1
|
Shi Y, Hu K, Mei L, Chao L, Wu M, Chen Z, Wu X, Qiao J, Zhu P, Miao M, Zhang S. Platforms of graphene/MXene heterostructure for electrochemical monitoring of rutin in drug and Tartary buckwheat tea. Talanta 2024; 270:125548. [PMID: 38104427 DOI: 10.1016/j.talanta.2023.125548] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2023] [Revised: 12/07/2023] [Accepted: 12/11/2023] [Indexed: 12/19/2023]
Abstract
The use of two-dimensional heterostructure composite as electrode modification material has become a new strategy to improve the electrocatalytic activity and electroactive sites of electrochemical sensor. Herein, a soluble heterostructure, namely rGO-PSS@MXene, was designed and synthesized by integrating poly (sodium p-styrenesulfonate)-functionalized reduced graphene oxide into MXene nanosheets via ultrasonic method. The interactive heterostructure can effectively alleviate the self-stacking of MXene and rGO, endowing them with superior electron transfer capacity and large specific surface area, thereby producing prominent synergistic electrocatalytic effect towards rutin. In addition, the excellent enrichment effect of rGO-PSS@MXene for rutin also plays an important role through the electrostatic and π-π stacking interactions. The electrochemical characteristics of rutin on the sensor were examined in detail and a sensitive sensing method was proposed. Under optimized conditions, the method showed satisfactory linear relationship for rutin in the concentration range of 0.005-10.0 μM, with limit of detection of 1.8 nM (S/N = 3). The quantitative validation results in herbal medicine and commercial Tartary buckwheat tea were highly consistent with the labeled quantity and the results of HPLC determination, respectively, suggesting the sensor possessed excellent selectivity and accuracy. This proposed strategy for rutin determination is expected to expand the application of MXene heterostructure in electrochemical sensors, and is envisioned as a promising candidate for quality monitoring of drugs and foods.
Collapse
Affiliation(s)
- Yanmei Shi
- Academy of Traditional Chinese Medicine, Henan University of Chinese Medicine, Zhengzhou, 450001, PR China; People's Hospital of Henan University of Chinese Medicine/Zhengzhou People's Hospital, Zhengzhou, Henan, 450003, PR China
| | - Kai Hu
- Academy of Traditional Chinese Medicine, Henan University of Chinese Medicine, Zhengzhou, 450001, PR China
| | - Lin Mei
- School of Materials and Chemical Engineering, Zhongyuan University of Technology, Zhengzhou, 450007, PR China.
| | - Liqin Chao
- Academy of Traditional Chinese Medicine, Henan University of Chinese Medicine, Zhengzhou, 450001, PR China
| | - Mingxia Wu
- Department of Medicine, Henan University of Chinese Medicine, Zhengzhou, 450001, PR China
| | - Zhihong Chen
- Academy of Traditional Chinese Medicine, Henan University of Chinese Medicine, Zhengzhou, 450001, PR China
| | - Xiangxiang Wu
- Academy of Traditional Chinese Medicine, Henan University of Chinese Medicine, Zhengzhou, 450001, PR China
| | - Jingyi Qiao
- Academy of Traditional Chinese Medicine, Henan University of Chinese Medicine, Zhengzhou, 450001, PR China
| | - Pingsheng Zhu
- College of Traditional Chinese Medicine, Henan University of Chinese Medicine, Zhengzhou, 450001, PR China
| | - Mingsan Miao
- Academy of Traditional Chinese Medicine, Henan University of Chinese Medicine, Zhengzhou, 450001, PR China.
| | - Sisen Zhang
- People's Hospital of Henan University of Chinese Medicine/Zhengzhou People's Hospital, Zhengzhou, Henan, 450003, PR China.
| |
Collapse
|
2
|
Shi Y, Hu K, Mei L, Yang X, Shi Y, Wu X, Li XM, Miao M, Zhang S. SnO2 quantum dots-functionalized Ti3C2 MXene nanosheets for electrochemical determination of dopamine in body fluids. Mikrochim Acta 2022; 189:451. [DOI: 10.1007/s00604-022-05555-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2022] [Accepted: 10/28/2022] [Indexed: 11/21/2022]
|
3
|
Murugan P, Annamalai J, Atchudan R, Govindasamy M, Nallaswamy D, Ganapathy D, Reshetilov A, Sundramoorthy AK. Electrochemical Sensing of Glucose Using Glucose Oxidase/PEDOT:4-Sulfocalix [4]arene/MXene Composite Modified Electrode. MICROMACHINES 2022; 13:mi13020304. [PMID: 35208428 PMCID: PMC8877456 DOI: 10.3390/mi13020304] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/18/2022] [Revised: 02/09/2022] [Accepted: 02/13/2022] [Indexed: 12/12/2022]
Abstract
Glucose is one of the most important monosaccharides found in the food, as a part of more complex structures, which is a primary energy source for the brain and body. Thus, the monitoring of glucose concentration is more important in food and biological samples in order to maintain a healthy lifestyle. Herein, an electrochemical glucose biosensor was fabricated by immobilization of glucose oxidase (GOX) onto poly(3,4-ethylenedioxythiophene):4-sulfocalix [4]arene (PEDOT:SCX)/MXene modified electrode. For this purpose, firstly, PEDOT was synthesized in the presence of SCX (counterion) by the chemical oxidative method. Secondly, MXene (a 2D layered material) was synthesized by using a high-temperature furnace under a nitrogen atmosphere. After that, PEDOT:SCX/MXene (1:1) dispersion was prepared by ultrasonication which was later utilized to prepare PEDOT:SCX/MXene hybrid film. A successful formation of PEDOT:SCX/MXene film was confirmed by HR-SEM, Fourier transform infrared (FT-IR), and Raman spectroscopies. Due to the biocompatibility nature, successful immobilization of GOX was carried out onto chitosan modified PEDOT:SCX/MXene/GCE. Moreover, the electrochemical properties of PEDOT:SCX/MXene/GOX/GCE was studied through cyclic voltammetry and amperometry methods. Interestingly, a stable redox peak of FAD-GOX was observed at a formal potential of –0.435 V on PEDOT:SCX/MXene/GOX/GCE which indicated a direct electron transfer between the enzyme and the electrode surface. PEDOT:SCX/MXene/GOX/GCE also exhibited a linear response against glucose concentrations in the linear range from 0.5 to 8 mM. The effect of pH, sensors reproducibility, and repeatability of the PEDOT:SCX/MXene/GOX/GCE sensor were studied. Finally, this new biosensor was successfully applied to detect glucose in commercial fruit juice sample with satisfactory recovery.
Collapse
Affiliation(s)
- Preethika Murugan
- Department of Chemistry, SRM Institute of Science and Technology, Kattankulathur 603203, Tamil Nadu, India;
| | - Jayshree Annamalai
- Department of Biotechnology, SRM Institute of Science and Technology, Kattankulathur 603203, Tamil Nadu, India;
| | - Raji Atchudan
- School of Chemical Engineering, Yeungnam University, Gyeongsan 38541, Korea;
| | - Mani Govindasamy
- Department of Materials Engineering, Ming-Chi University of Technology, New Taipei City 243, Taiwan;
| | - Deepak Nallaswamy
- Department of Prosthodontics, Saveetha Dental College and Hospitals, Saveetha Institute of Medical and Technical Sciences, Poonamallee High Road, Velappanchavadi, Chennai 600077, Tamil Nadu, India; (D.N.); (D.G.)
| | - Dhanraj Ganapathy
- Department of Prosthodontics, Saveetha Dental College and Hospitals, Saveetha Institute of Medical and Technical Sciences, Poonamallee High Road, Velappanchavadi, Chennai 600077, Tamil Nadu, India; (D.N.); (D.G.)
| | - Anatoly Reshetilov
- G.K. Skryabin Institute of Biochemistry and Physiology of Microorganisms, Pushchino Centre for Biological Research, Russian Academy of Sciences, 142290 Pushchino, Russia;
| | - Ashok K. Sundramoorthy
- Department of Chemistry, SRM Institute of Science and Technology, Kattankulathur 603203, Tamil Nadu, India;
- Department of Prosthodontics, Saveetha Dental College and Hospitals, Saveetha Institute of Medical and Technical Sciences, Poonamallee High Road, Velappanchavadi, Chennai 600077, Tamil Nadu, India; (D.N.); (D.G.)
- Correspondence:
| |
Collapse
|
4
|
Mei L, Shi Y, Shi Y, Yan P, Lin C, Sun Y, Wei B, Li J. Multivalent SnO 2 quantum dot-decorated Ti 3C 2 MXene for highly sensitive electrochemical detection of Sudan I in food. Analyst 2022; 147:5557-5563. [DOI: 10.1039/d2an01432g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
A new electrochemical sensor was fabricated by SnO2 quantum dot-decorated Ti3C2 MXene for the highly sensitive detection of Sudan I in food. This sensor with good selectivity, precision and accuracy can be used in monitoring illegal food additives.
Collapse
Affiliation(s)
- Lin Mei
- School of Materials and Chemical Engineering, Zhongyuan University of Technology, Zhengzhou 450007, P.R. China
| | - Yanmei Shi
- Academy of Traditional Chinese Medicine, Henan University of Chinese Medicine, Zhengzhou 450001, P.R. China
| | - Yange Shi
- School of Materials and Chemical Engineering, Zhongyuan University of Technology, Zhengzhou 450007, P.R. China
| | - Pengpeng Yan
- School of Materials and Chemical Engineering, Zhongyuan University of Technology, Zhengzhou 450007, P.R. China
| | - Chunlei Lin
- School of Materials and Chemical Engineering, Zhongyuan University of Technology, Zhengzhou 450007, P.R. China
| | - Yue Sun
- School of Materials and Chemical Engineering, Zhongyuan University of Technology, Zhengzhou 450007, P.R. China
| | - Bingjie Wei
- School of Materials and Chemical Engineering, Zhongyuan University of Technology, Zhengzhou 450007, P.R. China
| | - Jing Li
- School of Foreign Languages, Zhongyuan University of Technology, Zhengzhou 450007, P.R. China
| |
Collapse
|
5
|
Ding Y, Yang L, Shen J, Wei Y, Wang C. A novel fluorescent off–on probe based on 4-methylumbelliferone for highly sensitive determination of tyrosinase. NEW J CHEM 2022. [DOI: 10.1039/d2nj00799a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
A novel fluorescent probe for high-sensitivity determination of tyrosinase, with 4-methylumbelliferone as the fluorophore and 3-hydroxybenzyl as the recognition group.
Collapse
Affiliation(s)
- Yu Ding
- College of Chemistry and Materials Science, Northwest University, 1 Xue Fu Avenue, Chang’an District, Xi’an 710127, P. R. China
| | - Lihong Yang
- College of Chemistry and Materials Science, Northwest University, 1 Xue Fu Avenue, Chang’an District, Xi’an 710127, P. R. China
| | - Jiwei Shen
- College of Chemistry and Materials Science, Northwest University, 1 Xue Fu Avenue, Chang’an District, Xi’an 710127, P. R. China
| | - Yinmao Wei
- College of Chemistry and Materials Science, Northwest University, 1 Xue Fu Avenue, Chang’an District, Xi’an 710127, P. R. China
| | - Chaozhan Wang
- College of Chemistry and Materials Science, Northwest University, 1 Xue Fu Avenue, Chang’an District, Xi’an 710127, P. R. China
| |
Collapse
|