1
|
Abedi-Firoozjah R, Alizadeh-Sani M, Zare L, Rostami O, Azimi Salim S, Assadpour E, Azizi-Lalabadi M, Zhang F, Lin X, Jafari SM. State-of-the-art nanosensors and kits for the detection of antibiotic residues in milk and dairy products. Adv Colloid Interface Sci 2024; 328:103164. [PMID: 38703455 DOI: 10.1016/j.cis.2024.103164] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2024] [Revised: 04/17/2024] [Accepted: 04/24/2024] [Indexed: 05/06/2024]
Abstract
Antibiotic resistance is increasingly seen as a future concern, but antibiotics are still commonly used in animals, leading to their accumulation in humans through the food chain and posing health risks. The development of nanomaterials has opened up possibilities for creating new sensing strategies to detect antibiotic residues, resulting in the emergence of innovative nanobiosensors with different benefits like rapidity, simplicity, accuracy, sensitivity, specificity, and precision. Therefore, this comprehensive review provides pertinent and current insights into nanomaterials-based electrochemical/optical sensors for the detection of antibitic residues (ANBr) across milk and dairy products. Here, we first discuss the commonly used ANBs in real products, the significance of ANBr, and also their binding/biological properties. Then, we provide an overview of the role of using different nanomaterials on the development of advanced nanobiosensors like fluorescence-based, colorimetric, surface-enhanced Raman scattering, surface plasmon resonance, and several important electrochemical nanobiosensors relying on different kinds of electrodes. The enhancement of ANB electrochemical behavior for detection is also outlined, along with a concise overview of the utilization of (bio)recognition units. Ultimately, this paper offers a perspective on the future concepts of this research field and commercialized nanomaterial-based sensors to help upgrade the sensing techniques for ANBr in dairy products.
Collapse
Affiliation(s)
- Reza Abedi-Firoozjah
- Student Research Committee, Kermanshah University of Medical Sciences, Kermanshah, Iran
| | - Mahmood Alizadeh-Sani
- Department of Food Science and Technology, School of Nutritional Sciences and Dietetics, Tehran University of Medical Sciences, Tehran, Iran
| | - Leila Zare
- Research Center of Oils and Fats, Kermanshah University of Medical Sciences, Kermanshah, Iran
| | - Omid Rostami
- Student Research Committee, Department of Food Science and Technology, National Nutrition and Food Technology Research Institute, Faculty of Nutrition Science, Food Science and Technology, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Shamimeh Azimi Salim
- Research Center of Oils and Fats, Kermanshah University of Medical Sciences, Kermanshah, Iran
| | - Elham Assadpour
- Food Industry Research Co., Gorgan, Iran; Food and Bio-Nanotech International Research Center (Fabiano), Gorgan University of Agricultural Sciences and Natural Resources, Gorgan, Iran
| | - Maryam Azizi-Lalabadi
- Research Center of Oils and Fats, Kermanshah University of Medical Sciences, Kermanshah, Iran..
| | - Fuyuan Zhang
- College of Food Science and Technology, Hebei Agricultural University, Baoding 071001, China.
| | - Xingyu Lin
- College of Biosystems Engineering and Food Science, Key Laboratory of Agro-Products Postharvest Handling of Ministry of Agriculture and Rural Affairs, Fuli Institute of Food Science, Zhejiang University, Hangzhou, China
| | - Seid Mahdi Jafari
- Department of Food Materials and Process Design Engineering, Gorgan University of Agricultural Sciences and Natural Resources, Gorgan, Iran; Halal Research Center of IRI, Iran Food and Drug Administration, Ministry of Health and Medical Education, Tehran, Iran.
| |
Collapse
|
2
|
Mǎgeruşan L, Pogǎcean F, Cozar BI, Tripon SC, Pruneanu S. Harnessing Graphene-Modified Electrode Sensitivity for Enhanced Ciprofloxacin Detection. Int J Mol Sci 2024; 25:3691. [PMID: 38612501 PMCID: PMC11012167 DOI: 10.3390/ijms25073691] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2024] [Revised: 03/22/2024] [Accepted: 03/24/2024] [Indexed: 04/14/2024] Open
Abstract
Increased evidence has documented a direct association between Ciprofloxacin (CFX) intake and significant disruption to the normal functions of connective tissues, leading to severe health conditions (such as tendonitis, tendon rupture and retinal detachment). Additionally, CFX is recognized as a potential emerging pollutant, as it seems to impact both animal and human food chains, resulting in severe health implications. Consequently, there is a compelling need for the precise, swift and selective detection of this fluoroquinolone-class antibiotic. Herein, we present a novel graphene-based electrochemical sensor designed for Ciprofloxacin (CFX) detection and discuss its practical utility. The graphene material was synthesized using a relatively straightforward and cost-effective approach involving the electrochemical exfoliation of graphite, through a pulsing current, in 0.05 M sodium sulphate (Na2SO4), 0.05 M boric acid (H3BO3) and 0.05 M sodium chloride (NaCl) solution. The resulting material underwent systematic characterization using scanning electron microscopy/energy dispersive X-ray analysis, X-ray powder diffraction and Raman spectroscopy. Subsequently, it was employed in the fabrication of modified glassy carbon surfaces (EGr/GC). Linear Sweep Voltammetry studies revealed that CFX experiences an irreversible oxidation process on the sensor surface at approximately 1.05 V. Under optimal conditions, the limit of quantification was found to be 0.33 × 10-8 M, with a corresponding limit of detection of 0.1 × 10-8 M. Additionally, the developed sensor's practical suitability was assessed using commercially available pharmaceutical products.
Collapse
Affiliation(s)
- Lidia Mǎgeruşan
- National Institute for Research and Development of Isotopic and Molecular Technologies, Donat Street, 67-103 Cluj-Napoca, Romania; (F.P.); (B.-I.C.); (S.-C.T.)
| | | | | | | | - Stela Pruneanu
- National Institute for Research and Development of Isotopic and Molecular Technologies, Donat Street, 67-103 Cluj-Napoca, Romania; (F.P.); (B.-I.C.); (S.-C.T.)
| |
Collapse
|
3
|
Pereira JFS, Di-Oliveira M, Faria LV, Borges PHS, Nossol E, Gelamo RV, Richter EM, Lopes OF, Muñoz RAA. CO 2-plasma surface treatment of graphite sheet electrodes for detection of chloramphenicol, ciprofloxacin and sulphanilamide. Mikrochim Acta 2023; 190:379. [PMID: 37682352 DOI: 10.1007/s00604-023-05953-2] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2023] [Accepted: 08/14/2023] [Indexed: 09/09/2023]
Abstract
Graphite sheet (GS) electrodes are flexible and versatile substrates for sensing electrochemical; however, their use has been limited to incorporate (bio)chemical modifiers. Herein, we demonstrated that a cold (low temperature) CO2 plasma treatment of GS electrodes provides a substantial improvement of the electrochemical activity of these electrodes due to the increased structural defects on the GS surface as revealed by Raman spectroscopy (ID/IG ratio), and scanning electron microscopy images. XPS analyses confirmed the formation of oxygenated functional groups at the GS surface after the plasma treatment that are intrinsically related to the substantial increase in the electron transfer coefficient (K0 values increased from 1.46 × 10-6 to 2.09 × 10-3 cm s-1) and with reduction of the resistance to charge transfer (from 129.8 to 0.251 kΩ). The improved electrochemical activity of CO2-GS electrodes was checked for the detection of emerging contaminant species, such as chloramphenicol (CHL), ciprofloxacin (CIP) and sulphanilamide (SUL) antibiotics, at around + 0.15, + 1.10 and + 0.85 V (versus Ag/AgCl), respectively, by square wave voltammetry. Limit of detection values in the submicromolar range were achieved for CHL (0.08 μmol L-1), CIP (0.01 μmol L-1) and SFL (0.11 μmol L-1), which enabled the sensor to be successfully applied to natural waters and urine samples (recovery values from 85 to 119%). The CO2-GS electrode is highly stable and inexpensive ($0.09 each sensor) and can be easily inserted in portable 3D printed cells for environmental on-site analyses.
Collapse
Affiliation(s)
- Jian F S Pereira
- Institute of Chemistry, Federal University of Uberlândia (UFU), Uberlândia, MG, 38408-902, Brazil
| | - Marina Di-Oliveira
- Institute of Chemistry, Federal University of Uberlândia (UFU), Uberlândia, MG, 38408-902, Brazil
| | - Lucas V Faria
- Institute of Chemistry, Universidade Federal Fluminense (UFF), Niterói, RJ, 24020-141, Brazil
| | - Pedro H S Borges
- Institute of Chemistry, Federal University of Uberlândia (UFU), Uberlândia, MG, 38408-902, Brazil
| | - Edson Nossol
- Institute of Chemistry, Federal University of Uberlândia (UFU), Uberlândia, MG, 38408-902, Brazil
| | - Rogério V Gelamo
- Institute of Technological and Exact Sciences, Federal University of Triângulo Mineiro (UFTM), Universidade Federal do Triângulo Mineiro, Uberaba, MG, 38064-200, Brazil
| | - Eduardo M Richter
- Institute of Chemistry, Federal University of Uberlândia (UFU), Uberlândia, MG, 38408-902, Brazil
| | - Osmando F Lopes
- Institute of Chemistry, Federal University of Uberlândia (UFU), Uberlândia, MG, 38408-902, Brazil
| | - Rodrigo A A Muñoz
- Institute of Chemistry, Federal University of Uberlândia (UFU), Uberlândia, MG, 38408-902, Brazil.
| |
Collapse
|
4
|
Lisboa TP, de Faria LV, de Oliveira WBV, Oliveira RS, Matos MAC, Dornellas RM, Matos RC. Cost-effective protocol to produce 3D-printed electrochemical devices using a 3D pen and lab-made filaments to ciprofloxacin sensing. Mikrochim Acta 2023; 190:310. [PMID: 37466780 DOI: 10.1007/s00604-023-05892-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2023] [Accepted: 06/29/2023] [Indexed: 07/20/2023]
Abstract
A novel conductive filament based on graphite (Gr) dispersed in polylactic acid polymer matrix (PLA) is described to produce 3D-electrochemical devices (Gr/PLA). This conductive filament was used to additively manufacture electrochemical sensors using the 3D pen. Thermogravimetric analysis confirmed that Gr was successfully incorporated into PLA, achieving a composite material (40:60% w/w, Gr and PLA, respectively), while Raman and scanning electron microscopy revealed the presence of defects and a high porosity on the electrode surface, which contributes to improved electrochemical performance. The 3D-printed Gr/PLA electrode provided a more favorable charge transfer (335 Ω) than the conventional glassy carbon (1277 Ω) and 3D-printed Proto-pasta® (3750 Ω) electrodes. As a proof of concept, the ciprofloxacin antibiotic, a species of multiple interest, was selected as a model molecule. Thus, a square wave voltammetry (SWV) method was proposed in the potential range + 0.9 to + 1.3 V (vs Ag|AgCl|KCl(sat)), which provided a wide linear working range (2 to 32 µmol L-1), 1.79 µmol L-1 limit of detection (LOD), suitable precision (RSD < 7.9%), and recovery values from 94 to 109% when applied to pharmaceutical and milk samples. Additionally, the sensor is free from the interference of other antibiotics routinely employed in veterinary practices. This device is disposable, cost-effective, feasibly produced in financially limited laboratories, and consequently promising for evaluation of other antibiotic species in routine applications.
Collapse
Affiliation(s)
- Thalles Pedrosa Lisboa
- Chemistry Department, Federal University of Juiz de Fora, Juiz de Fora, 36036-900, Brazil.
- College of Exact Sciences and Technology, Federal University of Grande Dourados, Dourados, 79804-970, Brazil.
| | | | | | - Raylla Santos Oliveira
- Chemistry Department, Federal University of Juiz de Fora, Juiz de Fora, 36036-900, Brazil
| | | | | | - Renato Camargo Matos
- Chemistry Department, Federal University of Juiz de Fora, Juiz de Fora, 36036-900, Brazil.
| |
Collapse
|
5
|
Electroanalytical application of Ag@POM@rGO nanocomposite and ionic liquid modified carbon paste electrode for the quantification of ciprofloxacin antibiotic. J Electroanal Chem (Lausanne) 2023. [DOI: 10.1016/j.jelechem.2023.117321] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/14/2023]
|
6
|
Alves GF, de Faria LV, Lisboa TP, Matos MAC, Matos RC. Electrochemical exfoliation of graphite from pencil lead to graphene sheets: a feasible and cost-effective strategy to improve ciprofloxacin sensing. J APPL ELECTROCHEM 2022. [DOI: 10.1007/s10800-022-01755-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/14/2022]
|
7
|
Azriouil M, Matrouf M, Ettadili FE, Laghrib F, Farahi A, Saqrane S, Bakasse M, Lahrich S, El Mhammedi MA. Recent trends on electrochemical determination of antibiotic Ciprofloxacin in biological fluids, pharmaceutical formulations, environmental resources and foodstuffs: Direct and indirect approaches. Food Chem Toxicol 2022; 168:113378. [PMID: 35987282 DOI: 10.1016/j.fct.2022.113378] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2022] [Revised: 07/30/2022] [Accepted: 08/11/2022] [Indexed: 11/28/2022]
Abstract
In the last few decades, pharmaceuticals, credited with saving millions of lives, have emerged as a new class of environmental contaminants. These compounds can have both chronic and acute harmful effects on aquatic ecosystems and consequently on human health. Therefore, there is an urgent need for the development of extremely sensitive, portable, and low-cost devices to perform analysis. In the present review article, recent reports on the application of various voltammetric and photo-electrochemical techniques using different electrode materials for the determination of antibiotic Ciprofloxacin (CIPRO) are reported. This review provides an insight into direct and indirect electrochemical approaches as well as the photoelectrochemical methods used for the determination of CIPRO. Emphasis is put on the applications of unmodified and modified carbon-based electrodes considering the modifier, supporting electrolytes, analytical method, concentration range, limit of detection, and real matrices. Carbon-based electrodes are the most used materials attributed to their commercial availability, reduced cost, high chemical stability, and non-toxicity.
Collapse
Affiliation(s)
- M Azriouil
- Sultan Moulay Slimane University of Beni Mellal, Laboratory of Materials Science, Mathematics and Environment, Polydisciplinary Faculty, 25 000, Khouribga, Morocco
| | - M Matrouf
- Sultan Moulay Slimane University of Beni Mellal, Laboratory of Materials Science, Mathematics and Environment, Polydisciplinary Faculty, 25 000, Khouribga, Morocco
| | - F E Ettadili
- Sultan Moulay Slimane University of Beni Mellal, Laboratory of Materials Science, Mathematics and Environment, Polydisciplinary Faculty, 25 000, Khouribga, Morocco
| | - F Laghrib
- Sultan Moulay Slimane University of Beni Mellal, Laboratory of Materials Science, Mathematics and Environment, Polydisciplinary Faculty, 25 000, Khouribga, Morocco; Sidi Mohamed Ben Abdellah University, Engineering Laboratory of Organometallic, Molecular Materials, and Environment, Faculty of Sciences, Fez, Morocco
| | - A Farahi
- Sultan Moulay Slimane University of Beni Mellal, Laboratory of Materials Science, Mathematics and Environment, Polydisciplinary Faculty, 25 000, Khouribga, Morocco
| | - S Saqrane
- Sultan Moulay Slimane University of Beni Mellal, Laboratory of Materials Science, Mathematics and Environment, Polydisciplinary Faculty, 25 000, Khouribga, Morocco
| | - M Bakasse
- Sultan Moulay Slimane University of Beni Mellal, Laboratory of Materials Science, Mathematics and Environment, Polydisciplinary Faculty, 25 000, Khouribga, Morocco; Chouaib Doukkali University, Organic Micropollutants Analysis Team, Faculty of Sciences, Morocco
| | - S Lahrich
- Sultan Moulay Slimane University of Beni Mellal, Laboratory of Materials Science, Mathematics and Environment, Polydisciplinary Faculty, 25 000, Khouribga, Morocco
| | - M A El Mhammedi
- Sultan Moulay Slimane University of Beni Mellal, Laboratory of Materials Science, Mathematics and Environment, Polydisciplinary Faculty, 25 000, Khouribga, Morocco.
| |
Collapse
|
8
|
Sensitive and selective voltammetric determination of ciprofloxacin using screen‐printed electrodes modified with carbon black and magnetic‐molecularly imprinted polymer. ELECTROANAL 2022. [DOI: 10.1002/elan.202200165] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
|
9
|
Water Quality Carbon Nanotube-Based Sensors Technological Barriers and Late Research Trends: A Bibliometric Analysis. CHEMOSENSORS 2022. [DOI: 10.3390/chemosensors10050161] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
Water is the key element that defines and individualizes our planet. Relative to body weight, water represents 70% or more for the majority of all species on Earth. Taking care of water as a whole is equivalent with taking care of the entire biodiversity or the whole of humanity itself. Water quality is becoming an increasingly important component of terrestrial life, hence intensive work is being conducted to develop sensors for detecting contaminants and assessing water quality and characteristics. Our bibliometric analysis is focused on water quality sensors based on carbon nanotubes and highlights the most important objectives and achievements of researchers in recent years. Due to important measurement characteristics such as sensitivity and selectivity, or low detection limit and linearity, up to the ability to measure water properties, including detection of heavy metal content or the presence of persistent organic compounds, carbon nanotube (CNT) sensors, taking advantage of available nanotechnologies, are becoming increasingly attractive. The conducted bibliometric analysis creates a visual, more efficient keystones mapping. CNT sensors can be integrated into an inexpensive real-time monitoring data acquisition system as an alternative for classical expensive and time-consuming offline water quality monitoring. The conducted bibliometric analysis reveals all connections and maps all the results in this water quality CNT sensors research field and gives a perspective on the approached methods on this specific type of sensor. Finally, challenges related to integration of other trends that have been used and proven to be valuable in the field of other sensor types and capable to contribute to the development (and outlook) for future new configurations that will undoubtedly emerge are presented.
Collapse
|
10
|
Vinícius de Faria L, Lisboa TP, Alves GF, Costa Matos MA, Abarza Muñoz RA, Matos RC. Adsorptive stripping voltammetric determination of chloramphenicol residues in milk samples using reduced graphene oxide sensor. ANALYTICAL METHODS : ADVANCING METHODS AND APPLICATIONS 2021; 13:5711-5718. [PMID: 34812438 DOI: 10.1039/d1ay01756j] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
In this paper, the electrochemical response of chloramphenicol (CHL) was investigated on a bare glassy carbon electrode (GCE) and after modification with reduced graphene oxide (GCE/rGO). Preliminary studies by cyclic voltammetry demonstrated an adsorption-controlled mass transport regime of CHL species and a pH-dependent behavior on both electrode surfaces. An adsorptive stripping differential pulse voltammetry (AdSDPV) method was proposed and under optimized instrumental conditions, a comparison of the analytical characteristics of both sensors was performed. The GCE/rGO sensor showed an increase in sensitivity (10-fold), and an anticipation of the reduction potential (200 mV), compared to the bare electrode, due to the adsorptive character (pre-concentration of the CHL species) and the electrocatalytic effect of the nanomaterial. The method was applied to skimmed and whole milk samples, which were simply diluted (50-fold) in supporting electrolyte. The results by AdSDPV using GCE/rGO showed adequate detectability (0.22 μmol L-1), good precision with a 6% relative standard deviation (RSD) and satisfactory recovery ranging from 93 to 108%. The obtained results were statistically similar (95% confidence level) with those performed through ultra-fast liquid chromatography (UFLC). Furthermore, the sensor showed an improvement in the analytical performance for CHL detection, when compared to other sensors reported in the literature. Therefore, the developed method is reliable and promising for implementation in monitoring CHL residues in milk samples.
Collapse
Affiliation(s)
- Lucas Vinícius de Faria
- NUPIS (Núcleo de Pesquisa em Instrumentação e Separações Analíticas), Departamento de Química, Instituto de Ciências Exatas, Universidade Federal de Juiz de Fora, Juiz de Fora, MG, 36036-900, Brazil.
| | - Thalles Pedrosa Lisboa
- NUPIS (Núcleo de Pesquisa em Instrumentação e Separações Analíticas), Departamento de Química, Instituto de Ciências Exatas, Universidade Federal de Juiz de Fora, Juiz de Fora, MG, 36036-900, Brazil.
| | - Guilherme Figueira Alves
- NUPIS (Núcleo de Pesquisa em Instrumentação e Separações Analíticas), Departamento de Química, Instituto de Ciências Exatas, Universidade Federal de Juiz de Fora, Juiz de Fora, MG, 36036-900, Brazil.
| | - Maria Auxiliadora Costa Matos
- NUPIS (Núcleo de Pesquisa em Instrumentação e Separações Analíticas), Departamento de Química, Instituto de Ciências Exatas, Universidade Federal de Juiz de Fora, Juiz de Fora, MG, 36036-900, Brazil.
| | | | - Renato Camargo Matos
- NUPIS (Núcleo de Pesquisa em Instrumentação e Separações Analíticas), Departamento de Química, Instituto de Ciências Exatas, Universidade Federal de Juiz de Fora, Juiz de Fora, MG, 36036-900, Brazil.
| |
Collapse
|
11
|
de Faria LV, Lisboa TP, Campos NDS, Alves GF, Matos MAC, Matos RC, Munoz RAA. Electrochemical methods for the determination of antibiotic residues in milk: A critical review. Anal Chim Acta 2021; 1173:338569. [PMID: 34172150 DOI: 10.1016/j.aca.2021.338569] [Citation(s) in RCA: 41] [Impact Index Per Article: 13.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2021] [Revised: 04/03/2021] [Accepted: 04/21/2021] [Indexed: 12/20/2022]
Abstract
Several antibiotics have been applied to veterinary medicine due to their broad-spectrum of antibacterial activity and prophylactic power. Residues of these antibiotics can be accumulated in dairy cattle, in addition to promoting contamination of the environment and, in more serious cases, in milk, causing a public health problem. Different regulatory agencies establish maximum residue limits for these antibiotics in milk, so it becomes important to develop sensitive analytical methods for monitoring these compounds. Electrochemical techniques are important analytical tools in analytical chemistry because they present low cost, simplicity, high sensitivity, and adequate analytical frequency (sample throughput) for routine analyses. In this sense, this review summarizes the state of the art of the main electrochemical sensors and biosensors, instrumental techniques, and sample preparation used for the development of analytical methods, published in the last five years, for the monitoring of different classes of antibiotics: aminoglycosides, amphenicols, beta-lactams, fluoroquinolones, sulfonamides, and tetracyclines, in milk samples. The different strategies to develop electrochemical sensors and biosensors are critically compared considering their analytical features. The mechanisms of electrochemical oxidation/reduction of the antibiotics are revised and discussed considering strategies to improve the selectivity of the method. In addition, current challenges and future prospects are discussed.
Collapse
Affiliation(s)
- Lucas Vinícius de Faria
- Departamento de Química, Universidade Federal de Juiz de Fora, 36026-900, Juiz de Fora, MG, Brazil
| | - Thalles Pedrosa Lisboa
- Departamento de Química, Universidade Federal de Juiz de Fora, 36026-900, Juiz de Fora, MG, Brazil
| | - Náira da Silva Campos
- Departamento de Química, Universidade Federal de Juiz de Fora, 36026-900, Juiz de Fora, MG, Brazil
| | - Guilherme Figueira Alves
- Departamento de Química, Universidade Federal de Juiz de Fora, 36026-900, Juiz de Fora, MG, Brazil
| | | | - Renato Camargo Matos
- Departamento de Química, Universidade Federal de Juiz de Fora, 36026-900, Juiz de Fora, MG, Brazil.
| | | |
Collapse
|
12
|
Batch injection analysis with amperometric detection for fluoroquinolone determination in urine, pharmaceutical formulations, and milk samples using a reduced graphene oxide-modified glassy carbon electrode. Anal Bioanal Chem 2021; 414:5309-5318. [PMID: 33890118 DOI: 10.1007/s00216-021-03342-3] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2021] [Revised: 04/08/2021] [Accepted: 04/12/2021] [Indexed: 10/21/2022]
Abstract
In this work, the batch injection analysis system with amperometric detection using reduced graphene oxide as a modifier of glassy carbon electrode (GCE) was investigated for the simple, fast, and sensitive monitoring of levofloxacin (LEVO) and ciprofloxacin (CIPRO) in samples of pharmaceutical formulations, synthetic urine, and milk (low- and high-fat content). LEVO and CIPRO were quantified in seven samples using amperometric measurements at +1.10 V vs Ag/AgCl, KCl(sat). The developed methods showed excellent analytical performance with limits of detection of 0.30 and 0.16 μmol L-1, linear range from 3.0 to 50 μmol L-1 and 1.0 to 50 μmol L-1, relative standard deviation below 9.7 and 3.1%, and recovery ranges ranging from 80 to 107% and from 78 to 109% for LEVO and CIPRO, respectively. In addition, the minimum sample preparation (simple dilution) combined with a high analytical frequency (130 to 180 analyses per hour) can be highlighted. Thus, the methods are promising for implementation in routine analysis and quality control to different samples.
Collapse
|