1
|
Krivačić S, Boček Ž, Zubak M, Kojić V, Kassal P. Flexible ammonium ion-selective electrode based on inkjet-printed graphene solid contact. Talanta 2024; 279:126614. [PMID: 39094532 DOI: 10.1016/j.talanta.2024.126614] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2024] [Revised: 07/05/2024] [Accepted: 07/23/2024] [Indexed: 08/04/2024]
Abstract
Miniaturization and mass-production of potentiometric sensor systems is paving the way towards distributed environmental sensing, on-body measurements and industrial process monitoring. Inkjet printing is gaining popularity as a highly adaptable and scalable production technique. Presented here is a scalable and low-cost route for flexible solid-contact ammonium ion-selective electrode fabrication by inkjet printing. Utilization of inkjet-printed melamine-intercalated graphene nanosheets as the solid-contact material significantly improved charge transport, while evading the detrimental water-layer formation. External polarization was investigated as a means of improving the inter-electrode reproducibility: the standard deviations of E0 values were reduced after electrode polarization, the linear region of the response was extended to the range 10-1-10-6 M of NH4Cl and LODs reduced to 0.88 ± 0.17 μM. Finally, we have shown that the electrodes are adequate for measurements in a complex real sample: ammonium concentration was determined in landfill leachate water, with less than 4 % deviation from the reference method.
Collapse
Affiliation(s)
- Sara Krivačić
- University of Zagreb, Faculty of Chemical Engineering & Technology, Trg Marka Marulića 19, 10000, Zagreb, Croatia
| | - Željka Boček
- University of Zagreb, Faculty of Chemical Engineering & Technology, Trg Marka Marulića 19, 10000, Zagreb, Croatia
| | - Marko Zubak
- University of Zagreb, Faculty of Chemical Engineering & Technology, Trg Marka Marulića 19, 10000, Zagreb, Croatia
| | - Vedran Kojić
- Ruđer Bošković Institute, Bijenička cesta 54, 10000, Zagreb, Croatia; HIS d.o.o., Donja Višnjica 61D, 42255, Donja Višnjica, Croatia
| | - Petar Kassal
- University of Zagreb, Faculty of Chemical Engineering & Technology, Trg Marka Marulića 19, 10000, Zagreb, Croatia.
| |
Collapse
|
2
|
Rojas D, Torricelli D, Cuartero M, Crespo GA. 3D-Printed Transducers for Solid Contact Potentiometric Ion Sensors: Improving Reproducibility by Fabrication Automation. Anal Chem 2024; 96:15572-15580. [PMID: 39303277 PMCID: PMC11447669 DOI: 10.1021/acs.analchem.4c02098] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/22/2024]
Abstract
3D printing technology has become attractive in the development of electrochemical sensors as it offers automation in fabrication, customization on-demand, and reproducibility, among other features. Nonetheless, to date, solid contact potentiometric ion sensors have remained overlooked using this technology. Thus, the novelty of this work relies on demonstrating for the first time the usefulness of the multimaterial 3D printing approach to manufacture potentiometric ion-selective electrodes. The significance is indeed twofold. First, we discovered that by using the polyethylene terephthalate glycol (PETg) and polylactic acid-carbon black (PLA-CB) filaments together with a rational electrode design containing a well to accommodate the ion-selective membrane, a tight seal among all of the sensing materials is obtained. Importantly, this has mainly impacted the electrode-to-electrode reproducibility (ERSD0 ± 3 mV). Second, 75 ready-to-use electrodes can be printed in less than 3.5 h in a completely automated manner at a cost of ∼0.32 €/sensor. This feature may positively impact the suitability of further scaled-up production as well as the possibility of application in low-resource contexts. Overall, the presented outcomes are expected to encourage certain research directions to adopt using multimaterial 3D-printing approaches for producing highly reproducible solid contact potentiometric ion-selective electrodes, but are not restricted to them.
Collapse
Affiliation(s)
- Daniel Rojas
- UCAM-SENS, Universidad Católica San Antonio de Murcia, UCAM HiTech, Avda. Andres Hernandez Ros 1, 30107 Murcia, Spain
| | - Dario Torricelli
- UCAM-SENS, Universidad Católica San Antonio de Murcia, UCAM HiTech, Avda. Andres Hernandez Ros 1, 30107 Murcia, Spain
| | - María Cuartero
- UCAM-SENS, Universidad Católica San Antonio de Murcia, UCAM HiTech, Avda. Andres Hernandez Ros 1, 30107 Murcia, Spain
- Department of Chemistry, KTH Royal Institute of Technology, Teknikringen 30, SE-114 28 Stockholm, Sweden
| | - Gastón A Crespo
- UCAM-SENS, Universidad Católica San Antonio de Murcia, UCAM HiTech, Avda. Andres Hernandez Ros 1, 30107 Murcia, Spain
- Department of Chemistry, KTH Royal Institute of Technology, Teknikringen 30, SE-114 28 Stockholm, Sweden
| |
Collapse
|
3
|
Mirabootalebi SO, Liu Y. Recent advances in nanomaterial-based solid-contact ion-selective electrodes. Analyst 2024; 149:3694-3710. [PMID: 38885067 DOI: 10.1039/d4an00334a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/20/2024]
Abstract
Solid-contact ion-selective electrodes (SC-ISEs) are advanced potentiometric sensors with great capability to detect a wide range of ions for the monitoring of industrial processes and environmental pollutants, as well as the determination of electrolytes for clinical analysis. Over the past decades, the innovative design of ion-selective electrodes (ISEs), specifically SC-ISEs, to improve potential stability and miniaturization for in situ/real-time analysis, has attracted considerable interest. Recently, the utilisation of nanomaterials was particularly prominent in SC-ISEs due to their excellent physical and chemical properties. In this article, we review the recent applications of various types of nanostructured materials that are composed of carbon, metals and polymers for the development of SC-ISEs. The challenges and opportunities in this field, along with the prospects for future applications of nanomaterials in SC-ISEs are also discussed.
Collapse
Affiliation(s)
| | - Yang Liu
- College of Science and Engineering, James Cook University, Townsville, Queensland 4811, Australia.
| |
Collapse
|
4
|
Liu S, Zhong L, Tang Y, Lai M, Wang H, Bao Y, Ma Y, Wang W, Niu L, Gan S. Graphene Oxide-Poly(vinyl alcohol) Hydrogel-Coated Solid-Contact Ion-Selective Electrodes for Wearable Sweat Potassium Ion Sensing. Anal Chem 2024; 96:8594-8603. [PMID: 38718350 DOI: 10.1021/acs.analchem.4c00609] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/29/2024]
Abstract
Solid-contact ion-selective electrodes (SC-ISEs) with ionophore-based polymer-sensitive membranes have been the major devices in wearable sweat sensors toward electrolyte analysis. However, the toxicity of ionophores in ion-selective membranes (ISMs), for example, valinomycin (K+ ion carrier), is a significant challenge, since the ISM directly contacts the skin during the tests. Herein, we report coating a hydrogel of graphene oxide-poly(vinyl alcohol) (GO-PVA) on the ISM to fabricate hydrogel-based SC-ISEs. The hydrogen bond interaction between GO sheets and PVA chains could enhance the mechanical strength through the formation of a cross-linking network. Comprehensive electrochemical tests have demonstrated that hydrogel-coated K+-SC-ISE maintains Nernstian response sensitivity, high selectivity, and anti-interference ability compared with uncoated K+-SC-ISE. A flexible hydrogel-based K+ sensing device was further fabricated with the integration of a solid-contact reference electrode, which has realized the monitoring of sweat K+ in real time. This work highlights the possibility of hydrogel coating for fabricating biocompatible wearable potentiometric sweat electrolyte sensors.
Collapse
Affiliation(s)
- Siyi Liu
- Center for Advanced Analytical Science, Guangzhou Key Laboratory of Sensing Materials and Devices, Guangdong Engineering Technology Research Center for Photoelectric Sensing Materials and Devices, Key Laboratory of Optoelectronic Materials and Sensors in Guangdong Provincial Universities, School of Chemistry and Chemical Engineering, Guangzhou University, Guangzhou, Guangdong 510006, China
| | - Lijie Zhong
- Center for Advanced Analytical Science, Guangzhou Key Laboratory of Sensing Materials and Devices, Guangdong Engineering Technology Research Center for Photoelectric Sensing Materials and Devices, Key Laboratory of Optoelectronic Materials and Sensors in Guangdong Provincial Universities, School of Chemistry and Chemical Engineering, Guangzhou University, Guangzhou, Guangdong 510006, China
| | - Yitian Tang
- Center for Advanced Analytical Science, Guangzhou Key Laboratory of Sensing Materials and Devices, Guangdong Engineering Technology Research Center for Photoelectric Sensing Materials and Devices, Key Laboratory of Optoelectronic Materials and Sensors in Guangdong Provincial Universities, School of Chemistry and Chemical Engineering, Guangzhou University, Guangzhou, Guangdong 510006, China
| | - Meixue Lai
- Center for Advanced Analytical Science, Guangzhou Key Laboratory of Sensing Materials and Devices, Guangdong Engineering Technology Research Center for Photoelectric Sensing Materials and Devices, Key Laboratory of Optoelectronic Materials and Sensors in Guangdong Provincial Universities, School of Chemistry and Chemical Engineering, Guangzhou University, Guangzhou, Guangdong 510006, China
| | - Haocheng Wang
- Center for Advanced Analytical Science, Guangzhou Key Laboratory of Sensing Materials and Devices, Guangdong Engineering Technology Research Center for Photoelectric Sensing Materials and Devices, Key Laboratory of Optoelectronic Materials and Sensors in Guangdong Provincial Universities, School of Chemistry and Chemical Engineering, Guangzhou University, Guangzhou, Guangdong 510006, China
| | - Yu Bao
- Center for Advanced Analytical Science, Guangzhou Key Laboratory of Sensing Materials and Devices, Guangdong Engineering Technology Research Center for Photoelectric Sensing Materials and Devices, Key Laboratory of Optoelectronic Materials and Sensors in Guangdong Provincial Universities, School of Chemistry and Chemical Engineering, Guangzhou University, Guangzhou, Guangdong 510006, China
| | - Yingming Ma
- Center for Advanced Analytical Science, Guangzhou Key Laboratory of Sensing Materials and Devices, Guangdong Engineering Technology Research Center for Photoelectric Sensing Materials and Devices, Key Laboratory of Optoelectronic Materials and Sensors in Guangdong Provincial Universities, School of Chemistry and Chemical Engineering, Guangzhou University, Guangzhou, Guangdong 510006, China
| | - Wei Wang
- Center for Advanced Analytical Science, Guangzhou Key Laboratory of Sensing Materials and Devices, Guangdong Engineering Technology Research Center for Photoelectric Sensing Materials and Devices, Key Laboratory of Optoelectronic Materials and Sensors in Guangdong Provincial Universities, School of Chemistry and Chemical Engineering, Guangzhou University, Guangzhou, Guangdong 510006, China
| | - Li Niu
- Center for Advanced Analytical Science, Guangzhou Key Laboratory of Sensing Materials and Devices, Guangdong Engineering Technology Research Center for Photoelectric Sensing Materials and Devices, Key Laboratory of Optoelectronic Materials and Sensors in Guangdong Provincial Universities, School of Chemistry and Chemical Engineering, Guangzhou University, Guangzhou, Guangdong 510006, China
- School of Chemical Engineering and Technology, Sun Yat-sen University, Zhuhai, Guangdong 519082, P. R. China
| | - Shiyu Gan
- Center for Advanced Analytical Science, Guangzhou Key Laboratory of Sensing Materials and Devices, Guangdong Engineering Technology Research Center for Photoelectric Sensing Materials and Devices, Key Laboratory of Optoelectronic Materials and Sensors in Guangdong Provincial Universities, School of Chemistry and Chemical Engineering, Guangzhou University, Guangzhou, Guangdong 510006, China
| |
Collapse
|
5
|
Kim M, Dong XIN, Spindler BD, Bühlmann P, Stein A. Functionalizing Carbon Substrates with a Covalently Attached Cobalt Redox Buffer for Calibration-Free Solid-Contact Ion-Selective Electrodes. Anal Chem 2024; 96:7558-7565. [PMID: 38696396 DOI: 10.1021/acs.analchem.4c00373] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/04/2024]
Abstract
With a view to potentiometric sensing with minimal calibration requirements and high long-term stability, colloid-imprinted mesoporous (CIM) carbon was functionalized by the covalent attachment of a cobalt redox buffer and used as a new solid contact for ion-selective electrodes (ISEs). The CIM carbon surface was first modified by electroless grafting of a terpyridine ligand (Tpy-ph) using diazonium chemistry, followed by stepwise binding of Co(II) and an additional Tpy ligand to the grafted ligand, forming a bis(terpyridine) Co(II) complex, CIM-ph-Tpy-Co(II)-Tpy. Half a molar equivalent of ferrocenium tetrakis(3-chlorophenyl)borate was then used to partially oxidize the Co(II) complex. Electrodes prepared with this surface-attached CIM-ph-Tpy-Co(III/II)-Tpy redox buffer as a solid contact were tested as K+ sensors in combination with valinomycin as the ionophore and Dow 3140 silicone or plasticized poly(vinyl chloride) (PVC) as the matrixes for the ion-selective membrane (ISM). This solid contact is characterized by a redox capacitance of 3.26 F/g, ensuring a well-defined interfacial potential that underpins the transduction mechanism. By use of a redox couple as an internal reference element to control the phase boundary potential at the interface of the ISM and the CIM carbon solid contact, solid-contact ion-selective electrodes (SC-ISEs) with a standard deviation of E° as low as 0.3 mV for plasticized PVC ISMs and 3.5 mV for Dow 3140 silicone ISMs were obtained. Over 100 h, these SC-ISEs exhibit an emf drift of 20 μV/h for plasticized PVC ISMs and 62 μV/h for silicone ISMs. The differences in long-term stability and reproducibility between electrodes with ISMs comprising either a plasticized PVC or silicone matrix offer valuable insights into the effect of the polymeric matrix on sensor performance.
Collapse
Affiliation(s)
- Minog Kim
- Department of Chemistry, University of Minnesota, 207 Pleasant Street SE, Minneapolis, Minnesota 55455-0431, United States
| | - Xin I N Dong
- Department of Chemistry, University of Minnesota, 207 Pleasant Street SE, Minneapolis, Minnesota 55455-0431, United States
| | - Brian D Spindler
- Department of Chemistry, University of Minnesota, 207 Pleasant Street SE, Minneapolis, Minnesota 55455-0431, United States
| | - Philippe Bühlmann
- Department of Chemistry, University of Minnesota, 207 Pleasant Street SE, Minneapolis, Minnesota 55455-0431, United States
| | - Andreas Stein
- Department of Chemistry, University of Minnesota, 207 Pleasant Street SE, Minneapolis, Minnesota 55455-0431, United States
| |
Collapse
|
6
|
Stelmach E, Kalisz J, Wagner B, Maksymiuk K, Michalska A. Nanofiber Ion-Selective Membrane-Coated Carbon Paper All-Solid-State Sensors: One Stone, Two Birds. Anal Chem 2024; 96:3253-3258. [PMID: 38359329 PMCID: PMC10902807 DOI: 10.1021/acs.analchem.3c04764] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/17/2024]
Abstract
Potentiometric sensors with nanostructural ion-selective membranes were prepared and tested. Electrospun nanofiber mats were applied in novel all-solid-state sensors, using carbon paper as an electronically conducting support. For the sake of simplicity, application of a solid contact layer was avoided, and redox-active impurities naturally present in the carbon paper have proven to be effective as ion-to-electron transducers. Application of a nanostructural ion-selective membrane requires an innovative approach to combine the receptor layer with the support. The nanofiber mat portion was fused with carbon paper in a hot-melt process. Applying temperature close to 120 °C for a short time (3 s) allowed binding the nanostructural ion-selective membrane with carbon paper, without significant changes in the nanofiber structure. This process was conveniently performed together with the lamination of the carbon paper support. The thus obtained, potentially disposable sensors were characterized as exhibiting highly reproducible potential readings in time as well as between sensors belonging to the same batch. The benefits of the application of nanostructural ion-selective membranes include shorter equilibration time, lower detection limit, and significantly lower material consumption. However, the nanostructural membrane is characterized by a higher electrical resistance, which is attributed to higher porosity.
Collapse
Affiliation(s)
- Emilia Stelmach
- Faculty of Chemistry, University of Warsaw, Pasteura 1, 02-093 Warsaw, Poland
| | - Justyna Kalisz
- Faculty of Chemistry, University of Warsaw, Pasteura 1, 02-093 Warsaw, Poland
| | - Barbara Wagner
- Faculty of Chemistry, University of Warsaw, Pasteura 1, 02-093 Warsaw, Poland
| | - Krzysztof Maksymiuk
- Faculty of Chemistry, University of Warsaw, Pasteura 1, 02-093 Warsaw, Poland
| | - Agata Michalska
- Faculty of Chemistry, University of Warsaw, Pasteura 1, 02-093 Warsaw, Poland
| |
Collapse
|
7
|
Rousseau CR, Chipangura YE, Stein A, Bühlmann P. Effect of Ion Identity on Capacitance and Ion-to-Electron Transduction in Ion-Selective Electrodes with Nanographite and Carbon Nanotube Solid Contacts. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2024; 40:1785-1792. [PMID: 38198594 DOI: 10.1021/acs.langmuir.3c03027] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/12/2024]
Abstract
The use of large surface area carbon materials as transducers in solid-contact ion-selective electrodes (ISEs) has become widespread. Desirable qualities of ISEs, such as a small long-term drift, have been associated with a high capacitance that arises from the formation of an electrical double layer at the interface of the large surface area carbon material and the ion-selective membrane. The capacitive properties of these ISEs have been observed using a variety of techniques, but the effects of the ions present in the ion-selective membrane on the measured value of the capacitance have not been studied in detail. Here, it is shown that changes in the size and concentration of the ions in the ion-selective membrane as well as the polarity of the polymeric matrix result in capacitances that can vary by up to several hundred percent. These data illustrate that the interpretation of comparatively small differences in capacitance for different types of solid contacts is not meaningful unless the composition of the ion-selective membrane is taken into account.
Collapse
Affiliation(s)
- Celeste R Rousseau
- Department of Chemistry, University of Minnesota, 207 Pleasant St. SE, Minneapolis, Minnesota 55455, United States
| | - Yevedzo E Chipangura
- Department of Chemistry, University of Minnesota, 207 Pleasant St. SE, Minneapolis, Minnesota 55455, United States
| | - Andreas Stein
- Department of Chemistry, University of Minnesota, 207 Pleasant St. SE, Minneapolis, Minnesota 55455, United States
| | - Philippe Bühlmann
- Department of Chemistry, University of Minnesota, 207 Pleasant St. SE, Minneapolis, Minnesota 55455, United States
| |
Collapse
|
8
|
Mohamed EH, Mahmoud AM, Nashat NW, El-Mosallamy SS. Fabrication of novel electropolymerized conductive polymer of hydrophobic perfluorinated aniline as transducer layer on glassy carbon electrode: application to midazolam as a model drug of benzodiazepines. BMC Chem 2023; 17:30. [PMID: 37016406 PMCID: PMC10074816 DOI: 10.1186/s13065-023-00945-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2023] [Accepted: 03/27/2023] [Indexed: 04/06/2023] Open
Abstract
The objective of this study is to fabricate solid-contact ion selective electrodes (SC-ISEs) that have long term stable potential. Various conducting polymers such as polyaniline and its derivatives have been successfully employed to improve the potential stability in SC-ISEs. Recently, the role of hydrophobicity at the interface between the conducting polymer solid contact and the ion sensing membrane has been investigated and figured out that the hydrophobic interfaces preclude water layer formation that deteriorate the SC-ISEs potential stability and reproducibility. In this work, a hydrophobic polyaniline derivative was fabricated on the surface of a glassy carbon electrode by electropolymerization of perfluorinated aniline monomers in acidic solution. The electropolymerized hydrophobic polymer was characterized by electrochemical impedance spectroscopy and X-ray photoelectron spectroscopy. The fabricated electrode was employed for determination of midazolam-a model drug-in pharmaceutical formulation without prior extraction. The SC-ISEs performance was optimized, and the potential drift was compared to control SC-ISEs, the SC-ISE linear range was 1 × 10-6-1 × 10-2 M, LOD was estimated to be 9.0 × 10-7 M, and potential drift was reduced to 100 μV/h.
Collapse
Affiliation(s)
- Ekram H Mohamed
- Pharmaceutical Analytical Chemistry Department, Faculty of Pharmacy, The British University in Egypt, El-Shorouk City, 11837, Egypt
| | - Amr M Mahmoud
- Analytical Chemistry Department, Faculty of Pharmacy, Cairo University, Kasr El Aini, Cairo, 11562, Egypt
| | - Nancy W Nashat
- Analytical Chemistry Department, Faculty of Pharmacy, Cairo University, Kasr El Aini, Cairo, 11562, Egypt.
| | - Sally S El-Mosallamy
- Analytical Chemistry Department, Faculty of Pharmacy, Cairo University, Kasr El Aini, Cairo, 11562, Egypt
| |
Collapse
|
9
|
Kozma J, Papp S, Gyurcsányi RE. Highly hydrophobic TEMPO-functionalized conducting copolymers for solid-contact ion-selective electrodes. Bioelectrochemistry 2023; 150:108352. [PMID: 36563456 DOI: 10.1016/j.bioelechem.2022.108352] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2022] [Revised: 12/09/2022] [Accepted: 12/10/2022] [Indexed: 12/23/2022]
Abstract
Solid-contact ion-selective electrodes (SCISEs) emerged as the best electrode embodiment for miniaturized, wearable and disposable sensors for ion/electrolyte measurements in body fluids. The commercialization of inexpensive single-use "calibration-free" electrodes requires large scale manufacturing of electrodes with reproducible calibration parameters, e.g. E0. This is perhaps the most important shortcoming of SCISEs, beside the many advantages over their conventional liquid-contact counterparts. However, adjusting the E0 value for optimal potential stability is challenging for all state-of-the-art solid-contact materials, which may combine several types of transducing mechanism (e.g. capacitive and redox materials or their combination) for enhanced potential stability and analytical performance. Therefore, here we introduce for the first time the galvanostatic intermittent titration technique (GITT) to determine the best preadjusment potential. The proof of concept is shown for a novel type of solid-contact based on the copolymerization of 3,4-ethylenedioxythiophene with perfluorinated alkyl side chain (EDOTF) and (2,2,6,6-Tetramethylpiperidin-1-yl)oxyl modified 3,4-ethylenedioxythiophene (EDOT-TEMPO). Such materials that are compliant with local electrodeposition and provide multiple functionalities, i.e. high hydrophobicity by the perfluorinated alkyl side chain, electron-to-ion transduction by the conducting polymer (EDOT) backbone and the confinement of well-defined redox couple (TEMPO), are expected to prevail as solid-contacts.
Collapse
Affiliation(s)
- József Kozma
- Department of Inorganic and Analytical Chemistry, Budapest University of Technology and Economics, Műegyetem rkp. 3, H-1111 Budapest, Hungary; MTA-BME Lendület Chemical Nanosensors Research Group, Műegyetem rkp. 3, H-1111 Budapest, Hungary
| | - Soma Papp
- Department of Inorganic and Analytical Chemistry, Budapest University of Technology and Economics, Műegyetem rkp. 3, H-1111 Budapest, Hungary; MTA-BME Lendület Chemical Nanosensors Research Group, Műegyetem rkp. 3, H-1111 Budapest, Hungary
| | - Róbert E Gyurcsányi
- Department of Inorganic and Analytical Chemistry, Budapest University of Technology and Economics, Műegyetem rkp. 3, H-1111 Budapest, Hungary; MTA-BME Lendület Chemical Nanosensors Research Group, Műegyetem rkp. 3, H-1111 Budapest, Hungary; MTA-BME Computation Driven Chemistry Research Group, Műegyetem rkp. 3, H-1111 Budapest, Hungary.
| |
Collapse
|
10
|
Huang Y, Qian X, Wang X, Wang T, Lounder SJ, Ravindran T, Demitrack Z, McCutcheon J, Asatekin A, Li B. Electrospraying Zwitterionic Copolymers as an Effective Biofouling Control for Accurate and Continuous Monitoring of Wastewater Dynamics in a Real-Time and Long-Term Manner. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2022; 56:8176-8186. [PMID: 35576931 DOI: 10.1021/acs.est.2c01501] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Long-term continuous monitoring (LTCM) of water quality can provide high-fidelity datasets essential for executing swift control and enhancing system efficiency. One roadblock for LTCM using solid-state ion-selective electrode (S-ISE) sensors is biofouling on the sensor surface, which perturbs analyte mass transfer and deteriorates the sensor reading accuracy. This study advanced the anti-biofouling property of S-ISE sensors through precisely coating a self-assembled channel-type zwitterionic copolymer poly(trifluoroethyl methacrylate-random-sulfobetaine methacrylate) (PTFEMA-r-SBMA) on the sensor surface using electrospray. The PTFEMA-r-SBMA membrane exhibits exceptional permeability and selectivity to primary ions in water solutions. NH4+ S-ISE sensors with this anti-fouling zwitterionic layer were examined in real wastewater for 55 days consecutively, exhibiting sensitivity close to the theoretical value (59.18 mV/dec) and long-term stability (error <4 mg/L). Furthermore, a denoising data processing algorithm (DDPA) was developed to further improve the sensor accuracy, reducing the S-ISE sensor error to only 1.2 mg/L after 50 days of real wastewater analysis. Based on the dynamic energy cost function and carbon footprint models, LTCM is expected to save 44.9% NH4+ discharge, 12.8% energy consumption, and 26.7% greenhouse emission under normal operational conditions. This study unveils an innovative LTCM methodology by integrating advanced materials (anti-fouling layer coating) with sensor data processing (DDPA).
Collapse
Affiliation(s)
- Yuankai Huang
- Department of Civil and Environmental Engineering, University of Connecticut, Storrs, Connecticut 06269, United States
| | - Xin Qian
- Department of Chemical and Biomolecular Engineering, University of Connecticut, Storrs, Connecticut 06269, United States
| | - Xingyu Wang
- Department of Civil and Environmental Engineering, University of Connecticut, Storrs, Connecticut 06269, United States
| | - Tianbao Wang
- Department of Civil and Environmental Engineering, University of Connecticut, Storrs, Connecticut 06269, United States
| | - Samuel J Lounder
- Department of Chemical and Biological Engineering, Tufts University, Medford, Massachusetts 02155, United States
| | - Tulasi Ravindran
- Department of Chemical and Biomolecular Engineering, University of Connecticut, Storrs, Connecticut 06269, United States
| | - Zoe Demitrack
- Department of Civil and Environmental Engineering, University of Connecticut, Storrs, Connecticut 06269, United States
| | - Jeffrey McCutcheon
- Department of Chemical and Biomolecular Engineering, University of Connecticut, Storrs, Connecticut 06269, United States
| | - Ayse Asatekin
- Department of Chemical and Biological Engineering, Tufts University, Medford, Massachusetts 02155, United States
| | - Baikun Li
- Department of Civil and Environmental Engineering, University of Connecticut, Storrs, Connecticut 06269, United States
| |
Collapse
|
11
|
Kozma J, Papp S, Gyurcsányi RE. TEMPO-Functionalized Carbon Nanotubes for Solid-Contact Ion-Selective Electrodes with Largely Improved Potential Reproducibility and Stability. Anal Chem 2022; 94:8249-8257. [PMID: 35622612 PMCID: PMC9201804 DOI: 10.1021/acs.analchem.2c00395] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Solid-contact ion-selective electrodes (SCISEs) can overcome essential limitations of their counterparts based on liquid contacts. However, attaining a highly reproducible and predictable E0, especially between different fabrication batches, turned out to be difficult even with the most established solid-contact materials, i.e., conducting polymers and large-surface-area conducting materials (e.g., carbon nanotubes), that otherwise possess excellent potential stability. An appropriate batch-to-batch E0 reproducibility of SCISEs besides aiding the rapid quality control of the electrode manufacturing process is at the core of their "calibration-free" application, which is perhaps the last major challenge for their routine use as single-use "disposable" or wearable potentiometric sensors. Therefore, here, we propose a new class of solid-contact material based on the covalent functionalization of multiwalled carbon nanotubes (MWCNTs) with a chemically stable redox molecule, (2,2,6,6-tetramethylpiperidin-1-yl)oxyl (TEMPO). This material combines the advantages of (i) the large double-layer capacitance of MWCNT layers, (ii) the adjustable redox couple ratio provided by the TEMPO moiety, (iii) the covalent confinement of the redox couple, and (iv) the hydrophobicity of the components to achieve the potential reproducibility and stability for demanding applications. The TEMPO-MWCNT-based SC potassium ion-selective electrodes (K+-SCISEs) showed excellent analytical performance and potential stability with no sign of an aqueous layer formation beneath the ion-selective membrane nor sensitivity toward O2, CO2, and light. A major convenience of the fabrication procedure is the E0 adjustment of the K+-SCISEs by the polarization of the TEMPO-MWCNT suspension prior to its use as solid contact. While most E0 reproducibility studies are limited to a single fabrication batch of SCISEs, the use of prepolarized TEMPO-MWCNT resulted also in an outstanding batch-to-batch potential reproducibility. We were also able to overcome the hydration-related potential drifts for the use of SCISEs without prior conditioning and to feature application for accurate K+ measurements in undiluted blood serum.
Collapse
Affiliation(s)
- József Kozma
- Department of Inorganic and Analytical Chemistry, Budapest University of Technology and Economics, Műegyetem rkp. 3, H-1111 Budapest, Hungary.,MTA-BME Lendület Chemical Nanosensors Research Group, Műegyetem rkp. 3, H-1111 Budapest, Hungary
| | - Soma Papp
- Department of Inorganic and Analytical Chemistry, Budapest University of Technology and Economics, Műegyetem rkp. 3, H-1111 Budapest, Hungary.,MTA-BME Lendület Chemical Nanosensors Research Group, Műegyetem rkp. 3, H-1111 Budapest, Hungary
| | - Róbert E Gyurcsányi
- Department of Inorganic and Analytical Chemistry, Budapest University of Technology and Economics, Műegyetem rkp. 3, H-1111 Budapest, Hungary.,MTA-BME Lendület Chemical Nanosensors Research Group, Műegyetem rkp. 3, H-1111 Budapest, Hungary.,MTA-BME Computation Driven Chemistry Research Group, Műegyetem rkp. 3, H-1111 Budapest, Hungary
| |
Collapse
|
12
|
Ozer T, Henry CS. All-solid-state potassium-selective sensor based on carbon black modified thermoplastic electrode. Electrochim Acta 2022. [DOI: 10.1016/j.electacta.2021.139762] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
|
13
|
Fares MY, Abdelwahab NS, Hegazy MA, Abdelrahman MM, Mahmoud AM, EL-Sayed GM. Nanoparticle-enhanced in-line potentiometric ion sensor for point-of-care diagnostics for tropicamide abuse in biological fluid. Anal Chim Acta 2021; 1192:339350. [DOI: 10.1016/j.aca.2021.339350] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2021] [Revised: 11/28/2021] [Accepted: 11/30/2021] [Indexed: 11/01/2022]
|
14
|
Rousseau CR, Bühlmann P. Calibration-free potentiometric sensing with solid-contact ion-selective electrodes. Trends Analyt Chem 2021. [DOI: 10.1016/j.trac.2021.116277] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
|
15
|
Dębosz M, Kozma J, Porada R, Wieczorek M, Paluch J, Gyurcsányi RE, Migdalski J, Kościelniak P. 3D-printed manifold integrating solid contact ion-selective electrodes for multiplexed ion concentration measurements in urine. Talanta 2021; 232:122491. [PMID: 34074448 DOI: 10.1016/j.talanta.2021.122491] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2021] [Revised: 04/26/2021] [Accepted: 04/29/2021] [Indexed: 01/26/2023]
Abstract
Urinalysis is a simple and non-invasive approach for the diagnosis and monitoring of various health disorders. While urinalysis is predominantly confined to clinical laboratories the non-invasive sample collection makes it applicable in wide range of settings outside of central laboratory confinements. In this respect, 3D printed devices integrating sensors for measuring multiple parameters may be one of the most viable approaches to ensure cost-effectiveness for widespread use. Here we evaluated such a system for the multiplexed determination of sodium, potassium and calcium ions in urine samples with ion-selective electrodes based on state of the art octadecylamine-functionalized multi-walled carbon nanotube (OD-MWCNT) solid contacts. The electrodes were tested in the clinically relevant concentration range, i.e. ca. 10-4 - 10-1 mol L-1 and were proven to have Nernstian responses under flow injection conditions. The applicability of the 3D printed flow manifold was investigated through the analysis of synthetic samples and two certified reference materials. The obtained results confirm the suitability of the proposed system for multiplexed ion analysis in urine.
Collapse
Affiliation(s)
- Marek Dębosz
- Jagiellonian University in Krakow, Faculty of Chemistry, Department of Analytical Chemistry, Ul. Gronostajowa 2, Krakow, Poland.
| | - József Kozma
- Budapest University of Technology and Economics, Department of Inorganic and Analytical Chemistry, BME "Lendület" Chemical Nanosensors Research Group, Szt. Gellért Tér 4, H-1111, Budapest, Hungary
| | - Radosław Porada
- AGH-University of Science and Technology in Cracow, Faculty of Materials Science and Ceramics, Department of Analytical Chemistry and Biochemistry, Al. Mickiewicza 30, Kraków, Poland
| | - Marcin Wieczorek
- Jagiellonian University in Krakow, Faculty of Chemistry, Department of Analytical Chemistry, Ul. Gronostajowa 2, Krakow, Poland
| | - Justyna Paluch
- Jagiellonian University in Krakow, Faculty of Chemistry, Department of Analytical Chemistry, Ul. Gronostajowa 2, Krakow, Poland
| | - Róbert E Gyurcsányi
- Budapest University of Technology and Economics, Department of Inorganic and Analytical Chemistry, BME "Lendület" Chemical Nanosensors Research Group, Szt. Gellért Tér 4, H-1111, Budapest, Hungary
| | - Jan Migdalski
- AGH-University of Science and Technology in Cracow, Faculty of Materials Science and Ceramics, Department of Analytical Chemistry and Biochemistry, Al. Mickiewicza 30, Kraków, Poland
| | - Paweł Kościelniak
- Jagiellonian University in Krakow, Faculty of Chemistry, Department of Analytical Chemistry, Ul. Gronostajowa 2, Krakow, Poland
| |
Collapse
|
16
|
Zdrachek E, Bakker E. Ion-to-electron capacitance of single-walled carbon nanotube layers before and after ion-selective membrane deposition. Mikrochim Acta 2021; 188:149. [PMID: 33797650 PMCID: PMC8018922 DOI: 10.1007/s00604-021-04805-1] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2021] [Accepted: 03/21/2021] [Indexed: 01/26/2023]
Abstract
The capacitance of the ion-to-electron transducer layer helps to maintain a high potential stability of solid-contact ion-selective electrodes (SC-ISEs), and its estimation is therefore an essential step of SC-ISE characterization. The established chronopotentiometric protocol used to evaluate the capacitance of the single-walled carbon nanotube transducer layer was revised in order to obtain more reliable and better reproducible values and also to allow capacitance to be measured before membrane deposition for electrode manufacturing quality control purposes. The capacitance values measured with the revised method increased linearly with the number of deposited carbon nanotube-based transducer layers and were also found to correlate linearly before and after ion-selective membrane deposition, with correlation slopes close to 1 for nitrate-selective electrodes, to 0.7 and to 0.5 for potassium- and calcium-selective electrodes.
Collapse
Affiliation(s)
- Elena Zdrachek
- Department of Inorganic and Analytical Chemistry, University of Geneva, Quai Ernest-Ansermet 30, CH-1211, Geneva, Switzerland.
| | - Eric Bakker
- Department of Inorganic and Analytical Chemistry, University of Geneva, Quai Ernest-Ansermet 30, CH-1211, Geneva, Switzerland.
| |
Collapse
|
17
|
Cheong YH, Ge L, Lisak G. Highly reproducible solid contact ion selective electrodes: Emerging opportunities for potentiometry - A review. Anal Chim Acta 2021; 1162:338304. [PMID: 33926699 DOI: 10.1016/j.aca.2021.338304] [Citation(s) in RCA: 42] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2020] [Revised: 01/20/2021] [Accepted: 02/04/2021] [Indexed: 02/07/2023]
Abstract
The solid contact ion-selective electrodes (SC-ISEs) have been extensively studied in the field of ion sensing as they offer the possibility of miniaturization, are relatively inexpensive in comparison to other analytical techniques and allow straightforward and routine analyses of ions in a number of clinical, environmental and industrial process samples. In recent years, significant interest has grown in the development of SC-ISEs with well-defined interfacialpotentials at the membrane, solid contact, and substrate electrode interfaces. This has resulted in interesting SC-ISEs exhibiting high electrode-to-electrode potential reproducibility, for those made in a single batch of electrodes, some approaching or exceeding those observed in liquid-contact ISEs. The advancement in the potential reproducibility of SC-ISEs has been partially achieved by scrutinizing insufficiently reproducible fabrication methods of SC-ISEs, or by introducing novel control measures or modifiers to components of the ISEs. This paper provides an overview of the methods as well as the challenges in establishing and maintaining reproducible potentials during the fabrication and use of novel SC-ISEs. The rules outlined in the works reviewed may form the basis of further development of cost-effective, user-friendly, limited calibration or calibration-free potentiometric SC-ISEs to achieve reliable ion analyses here and now.
Collapse
Affiliation(s)
- Yi Heng Cheong
- School of Civil and Environmental Engineering, Nanyang Technological University, 50 Nanyang Avenue, Singapore, 639798, Singapore; Robert Bosch (South East Asia) Pte Ltd, 11 Bishan Street 21, Singapore, 573943, Singapore; Residues and Resource Reclamation Centre, Nanyang Environment and Water Research Institute, Nanyang Technological University, 1 Cleantech Loop, CleanTech One, Singapore, 637141, Singapore
| | - Liya Ge
- Residues and Resource Reclamation Centre, Nanyang Environment and Water Research Institute, Nanyang Technological University, 1 Cleantech Loop, CleanTech One, Singapore, 637141, Singapore
| | - Grzegorz Lisak
- School of Civil and Environmental Engineering, Nanyang Technological University, 50 Nanyang Avenue, Singapore, 639798, Singapore; Residues and Resource Reclamation Centre, Nanyang Environment and Water Research Institute, Nanyang Technological University, 1 Cleantech Loop, CleanTech One, Singapore, 637141, Singapore.
| |
Collapse
|
18
|
Kozma J, Papp S, Gyurcsányi RE. Solid-contact ion-selective electrodes based on ferrocene-functionalized multi-walled carbon nanotubes. Electrochem commun 2021. [DOI: 10.1016/j.elecom.2020.106903] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
|
19
|
Mao C, Yuan D, Wang L, Bakker E. Separating boundary potential changes at thin solid contact ion transfer voltammetric membrane electrodes. J Electroanal Chem (Lausanne) 2021. [DOI: 10.1016/j.jelechem.2020.114800] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
20
|
A microfabricated potentiometric sensor for metoclopramide determination utilizing a graphene nanocomposite transducer layer. Anal Bioanal Chem 2020; 412:7505-7514. [PMID: 32839859 DOI: 10.1007/s00216-020-02884-2] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2020] [Revised: 07/28/2020] [Accepted: 08/13/2020] [Indexed: 12/23/2022]
Abstract
In the recent drug analysis arena, optimizing a green, eco-friendly, and cost-effective technique is the main target. In order to cope with green analytical chemistry principles and the trending development of miniaturized portable and handheld devices, an innovative microfabricated ion-selective electrode for the analysis of metoclopramide (MTP) was developed. The fabricated electrode adopted a two-step optimization process. The first step of optimization depended on screening different ionophores in order to enhance the sensor selectivity. Calix-4-arene showed the maximal selectivity towards MTP. The second step was utilizing a graphene nanocomposite as an ion-to-electron transducer layer between the calix-4-arene polymeric membrane and the microfabricated copper solid-contact ion-selective electrode. The graphene nanocomposite layer added more stability to electrode potential drift and short response times (10 s), probably due to the hydrophobic behavior of the graphene nanocomposite, which precludes the formation of a water layer at the Cu electrode/polymeric membrane interface. The proposed MTP sensor has been characterized according to IUPAC recommendations and the linear dynamic range estimated to be 1 × 10-6 to 1 × 10-2 M with LOD of 3 × 10-7 M. The proposed sensor has been successfully employed in the selective determination of MTP in bulk powder, pharmaceutical formulation, and biological fluid. No statistical significant difference was observed upon comparing the results with those of the official method. The Eco-score of the method was assessed using the Eco-Scale tool and was compared with that of the official method. Graphical abstract.
Collapse
|
21
|
Affiliation(s)
- Elena Zdrachek
- Department of Inorganic and Analytical Chemistry, University of Geneva, Quai Ernest-Ansermet 30, CH-1211 Geneva, Switzerland
| | - Eric Bakker
- Department of Inorganic and Analytical Chemistry, University of Geneva, Quai Ernest-Ansermet 30, CH-1211 Geneva, Switzerland
| |
Collapse
|
22
|
Shao Y, Ying Y, Ping J. Recent advances in solid-contact ion-selective electrodes: functional materials, transduction mechanisms, and development trends. Chem Soc Rev 2020; 49:4405-4465. [DOI: 10.1039/c9cs00587k] [Citation(s) in RCA: 143] [Impact Index Per Article: 35.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
This article presents a comprehensive overview of recent progress in the design and applications of solid-contact ion-selective electrodes (SC-ISEs).
Collapse
Affiliation(s)
- Yuzhou Shao
- Laboratory of Agricultural Information Intelligent Sensing
- School of Biosystems Engineering and Food Science
- Zhejiang University
- Hangzhou
- China
| | - Yibin Ying
- Laboratory of Agricultural Information Intelligent Sensing
- School of Biosystems Engineering and Food Science
- Zhejiang University
- Hangzhou
- China
| | - Jianfeng Ping
- Laboratory of Agricultural Information Intelligent Sensing
- School of Biosystems Engineering and Food Science
- Zhejiang University
- Hangzhou
- China
| |
Collapse
|