1
|
Dinu LA, Kurbanoglu S. Enhancing electrochemical sensing through the use of functionalized graphene composites as nanozymes. NANOSCALE 2023; 15:16514-16538. [PMID: 37815527 DOI: 10.1039/d3nr01998e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/11/2023]
Abstract
Graphene-based nanozymes possess inherent nanomaterial properties that offer not only a simple substitute for enzymes but also a versatile platform capable of bonding with complex biochemical environments. The current review discusses the replacement of enzymes in developing biosensors with nanozymes. Functionalization of graphene-based materials with various nanoparticles can enhance their nanozymatic properties. Graphene oxide functionalization has been shown to yield graphene-based nanozymes that closely mimic several natural enzymes. This review provides an overview of the classification, current state-of-the-art development, synthesis routes, and types of functionalized graphene-based nanozymes for the design of electrochemical sensors. Furthermore, it includes a summary of the application of functionalized graphene-based nanozymes for constructing electrochemical sensors for pollutants, drugs, and various water and food samples. Challenges related to nanozymes as electrocatalytic materials are discussed, along with potential solutions and approaches for addressing these shortcomings.
Collapse
Affiliation(s)
- Livia Alexandra Dinu
- National Institute for Research and Development in Microtechnologies (IMT Bucharest), 126A Erou Iancu Nicolae Street, 077190 Voluntari, Ilfov, Romania
| | - Sevinc Kurbanoglu
- Faculty of Pharmacy, Department of Analytical Chemistry, Ankara University, 06560, Tandogan, Ankara, Türkiye.
| |
Collapse
|
2
|
Xue YF, Liu J, Ge Q, Jiang N, Zhao WF, Liu M, Cong H, Zhao JL. Supramolecule-Controlled Enantioselectivity for Electrochemical Asymmetric Hydrogenation of Coumarins with a Chiral Macrocyclic Compound. Org Lett 2023; 25:2632-2636. [PMID: 37036807 DOI: 10.1021/acs.orglett.3c00653] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/11/2023]
Abstract
The supramolecular strategy was subjected to the asymmetric hydrogenation of 4-methylumbelliferone by electrochemical reduction in the presence of a chiral macrocyclic multifarane[3,3], which offered a l-7-hydroxy-4-methylchroman-2-one product with a chemical yield of 65% and enantioselectivity up to >99% ee. The high stability of the developed chiral supramolecular electrode guaranteed the recyclability and repeatability in the electrolysis, and therefore, the application was extended to more coumarin derivatives to provide satisfactory chemical yields and enantioselectivities.
Collapse
Affiliation(s)
- Yan-Fang Xue
- Enterprise Technology Center of Guizhou Province, Guizhou University, Guiyang 550025, China
| | - Jie Liu
- Enterprise Technology Center of Guizhou Province, Guizhou University, Guiyang 550025, China
| | - Qingmei Ge
- Enterprise Technology Center of Guizhou Province, Guizhou University, Guiyang 550025, China
| | - Nan Jiang
- Enterprise Technology Center of Guizhou Province, Guizhou University, Guiyang 550025, China
| | - Wen-Feng Zhao
- Enterprise Technology Center of Guizhou Province, Guizhou University, Guiyang 550025, China
| | - Mao Liu
- Enterprise Technology Center of Guizhou Province, Guizhou University, Guiyang 550025, China
| | - Hang Cong
- Enterprise Technology Center of Guizhou Province, Guizhou University, Guiyang 550025, China
| | - Jiang-Lin Zhao
- Enterprise Technology Center of Guizhou Province, Guizhou University, Guiyang 550025, China
| |
Collapse
|
3
|
Wang CY, Ge Q, Jiang N, Cong H, Tao Z, Liu M, Fan Y. A label-free electrochemical sensor constructed with layer-by-layer assembly of GCE-AuNPs-Q[7]·HAuCl 4 for detection of diphenylamine. ANAL SCI 2022; 38:1181-1188. [PMID: 35829921 DOI: 10.1007/s44211-022-00141-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2022] [Accepted: 06/02/2022] [Indexed: 11/28/2022]
Abstract
Metal-organic frameworks (MOFs) including cucurbit[7]uril block (Q[7]·HAuCl4) were employed to develop a diphenylamine (DPA) sensor in electrochemical method, the presence of HAuCl4 improved the conductivity of the macrocyclic compound. To further enhance of the sensitivity, Au nanoparticles were inserted between the surface of glassy carbon electrode and Q[7]·HAuCl4 MOFs (GCE-AuNPs-Q[7]·HAuCl4). Cyclic voltammetry (CV), electrochemical impedance spectroscopy (EIS), and differential pulse voltammetry (DPV) were applied for evaluation on the electrochemical behavior. For the electrochemical inertness of DPA, a label-free electrochemical sensor in 5 mM K3[Fe(CN)6] solution was achieved, to produce a limit of detection as low as 4.6 µM in a linear range of 5-1000 µM with good reproducibility, high stability and acceptable anti-interference ability. Application of the proposed electrode for the quantitative determination of DPA in tap water and apple juice confirms its real value.
Collapse
Affiliation(s)
- Cheng-Yan Wang
- Enterprise Technology Center of Guizhou Province, Guizhou University, Guiyang, 550025, China
| | - Qingmei Ge
- Enterprise Technology Center of Guizhou Province, Guizhou University, Guiyang, 550025, China
| | - Nan Jiang
- Enterprise Technology Center of Guizhou Province, Guizhou University, Guiyang, 550025, China
| | - Hang Cong
- Enterprise Technology Center of Guizhou Province, Guizhou University, Guiyang, 550025, China.
| | - Zhu Tao
- Key Laboratory of Macrocyclic and Supramolecular Chemistry of Guizhou Province, Guizhou University, Guiyang, 550025, China
| | - Mao Liu
- Enterprise Technology Center of Guizhou Province, Guizhou University, Guiyang, 550025, China
| | - Ying Fan
- Enterprise Technology Center of Guizhou Province, Guizhou University, Guiyang, 550025, China.
| |
Collapse
|
4
|
Zeng Q, Long Q, Lu J, Wang L, You Y, Yuan X, Zhang Q, Ge Q, Cong H, Liu M. Synthesis of a novel aminobenzene-containing hemicucurbituril and its fluorescence spectral properties with ions. Beilstein J Org Chem 2021; 17:2840-2847. [PMID: 34956406 PMCID: PMC8685562 DOI: 10.3762/bjoc.17.195] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2021] [Accepted: 11/19/2021] [Indexed: 11/23/2022] Open
Abstract
A novel hemicucurbituril-based macrocycle, alternately consisting of amidobenzene and 2-imidazolidione moieties was designed and synthesized. Based on the fragment coupling strategy, nitrobenzene-containing hemicucurbituril was firstly prepared facilely under alkaline environment, and reduction of the nitro groups produced the desired amidobenzene-containing hemicucurbituril. As an original fluorescent chemosensor, it exhibited strong interactions with Fe3+ over other metal cations. The experimental evidence of fluorescence spectra suggested that a 1:1 complex was formed between this macrocycle and Fe3+ with an association constant up to (2.1 ± 0.3) × 104 M−1. Meanwhile, this macrocycle showed no obvious or only slight enhancement of the fluorescence intensity with selected anions.
Collapse
Affiliation(s)
- Qingkai Zeng
- Department of Chemistry, College of Chemistry and Chemical Engineering, Guizhou University, Guiyang, Guizhou Province 550025, PR China
| | - Qiumeng Long
- Department of Chemistry, College of Chemistry and Chemical Engineering, Guizhou University, Guiyang, Guizhou Province 550025, PR China
| | - Jihong Lu
- Department of Chemistry, College of Chemistry and Chemical Engineering, Guizhou University, Guiyang, Guizhou Province 550025, PR China
| | - Li Wang
- Department of Chemistry, College of Chemistry and Chemical Engineering, Guizhou University, Guiyang, Guizhou Province 550025, PR China
| | - Yuting You
- Department of Chemistry, College of Chemistry and Chemical Engineering, Guizhou University, Guiyang, Guizhou Province 550025, PR China
| | - Xiaoting Yuan
- Department of Chemistry, College of Chemistry and Chemical Engineering, Guizhou University, Guiyang, Guizhou Province 550025, PR China
| | - Qianjun Zhang
- Department of Chemistry, College of Chemistry and Chemical Engineering, Guizhou University, Guiyang, Guizhou Province 550025, PR China
| | - Qingmei Ge
- Department of Chemistry, College of Chemistry and Chemical Engineering, Guizhou University, Guiyang, Guizhou Province 550025, PR China
| | - Hang Cong
- Department of Chemistry, College of Chemistry and Chemical Engineering, Guizhou University, Guiyang, Guizhou Province 550025, PR China
| | - Mao Liu
- Department of Chemistry, College of Chemistry and Chemical Engineering, Guizhou University, Guiyang, Guizhou Province 550025, PR China
| |
Collapse
|
5
|
Supramolecular chiral electrochemical reduction of acetophenone with hybridization of a chiral multifarene and Au nanoparticles. J Catal 2021. [DOI: 10.1016/j.jcat.2021.10.037] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
|
6
|
Luo H, Li H, Ge Q, Cong H, Tao Z, Liu M. An electrochemical sensor for enantiorecognition of tyrosine based on a chiral macrocycle functionalized rGO. Microchem J 2021. [DOI: 10.1016/j.microc.2021.105949] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|