1
|
Tamborelli A, Vaschetti V, Viada B, Mujica ML, Bollo S, Venegas-Yazigi D, Hermosilla-Ibáñez P, Rivas G, Dalmasso P. Multi-walled carbon nanotubes functionalized with a new Schiff base containing phenylboronic acid residues: application to the development of a bienzymatic glucose biosensor using a response surface methodology approach. Mikrochim Acta 2024; 191:558. [PMID: 39177820 DOI: 10.1007/s00604-024-06608-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2024] [Accepted: 08/05/2024] [Indexed: 08/24/2024]
Abstract
An innovative supramolecular architecture is reported for bienzymatic glucose biosensing based on the use of a nanohybrid made of multi-walled carbon nanotubes (MWCNTs) non-covalently functionalized with a Schiff base modified with two phenylboronic acid residues (SB-dBA) as platform for the site-specific immobilization of the glycoproteins glucose oxidase (GOx) and horseradish peroxidase (HRP). The analytical signal was obtained from amperometric experiments at - 0.050 V in the presence of 5.0 × 10-4 M hydroquinone as redox mediator. The concentration of GOx and HRP and the interaction time between the enzymes and the nanohybrid MWCNT-SB-dBA deposited at glassy carbon electrodes (GCEs) were optimized through a central composite design (CCD)/response surface methodology (RSM). The optimal concentrations of GOx and HRP were 3.0 mg mL-1 and 1.50 mg mL-1, respectively, while the optimum interaction time was 3.0 min. The bienzymatic biosensor presented a sensitivity of (24 ± 2) × 102 µA dL mg-1 ((44 ± 4) × 102 µA M-1), a linear range between 0.06 mg dL-1 and 21.6 mg dL-1 (3.1 µM-1.2 mM) (R2 = 0.9991), and detection and quantification limits of 0.02 mg dL-1 (1.0 µM) and 0.06 mg dL-1 (3.1 µM), respectively. The reproducibility for five sensors prepared with the same MWCNT-SB-dBA nanohybrid was 6.3%, while the reproducibility for sensors prepared with five different nanohybrids and five electrodes each was 7.9%. The GCE/MWCNT-SB-dBA/GOx-HRP was successfully used for the quantification of glucose in artificial human urine and commercial human serum samples.
Collapse
Affiliation(s)
- Alejandro Tamborelli
- CIQA, CONICET, Departamento de Ingeniería Química, Facultad Regional Córdoba, Universidad Tecnológica Nacional, Maestro López esq. Cruz Roja Argentina, 5016, Córdoba, Argentina
- Departamento de Fisicoquímica, Facultad de Ciencias Químicas, INFIQC, CONICET-UNC, Universidad Nacional de Córdoba, Ciudad Universitaria, 5000, Córdoba, Argentina
| | - Virginia Vaschetti
- CIQA, CONICET, Departamento de Ingeniería Química, Facultad Regional Córdoba, Universidad Tecnológica Nacional, Maestro López esq. Cruz Roja Argentina, 5016, Córdoba, Argentina.
| | - Benjamín Viada
- CIQA, CONICET, Departamento de Ingeniería Química, Facultad Regional Córdoba, Universidad Tecnológica Nacional, Maestro López esq. Cruz Roja Argentina, 5016, Córdoba, Argentina
| | - Michael López Mujica
- Departamento de Fisicoquímica, Facultad de Ciencias Químicas, INFIQC, CONICET-UNC, Universidad Nacional de Córdoba, Ciudad Universitaria, 5000, Córdoba, Argentina
| | - Soledad Bollo
- Centro de Investigación de Procesos Redox, CIPRex, Facultad de Ciencias Químicas y Farmacéuticas, Universidad de Chile, Sergio Livingstone 1007, Independencia, Santiago, Chile
- Departamento de Química Farmacológica y Toxicológica, Facultad de Ciencias Químicas y Farmacéuticas, Universidad de Chile, Sergio Livingstone 1007, Independencia, Santiago, Chile
| | - Diego Venegas-Yazigi
- Departamento de Química de los Materiales, Facultad de Química y Biología, Universidad de Santiago de Chile, 9170022, Santiago, Chile
- Centro para el Desarrollo de la Nanociencia y la Nanotecnología (CEDENNA), Universidad de Santiago de Chile, 9170022, Santiago, Chile
| | - Patricio Hermosilla-Ibáñez
- Departamento de Química de los Materiales, Facultad de Química y Biología, Universidad de Santiago de Chile, 9170022, Santiago, Chile.
- Centro para el Desarrollo de la Nanociencia y la Nanotecnología (CEDENNA), Universidad de Santiago de Chile, 9170022, Santiago, Chile.
| | - Gustavo Rivas
- Departamento de Fisicoquímica, Facultad de Ciencias Químicas, INFIQC, CONICET-UNC, Universidad Nacional de Córdoba, Ciudad Universitaria, 5000, Córdoba, Argentina.
| | - Pablo Dalmasso
- CIQA, CONICET, Departamento de Ingeniería Química, Facultad Regional Córdoba, Universidad Tecnológica Nacional, Maestro López esq. Cruz Roja Argentina, 5016, Córdoba, Argentina.
| |
Collapse
|
2
|
Mujica ML, Tamborelli A, Vaschetti VM, Espinoza LC, Bollo S, Dalmasso PR, Rivas GA. Two birds with one stone: integrating exfoliation and immunoaffinity properties in multi-walled carbon nanotubes by non-covalent functionalization with human immunoglobulin G. Mikrochim Acta 2023; 190:73. [PMID: 36695940 DOI: 10.1007/s00604-022-05630-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2022] [Accepted: 12/21/2022] [Indexed: 01/26/2023]
Abstract
An innovative strategy is proposed to simultaneously exfoliate multi-walled carbon nanotubes (MWCNTs) and generate MWCNTs with immunoaffinity properties. This strategy was based on the non-covalent functionalization of MWCNTs with human immunoglobulin G (IgG) by sonicating 2.5 mg mL-1 MWCNTs in 2.0 mg mL-1 IgG for 15 min with sonicator bath. Impedimetric experiments performed at glassy carbon electrodes (GCE) modified with the resulting MWCNT-IgG nanohybrid in the presence of anti-human immunoglobulin G antibody (Anti-IgG) demonstrated that the immunoglobulin retains their biorecognition properties even after the treatment during the MWCNT functionalization. We proposed, as proof-of-concept, two model electrochemical sensors, a voltammetric one for uric acid quantification by taking advantages of the exfoliated MWCNTs electroactivity (linear range, 5.0 × 10-7 M - 5.0 × 10-6 M; detection limit, 165 nM) and an impedimetric immunosensor for the detection of Anti-IgG through the use of the bioaffinity properties of the IgG present in the nanohybrid (linear range, 5-50 µg mL-1; detection limit, 2 µg mL-1).
Collapse
Affiliation(s)
- Michael López Mujica
- INFIQC (CONICET-UNC), Departamento de Fisicoquímica, Facultad de Ciencias Químicas, Universidad Nacional de Córdoba, Ciudad Universitaria, 5000, Córdoba, Argentina
| | - Alejandro Tamborelli
- INFIQC (CONICET-UNC), Departamento de Fisicoquímica, Facultad de Ciencias Químicas, Universidad Nacional de Córdoba, Ciudad Universitaria, 5000, Córdoba, Argentina.,CIQA, CONICET, Departamento de Ingeniería Química, Facultad Regional Córdoba, Maestro López Esq, Universidad Tecnológica Nacional, Cruz Roja Argentina, 5016, Córdoba, Argentina
| | - Virginia M Vaschetti
- CIQA, CONICET, Departamento de Ingeniería Química, Facultad Regional Córdoba, Maestro López Esq, Universidad Tecnológica Nacional, Cruz Roja Argentina, 5016, Córdoba, Argentina
| | - L Carolina Espinoza
- Centro de Investigación de Procesos Redox, CIPRex, Facultad de Ciencias Químicas Y Farmacéuticas, Universidad de Chile, Santiago, Chile. Sergio Livingstone 1007, Independencia, Santiago, Chile.,Departamento de Química Farmacológica Y Toxicológica, Facultad de Ciencias Químicas Y Farmacéuticas, Universidad de Chile, Sergio Livingstone 1007, Independencia, Santiago, Chile
| | - Soledad Bollo
- Centro de Investigación de Procesos Redox, CIPRex, Facultad de Ciencias Químicas Y Farmacéuticas, Universidad de Chile, Santiago, Chile. Sergio Livingstone 1007, Independencia, Santiago, Chile.,Departamento de Química Farmacológica Y Toxicológica, Facultad de Ciencias Químicas Y Farmacéuticas, Universidad de Chile, Sergio Livingstone 1007, Independencia, Santiago, Chile
| | - Pablo R Dalmasso
- CIQA, CONICET, Departamento de Ingeniería Química, Facultad Regional Córdoba, Maestro López Esq, Universidad Tecnológica Nacional, Cruz Roja Argentina, 5016, Córdoba, Argentina.
| | - Gustavo A Rivas
- INFIQC (CONICET-UNC), Departamento de Fisicoquímica, Facultad de Ciencias Químicas, Universidad Nacional de Córdoba, Ciudad Universitaria, 5000, Córdoba, Argentina.
| |
Collapse
|
3
|
Hassan MH, Vyas C, Grieve B, Bartolo P. Recent Advances in Enzymatic and Non-Enzymatic Electrochemical Glucose Sensing. SENSORS (BASEL, SWITZERLAND) 2021; 21:4672. [PMID: 34300412 PMCID: PMC8309655 DOI: 10.3390/s21144672] [Citation(s) in RCA: 93] [Impact Index Per Article: 31.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/28/2021] [Revised: 06/28/2021] [Accepted: 07/06/2021] [Indexed: 11/17/2022]
Abstract
The detection of glucose is crucial in the management of diabetes and other medical conditions but also crucial in a wide range of industries such as food and beverages. The development of glucose sensors in the past century has allowed diabetic patients to effectively manage their disease and has saved lives. First-generation glucose sensors have considerable limitations in sensitivity and selectivity which has spurred the development of more advanced approaches for both the medical and industrial sectors. The wide range of application areas has resulted in a range of materials and fabrication techniques to produce novel glucose sensors that have higher sensitivity and selectivity, lower cost, and are simpler to use. A major focus has been on the development of enzymatic electrochemical sensors, typically using glucose oxidase. However, non-enzymatic approaches using direct electrochemistry of glucose on noble metals are now a viable approach in glucose biosensor design. This review discusses the mechanisms of electrochemical glucose sensing with a focus on the different generations of enzymatic-based sensors, their recent advances, and provides an overview of the next generation of non-enzymatic sensors. Advancements in manufacturing techniques and materials are key in propelling the field of glucose sensing, however, significant limitations remain which are highlighted in this review and requires addressing to obtain a more stable, sensitive, selective, cost efficient, and real-time glucose sensor.
Collapse
Affiliation(s)
- Mohamed H. Hassan
- Department of Mechanical, Aerospace and Civil Engineering, University of Manchester, Manchester M13 9PL, UK; (M.H.H.); (C.V.)
| | - Cian Vyas
- Department of Mechanical, Aerospace and Civil Engineering, University of Manchester, Manchester M13 9PL, UK; (M.H.H.); (C.V.)
| | - Bruce Grieve
- Department of Electrical & Electronic Engineering, University of Manchester, Manchester M13 9PL, UK;
| | - Paulo Bartolo
- Department of Mechanical, Aerospace and Civil Engineering, University of Manchester, Manchester M13 9PL, UK; (M.H.H.); (C.V.)
| |
Collapse
|
4
|
A New Method for Dispersing Pristine Carbon Nanotubes Using Regularly Arranged S-Layer Proteins. NANOMATERIALS 2021; 11:nano11051346. [PMID: 34065322 PMCID: PMC8161383 DOI: 10.3390/nano11051346] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/28/2021] [Revised: 05/14/2021] [Accepted: 05/18/2021] [Indexed: 01/25/2023]
Abstract
Homogeneous and stable dispersions of functionalized carbon nanotubes (CNTs) in aqueous solutions are imperative for a wide range of applications, especially in life and medical sciences. Various covalent and non-covalent approaches were published to separate the bundles into individual tubes. In this context, this work demonstrates the non-covalent modification and dispersion of pristine multi-walled carbon nanotubes (MWNTs) using two S-layer proteins, namely, SbpA from Lysinibacillus sphaericus CCM2177 and SbsB from Geobacillus stearothermophilus PV72/p2. Both the S-layer proteins coated the MWNTs completely. Furthermore, it was shown that SbpA can form caps at the ends of MWNTs. Reassembly experiments involving a mixture of both S-layer proteins in the same solution showed that the MWNTs were primarily coated with SbsB, whereas SbpA formed self-assembled layers. The dispersibility of the pristine nanotubes coated with SbpA was determined by zeta potential measurements (−24.4 +/− 0.6 mV, pH = 7). Finally, the SbpA-coated MWNTs were silicified with tetramethoxysilane (TMOS) using a mild biogenic approach. As expected, the thickness of the silica layer could be controlled by the reaction time and was 6.3 +/− 1.25 nm after 5 min and 25.0 +/− 5.9 nm after 15 min. Since S-layer proteins have already demonstrated their capability to bind (bio)molecules in dense packing or to act as catalytic sites in biomineralization processes, the successful coating of pristine MWNTs has great potential in the development of new materials, such as biosensor architectures.
Collapse
|
5
|
Virbickas P, Kavaliauskaitė G, Valiūnienė A, Plaušinaitienė V, Rekertaitė AI, Ramanavičius A. Cobalt hexacyanoferrate based optical sensor for continuous optical sensing of hydrogen peroxide. Electrochim Acta 2020. [DOI: 10.1016/j.electacta.2020.137202] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
|