1
|
Jadon N, Tomar P, Shrivastava S, Hosseinzadeh B, Kaya SI, Ozkan SA. Monitoring of Specific Phytoestrogens by Dedicated Electrochemical Sensors: A Review. Food Chem 2024; 460:140404. [PMID: 39068721 DOI: 10.1016/j.foodchem.2024.140404] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2024] [Revised: 07/05/2024] [Accepted: 07/07/2024] [Indexed: 07/30/2024]
Abstract
Phytoestrogens are non-steroidal estrogens produced from plants that can bind with the human body's estrogenic receptor site and be used as a substitute for maintaining hormonal balance. They are mainly classified as flavonoids, phenolic acids, lignans, stilbenes, and coumestans; some are resocyclic acids of lactones, which are mycotoxins and not natural phytoestrogen. Phytoestrogens have many beneficial medicinal properties, making them an important part of the daily diet. Electrochemical sensors are widely used analytical tools for analysing various pharmaceuticals, chemicals, pollutants and food items. Electrochemical sensors provide an extensive platform for highly sensitive and rapid analysis. Several reviews have been published on the importance of the biological and medicinal properties of phytoestrogens. However, this review provides an overview of recent work performed through electrochemical measurements with electrochemical sensors and biosensors for all the classes of phytoestrogens done so far since 2019.
Collapse
Affiliation(s)
- Nimisha Jadon
- Ankara University, Faculty of Pharmacy, Department of Analytical Chemistry, 06560 Ankara, Türkiye; School of Studies in Environmental Chemistry, Jiwaji University, Gwalior, M.P., 474011, India.
| | - Puja Tomar
- School of Studies in Environmental Chemistry, Jiwaji University, Gwalior, M.P., 474011, India
| | - Swati Shrivastava
- School of Studies in Environmental Chemistry, Jiwaji University, Gwalior, M.P., 474011, India
| | - Batoul Hosseinzadeh
- Ankara University, Faculty of Pharmacy, Department of Analytical Chemistry, 06560 Ankara, Türkiye
| | - S Irem Kaya
- University of Health Sciences, Gulhane Faculty of Pharmacy, Department of Analytical Chemistry, Ankara, Türkiye
| | - Sibel A Ozkan
- Ankara University, Faculty of Pharmacy, Department of Analytical Chemistry, 06560 Ankara, Türkiye.
| |
Collapse
|
2
|
Alanazi AZ, Alhazzani K, El-Wekil MM, Ali AMBH, Darweesh M, Ibrahim H. A novel disposable ultrasensitive sensor based on nanosized ceria uniformly loaded carbon nanofiber nanoceramic film wrapped on pencil graphite rods for electrocatalytic monitoring of a tyrosine kinase inhibitor capmatinib. Talanta 2024; 279:126610. [PMID: 39068826 DOI: 10.1016/j.talanta.2024.126610] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2024] [Revised: 06/12/2024] [Accepted: 07/23/2024] [Indexed: 07/30/2024]
Abstract
For the first time, we introduce a novel disposable and ultrasensitive sensing electrode made up of nanosized ceria uniformly loaded carbon nanofibers (CeNPs@CNF) sol-gel nanoceramic film (CF) wrapped on eco-friendly and inexpensive pencil graphite rods (PGRs) to explore their electro-catalytic detection of the anticancer drug capmatinib (CMB). The as-prepared CeNPs@CNF hybrid nanocomposite was described by XRD, SEM, TEM, HRTEM, and EDX analysis. The CV study clearly demonstrated that, the disposable CeNPs@CNF-CF/PGRE sensor exhibited excellent redox activities in the ideal probe [Fe(CN)6]3-/4-. Due to the outstanding electrochemical properties, larger electrochemically active surface area, and tremendous electro-catalytic activity of CeNPs@CNF, the reduction current of CMB on the CeNPs@CNF-CF/PGRE sensor is considerably higher than that of bare PGRE. The detection conditions, such as supporting electrolyte, pH of the buffer solution, amount of modifier, adsorption potential, and time, were studied and optimized. The sensing platform demonstrated high sensitivity (1.2 μA nM-1 cm-2), an ultralow detection limit (0.6 nM), and a wide linear range of 2.0 nM-400 nM of CMB compared to the bare PGRE. Additionally, the CeNPs@CNF-CF/PGRE sensor showed high selectivity, stability, and simple operation, which provided a promising alternative tool for fast detection of CMB in human body fluids with good recoveries.
Collapse
Affiliation(s)
- Ahmed Z Alanazi
- Department of Pharmacology and Toxicology, College of Pharmacy, King Saud University, Riyadh, Saudi Arabia
| | - Khalid Alhazzani
- Department of Pharmacology and Toxicology, College of Pharmacy, King Saud University, Riyadh, Saudi Arabia
| | - Mohamed M El-Wekil
- Department of Pharmaceutical Analytical Chemistry, Faculty of Pharmacy, Assiut University, Assiut, Egypt
| | - Al-Montaser Bellah H Ali
- Department of Pharmaceutical Analytical Chemistry, Faculty of Pharmacy, Assiut University, Assiut, Egypt
| | - Mahmoud Darweesh
- Department of Medical Biochemistry and Microbiology, Uppsala University, Uppsala, Sweden
| | - Hossieny Ibrahim
- Department of Chemistry, Faculty of Science, Assiut University, Assiut, 71516, Egypt; School of Biotechnology, Badr University in Assiut, Assiut, 2014101, Egypt.
| |
Collapse
|
3
|
Rageh AH, Said MI, Abdel-Aal FAM. Zirconium-based hydrophobic-MOFs as innovative electrode modifiers for flibanserin determination: Exploring the electrooxidation mechanism using a comprehensive spectroelectrochemical study. Mikrochim Acta 2024; 191:236. [PMID: 38570402 DOI: 10.1007/s00604-024-06297-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2023] [Accepted: 03/03/2024] [Indexed: 04/05/2024]
Abstract
Three different types of Zr-based MOFs derived from benzene dicarboxylic acid (BDC) and naphthalene dicarboxylic acid as organic linkers (ZrBDC, 2,6-ZrNDC, and 1,4-ZrNDC) were synthesized. They were characterized using X-ray diffraction analysis (XRD), X-ray photoelectron spectroscopy (XPS), Fourier-transform IR spectroscopy (FT-IR), and Transmission electron microscopy (TEM). Their hydrophilic/hydrophobic nature was investigated via contact angle measurements; ZrBDC MOF was hydrophilic and the other two (ZrNDC) MOFs were hydrophobic. The three MOFs were combined with MWCNTs as electrode modifiers for the determination of a hydrophobic analyte, flibanserin (FLB), as a proof-of-concept analyte. Under the optimized experimental conditions, a significant enhancement in the oxidation peak current of FLB was observed when utilizing 2,6-ZrNDC and 1,4-ZrNDC, being the highest when using 1,4-ZrNDC. Furthermore, a thorough investigation of the complex oxidation pathway of FLB was performed by carrying out simultaneous spectroelectrochemical measurements. Based on the obtained results, it was verified that the piperazine moiety of FLB is the primary site for electrochemical oxidation. The fabricated sensor based on 1,4-ZrNDC/MW/CPE showed an oxidation peak of FLB at 0.8 V vs Ag/AgCl. Moreover, it showed excellent linearity for the determination of FLB in the range 0.05 to 0.80 μmol L-1 with a correlation coefficient (r) = 0.9973 and limit of detection of 3.0 nmol L-1. The applicability of the developed approach was demonstrated by determination of FLB in pharmaceutical tablets and human urine samples with acceptable repeatability (% RSD values were below 1.9% and 2.1%, respectively) and reasonable recovery values (ranged between 97 and 103% for pharmaceutical tablets and between 96 and 102% for human urine samples). The outcomes of the suggested methodology can be utilized for the determination of other hydrophobic compounds of pharmaceutical or biological interest with the aim of achieving low detection limits of these compounds in various matrices.
Collapse
Affiliation(s)
- Azza H Rageh
- Department of Pharmaceutical Analytical Chemistry, Faculty of Pharmacy, Assiut University, Assiut, 71526, Egypt.
| | - Mohamed I Said
- Department of Chemistry, Faculty of Science, Assiut University, Assiut, 71516, Egypt
| | - Fatma A M Abdel-Aal
- Department of Pharmaceutical Analytical Chemistry, Faculty of Pharmacy, Assiut University, Assiut, 71526, Egypt
| |
Collapse
|
4
|
Electrochemical (bio)sensors based on carbon quantum dots, ionic liquid and gold nanoparticles for bisphenol A. Anal Biochem 2023; 662:115002. [PMID: 36473678 DOI: 10.1016/j.ab.2022.115002] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2022] [Revised: 11/25/2022] [Accepted: 11/30/2022] [Indexed: 12/07/2022]
Abstract
Electrochemical (bio)sensors were developed for bisphenol A (BPA) determination. Screen printed carbon electrode (SPCE) was modified with ionic liquid 1- butyl-3-methylimidazolium tetrafluoroborate (IL), carbon quantum dots (CQD) and gold nanoparticles (AuNP) for the fabrication of the BPA sensor. Electrode surface composition was optimized for the deposition time of AuNP, amount of CQD and percentage of IL using the central composite design (CCD) method. The results of the CCD study indicated that maximum amperometric response was recorded when 9.8 μg CQD, 3% IL and 284 s AuNP deposition time were used in modification. Tyrosinase (Ty) was further modified on the AuNP/CQD-IL/SPCE to fabricate the biosensor. Analytical performance characteristics of the BPA sensor were investigated by differential pulse anodic adsorptive stripping voltammetry and the AuNP/CQD-IL/SPCE sensor exhibited a linear response to BPA in the range of 2.0 × 10-8 - 3.6 × 10-6 M with a detection limit of 1.1 × 10-8 M. Amperometric measurements showed that the linear dynamic range and detection limit of the Ty/AuNP/CQD-IL/SPCE were 2.0 × 10-8 - 4.0 × 10-6 M and 6.2 × 10-9 M, respectively. Analytical performance characteristics such as sensitivity, reproducibility and selectivity were investigated for the presented (bio)sensors. The analytical applicability of the (bio)sensors to the analysis of BPA in mineral water samples was also tested.
Collapse
|
5
|
Sedhu N, Jagadeesh Kumar J, Sivaguru P, Raj V. Electrochemical detection of riboflavin in pharmaceutical and food samples using in situ electropolymerized glycine coated pencil graphite electrode. J Electroanal Chem (Lausanne) 2022. [DOI: 10.1016/j.jelechem.2022.117037] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/03/2022]
|
6
|
Electroanalysis of Naringin at Electroactivated Pencil Graphite Electrode for the Assessment of Polyphenolics with Intermediate Antioxidant Power. Antioxidants (Basel) 2022; 11:antiox11122306. [PMID: 36552515 PMCID: PMC9774430 DOI: 10.3390/antiox11122306] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2022] [Revised: 11/17/2022] [Accepted: 11/19/2022] [Indexed: 11/24/2022] Open
Abstract
A simple and rapid differential pulse voltammetric (DPV) method using a single-use electroactivated pencil graphite electrode (PGE*) is proposed for the rapid screening of the total content of polyphenolics (TCP) with intermediate antioxidant power (AOP) in grapefruit peel and fresh juice. The results were compared and correlated with those provided by the HPLC-DAD-MS method. NG voltammetric behavior at PGE* was studied by cyclic voltammetry and an oxidation mechanism was suggested. The experimental conditions (type of PGE, electroactivation procedure, pH, nature and concentration of supporting electrolyte) for NG DPV determination were optimized. The NG peak current varied linearly with the concentration in the ranges 1.40 × 10-6-2.00 × 10-5 and 2.00 × 10-5-1.40 × 10-4 mol/L NG and a limit of detection (LoD) of 6.02 × 10-7 mol/L NG was attained. The method repeatability expressed as relative standard deviation was 7.62% for the concentration level of 2.00 × 10-6 mol/L NG. After accumulation for 240 s of NG at PGE* the LoD was lowered to 1.35 × 10-7 mol/L NG, the linear range being 6.00 × 10-7-8.00 × 10-6 mol/L NG. The developed electrochemical system was successfully tested on real samples and proved to be a cost-effective tool for the simple estimation of the TCP with intermediate AOP in citrus fruits.
Collapse
|
7
|
Ziyatdinova GK, Zhupanova AS, Budnikov HC. Electrochemical Sensors for the Simultaneous Detection of Phenolic Antioxidants. JOURNAL OF ANALYTICAL CHEMISTRY 2022. [DOI: 10.1134/s1061934822020125] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
8
|
Rapid Voltammetric Screening Method for the Assessment of Bioflavonoid Content Using the Disposable Bare Pencil Graphite Electrode. CHEMOSENSORS 2021. [DOI: 10.3390/chemosensors9110323] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Hesperidin (HESP) is a plant bioflavonoid found in various nutritional and medicinal products. Many of its multiple health benefits rely on the compound’s antioxidant ability, which is due to the presence of oxidizable hydroxyl groups in its structure. Therefore, the present study aimed to investigate the electrochemical behavior of HESP at a cheap, disposable pencil graphite electrode (PGE) in order to develop rapid and simple voltammetric methods for its quantification. Cyclic voltammetric investigations emphasized a complex electrochemical behavior of HESP. The influence of the electrode material, solution stability, supporting electrolyte pH, and nature were examined. HESP main irreversible, diffusion-controlled oxidation signal obtained at H type PGE in Britton Robinson buffer pH 1.81 was exploited for the development of a differential pulse voltammetry (DPV) quantitative analysis method. The quasi-reversible, adsorption-controlled reduction peak was used for HESP quantification by differential pulse adsorptive stripping voltammetry (DPAdSV). The linear ranges of DPV and DPAdSV were 1.00 × 10−7–1.20 × 10−5 and 5.00 × 10−8–1.00 × 10−6 mol/L with detection limits of 8.58 × 10−8 and 1.90 × 10−8 mol/L HESP, respectively. The DPV method was applied for the assessment of dietary supplements bioflavonoid content, expressed as mg HESP.
Collapse
|
9
|
Radi AE, El-Samboskany H. Anodic Adsorptive Stripping Voltammetric Determination of Rafoxanide on Glassy Carbon Electrode. Comb Chem High Throughput Screen 2021; 23:1002-1009. [PMID: 32321397 DOI: 10.2174/1386207323666200422083339] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2019] [Revised: 01/03/2020] [Accepted: 02/05/2020] [Indexed: 11/22/2022]
Abstract
AIMS AND OBJECTIVE The development of easy, accurate, reliable technique which is characterized by low cost, minimal sample pre-treatment, and short analysis time to monitor RFX residues in milk samples before distribution to consumers. BACKGROUND Literature survey reveals several analytical methods, including high-performance liquid chromatography (HPLC), ultra-performance liquid chromatography (UPLC) and thin-layer chromatography (TLC)-densitometry. These methods are time consuming, require additional steps like preconcentration or multisolvent extraction, trained technicians, and expensive instruments. MATERIALS AND METHODS The electrochemical analysis of RFX was effectively established by the adsorptive stripping method on GCE due to the effective interfacial accumulation of RFX on the electrode surface. The RFX adsorptive accumulation is followed by electrochemical measurement of the accumulated analyte. RESULTS The electrochemical oxidation of RFX was studied at glassy carbon electrodes (GCE) in Britton-Robinson buffer (BR) solutions over the pH range from 2.0-12.0 using cyclic and differential pulse voltammetry (DPV). The oxidation of the drug was accomplished in a single irreversible, adsorption-controlled step within the pH range 4.0-9.0. Therefore, the application of GCE for a sensitive and selective quantification of RFX by adsorptive stripping voltammetry was reported. This format was satisfactorily applied for the determination of RFX in bovine milk. Limit of detection (LOD) of 1.25 μg kg-1 of milk and mean recoveries of 97.8 to 107.5% were achieved. CONCLUSION The proposed method might be competitive with the HPLC techniques. The detection limit found for RFX on GCE for milk samples, after medium exchange, was well below the MRLs, the maximum concentration of a veterinary drug residue legally permissible in food, are proposed by the European Medicines Agency.
Collapse
Affiliation(s)
- Abd-Elgawad Radi
- Department of Chemistry, Faculty of Science, Damietta University, New Damietta 34517, Egypt
| | - Hassan El-Samboskany
- Department of Chemistry, Faculty of Science, Damietta University, New Damietta 34517, Egypt
| |
Collapse
|
10
|
Gege Ü, Karakaya S, Dilgin Y. Sensitive Electrochemical Determination of Trifluralin at a Disposable Pencil Graphite Electrode. ELECTROANAL 2021. [DOI: 10.1002/elan.202060618] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Affiliation(s)
- Ümit Gege
- Department of Chemistry Faculty of Arts and Sciences Çanakkale Onsekiz Mart University 17100 Çanakkale Turkey
| | - Serkan Karakaya
- Department of Chemistry Faculty of Arts and Sciences Çanakkale Onsekiz Mart University 17100 Çanakkale Turkey
| | - Yusuf Dilgin
- Department of Chemistry Faculty of Arts and Sciences Çanakkale Onsekiz Mart University 17100 Çanakkale Turkey
| |
Collapse
|
11
|
Abstract
Plants, through the photosynthesis process, produce the substances necessary for all the life cycles of nature, which are called "primary metabolites." Moreover, there are some plants that synthesize, in addition to these, other substances with more specific functions, which are known as "secondary metabolites." It is inside this group that flavonoids are located, whose main function is to protect organisms from damage caused by different oxidizing agents. Luteolin (3,4,5,7-tetrahydroxy-flavone) belongs to the sub-class of flavonoids known as flavones and is one of 10,000 flavonoids currently known, being one of the most bio-active flavonoids. Its various beneficial properties for health, together with the increasing reduction in the use of synthetic antioxidants, make the study of luteolin a very active field. Within this, the quantification of this molecule has become a subject of very special interest given that it is transversal to all fields. In this review article, we aim to give the reader a broad and deep vision of this topic, focusing on the events reported in the last 5 years and covering all possible techniques related to analytical determinations. We will discuss in terms of advantages and disadvantages between techniques, selectivity, sensitivity, costs, time consumption, and reagents as well as in the complexity of operations.
Collapse
Affiliation(s)
- Alvaro Y Tesio
- Centro de Investigación y Desarrollo en Materiales Avanzados y Almacenamiento de Energía de Jujuy (CIDMEJu), Centro de Desarrollo Tecnológico General Savio, Palpalá, Jujuy, Argentina
| | - Sebastian N Robledo
- Departamento de Tecnología Química, Grupo GEANA, Instituto para el Desarrollo Agroindustrial y de la Salud (IDAS), Facultad de Ingeniería, Universidad Nacional de Río Cuarto, Río Cuarto, Argentina
| |
Collapse
|
12
|
How to Improve the Performance of Electrochemical Sensors via Minimization of Electrode Passivation. CHEMOSENSORS 2021. [DOI: 10.3390/chemosensors9010012] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
It follows from critical evaluation of possibilities and limitations of modern voltammetric/amperometric methods that one of the biggest obstacles in their practical applications in real sample analysis is connected with electrode passivation/fouling by electrode reaction products and/or matrix components. This review summarizes possibilities how to minimise these problems in the field of detection of small organic molecules and critically compares their potential and acceptability in practical laboratories. Attention is focused on simple and fast electrode surface renewal, the use of disposable electrodes just for one and/or few measurements, surface modification minimising electrode fouling, measuring in flowing systems, application of rotating disc electrode, the use of novel separation methods preventing access of passivating particles to electrode surface and the novel electrode materials more resistant toward passivation. An attempt is made to predict further development in this field and to stress the need for more systematic and less random research resulting in new measuring protocols less amenable to complications connected with electrode passivation.
Collapse
|
13
|
Tong Y, Zhang B, Guo B, Wu W, Jin Y, Geng F, Tian M. Gallic acid-affinity molecularly imprinted polymer adsorbent for capture of cis-diol containing Luteolin prior to determination by high performance liquid chromatography. J Chromatogr A 2020; 1637:461829. [PMID: 33383244 DOI: 10.1016/j.chroma.2020.461829] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2020] [Revised: 12/15/2020] [Accepted: 12/16/2020] [Indexed: 12/21/2022]
Abstract
A gallic acid-affinity molecularly imprinted polymer (G-MIP) was first used as an adsorbent for selective identification and capture of luteolin (LTL) in herbal medicine samples. The G-MIP was prepared by using LTL as the template, gallic acid (GA) as the functional monomer, ethylene glycol dimethacrylate (EGDMA) as the crosslinking agent, and 2,2'-azobis(2-methylpropionitrie) (AIBN) as the initiator. The properties of G-MIP were characterized by FT-IR, transmission electron microscope, scanning electron microscope, dynamic light scattering, specific surface area, and X-ray photoelectron spectrum. The adsorption conditions were optimized, and the adsorption equilibrium model and adsorption kinetics model of the adsorbent were investigated under the best experimental conditions. The saturated adsorption capacity is 1.24 mg g-1, which is not only higher than the adsorption capacity of 4-carboxyphenylboronic acid-affinity MIP adsorbent but also superior to those of many reported adsorbents for enriching of LTL. The LTL was quantified by HPLC. The linear range is 0.05-100 mg L-1, the detection limit is 0.020 mg L-1. This method was successfully applied in the selective recognition of LTL in herbal medicines with recoveries of 93.9-114.2%, and the relative standards deviations (RSDs) are 0.4-5.6%. Thus, this work provides a potential possibility and practical platform for the determination of LTL in complex matrices.
Collapse
Affiliation(s)
- Yukui Tong
- Key Laboratory of Photochemical Biomaterials and Energy Storage Materials, Heilongjiang Province, College of Chemistry and Chemical Engineering, Harbin Normal University, Harbin 150025, P. R. China
| | - Baoyue Zhang
- Key Laboratory of Photochemical Biomaterials and Energy Storage Materials, Heilongjiang Province, College of Chemistry and Chemical Engineering, Harbin Normal University, Harbin 150025, P. R. China
| | - Bailin Guo
- Key Laboratory of Photochemical Biomaterials and Energy Storage Materials, Heilongjiang Province, College of Chemistry and Chemical Engineering, Harbin Normal University, Harbin 150025, P. R. China
| | - Wenjie Wu
- Key Laboratory of Photochemical Biomaterials and Energy Storage Materials, Heilongjiang Province, College of Chemistry and Chemical Engineering, Harbin Normal University, Harbin 150025, P. R. China
| | - Yingxue Jin
- Key Laboratory of Photochemical Biomaterials and Energy Storage Materials, Heilongjiang Province, College of Chemistry and Chemical Engineering, Harbin Normal University, Harbin 150025, P. R. China
| | - Fang Geng
- Key Laboratory of Photochemical Biomaterials and Energy Storage Materials, Heilongjiang Province, College of Chemistry and Chemical Engineering, Harbin Normal University, Harbin 150025, P. R. China..
| | - Miaomiao Tian
- Key Laboratory of Photochemical Biomaterials and Energy Storage Materials, Heilongjiang Province, College of Chemistry and Chemical Engineering, Harbin Normal University, Harbin 150025, P. R. China..
| |
Collapse
|
14
|
Ibrahim H, Temerk Y. A novel disposable electrochemical sensor based on modifying graphite pencil lead electrode surface with nanoacetylene black for simultaneous determination of antiandrogens flutamide and cyproterone acetate. J Electroanal Chem (Lausanne) 2020. [DOI: 10.1016/j.jelechem.2020.113836] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
|
15
|
Cheng W, Zeng P, Ma C, Peng H, Yang J, Huang J, Zhang M, Cheng F. Electrochemical sensor for sensitive detection of luteolin based on multi-walled carbon nanotubes/poly(3,4-ethylenedioxythiophene)–gold nanocomposites. NEW J CHEM 2020. [DOI: 10.1039/c9nj05241k] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
An electrochemical sensor based on MWCNTs/PEDT–Au nanocomposite modified GCE for electrochemical determination of luteolin was presented.
Collapse
Affiliation(s)
- Wenxue Cheng
- Guangdong Engineering and Technology Research Center for Advanced Nanomaterials
- Dongguan University of Technology
- Dongguan 523808
- People's Republic of China
| | - Peiyi Zeng
- Guangdong Engineering and Technology Research Center for Advanced Nanomaterials
- Dongguan University of Technology
- Dongguan 523808
- People's Republic of China
| | - Cenhuai Ma
- Guangdong Engineering and Technology Research Center for Advanced Nanomaterials
- Dongguan University of Technology
- Dongguan 523808
- People's Republic of China
| | - Haoming Peng
- Guangdong Engineering and Technology Research Center for Advanced Nanomaterials
- Dongguan University of Technology
- Dongguan 523808
- People's Republic of China
| | - Jinsha Yang
- Guangdong Engineering and Technology Research Center for Advanced Nanomaterials
- Dongguan University of Technology
- Dongguan 523808
- People's Republic of China
| | - Jianzhi Huang
- School of Chemistry and Chemical Engineering
- South China University of Technology
- Guangzhou 510641
- People's Republic of China
| | - Min Zhang
- Guangdong Engineering and Technology Research Center for Advanced Nanomaterials
- Dongguan University of Technology
- Dongguan 523808
- People's Republic of China
| | - Faliang Cheng
- Guangdong Engineering and Technology Research Center for Advanced Nanomaterials
- Dongguan University of Technology
- Dongguan 523808
- People's Republic of China
| |
Collapse
|
16
|
Fumarate-based metal-organic framework/mesoporous carbon as a novel electrochemical sensor for the detection of gallic acid and luteolin. J Electroanal Chem (Lausanne) 2019. [DOI: 10.1016/j.jelechem.2019.113378] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
|