistry and Materials Science, College of Geography and Environmental Sciences, Zhejiang Normal University, Jinhua 321004, China
| | - Wen Liu
- Department of Neurosurgery, Zhongnan Hospital of Wuhan University, Donghu Road 169, Wuhan 430071, China
| | - Jing-Yi Bao
- Key Laboratory of the Ministry of Education for Advanced Catalysis Materials, College of Chemistry and Materials Science, College of Geography and Environmental Sciences, Zhejiang Normal University, Jinhua 321004, China
| | - Hao-Tian Zhu
- Key Laboratory of the Ministry of Education for Advanced Catalysis Materials, College of Chemistry and Materials Science, College of Geography and Environmental Sciences, Zhejiang Normal University, Jinhua 321004, China
| | - Ai-Jun Wang
- Key Laboratory of the Ministry of Education for Advanced Catalysis Materials, College of Chemistry and Materials Science, College of Geography and Environmental Sciences, Zhejiang Normal University, Jinhua 321004, China
| | - Pei Song
- Affiliated Jinhua Hospital, Zhejiang University School of Medicine, Jinhua 321000, China
| | - Pei-Xin Yuan
- Key Laboratory of the Ministry of Education for Advanced Catalysis Materials, College of Chemistry and Materials Science, College of Geography and Environmental Sciences, Zhejiang Normal University, Jinhua 321004, China
| | - Jiu-Ju Feng
- Key Laboratory of the Ministry of Education for Advanced Catalysis Materials, College of Chemistry and Materials Science, College of Geography and Environmental Sciences, Zhejiang Normal University, Jinhua 321004, China
| |
Collapse
|
3
|
Electrochemical sensor for uranium monitoring in natural water based on poly Nile blue modified glassy carbon electrode. J Solid State Electrochem 2022. [DOI: 10.1007/s10008-021-05102-w] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|
4
|
Zhou Z, Zhou Y, Liang X, Xie F, Liu S, Ma J. Sensitive detection of uranium in water samples using differential pulse adsorptive stripping voltammetry on glassy carbon electrode. J Radioanal Nucl Chem 2019. [DOI: 10.1007/s10967-019-06892-0] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
|