1
|
Jara-Cornejo E, Khan S, Vega-Chacón J, Wong A, da Silva Neres LC, Picasso G, Sotomayor MDPT. Biomimetic Material for Quantification of Methotrexate Using Sensor Based on Molecularly Imprinted Polypyrrole Film and MWCNT/GCE. Biomimetics (Basel) 2023; 8:biomimetics8010077. [PMID: 36810408 PMCID: PMC9944472 DOI: 10.3390/biomimetics8010077] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2022] [Revised: 02/06/2023] [Accepted: 02/07/2023] [Indexed: 02/15/2023] Open
Abstract
This study investigates biomimetic sensors for the detection of methotrexate contaminants in environmental samples. Sensors inspired by biological systems are the focus of this biomimetic strategy. Methotrexate is an antimetabolite that is widely used for the treatment of cancer and autoimmune diseases. Due to the widespread use of methotrexate and its rampant disposal into the environment, the residues of this drug are regarded as an emerging contaminant of huge concern, considering that exposure to the contaminant has been found to lead to the inhibition of some essential metabolic processes, posing serious risks to humans and other living beings. In this context, this work aims to quantify methotrexate through the application of a highly efficient biomimetic electrochemical sensor constructed using polypyrrole-based molecularly imprinted polymer (MIP) electrodeposited by cyclic voltammetry on a glassy carbon electrode (GCE) modified with multi-walled carbon nanotubes (MWCNT). The electrodeposited polymeric films were characterized by infrared spectrometry (FTIR), scanning electron microscopy (SEM), and cyclic voltammetry (CV). The analyses conducted using differential pulse voltammetry (DPV) yielded a detection limit of 2.7 × 10-9 mol L-1 for methotrexate, a linear range of 0.01-125 μmol L-1, and a sensitivity of 0.152 μA L mol-1. The results obtained from the analysis of the selectivity of the proposed sensor through the incorporation of interferents in the standard solution pointed to an electrochemical signal decay of only 15.4%. The findings of this study show that the proposed sensor is highly promising and suitable for use in the quantification of methotrexate in environmental samples.
Collapse
Affiliation(s)
- Eduardo Jara-Cornejo
- Laboratory of Physical Chemistry Research, Faculty of Sciences, National University of Engineering, Av. Tupac Amaru 210, Lima 15333, Peru
| | - Sabir Khan
- Laboratory of Physical Chemistry Research, Faculty of Sciences, National University of Engineering, Av. Tupac Amaru 210, Lima 15333, Peru
- Institute of Chemistry, São Paulo State University (UNESP), Araraquara 14801-970, Brazil
- Department of Natural Sciences, Mathematics, and Statistics, Federal Rural University of the Semi−Arid, Mossoró 59625-900, Brazil
| | - Jaime Vega-Chacón
- Laboratory of Physical Chemistry Research, Faculty of Sciences, National University of Engineering, Av. Tupac Amaru 210, Lima 15333, Peru
| | - Ademar Wong
- Institute of Chemistry, São Paulo State University (UNESP), Araraquara 14801-970, Brazil
- National Institute of Alternative Technologies for Detection, Toxicological Evaluation and Removal of Micropollutants and Radioactive Agents (INCT−DATREM), Araraquara 14801-970, Brazil
| | | | - Gino Picasso
- Laboratory of Physical Chemistry Research, Faculty of Sciences, National University of Engineering, Av. Tupac Amaru 210, Lima 15333, Peru
| | - Maria D. P. T. Sotomayor
- Institute of Chemistry, São Paulo State University (UNESP), Araraquara 14801-970, Brazil
- Department of Natural Sciences, Mathematics, and Statistics, Federal Rural University of the Semi−Arid, Mossoró 59625-900, Brazil
- Correspondence:
| |
Collapse
|
2
|
Zheng X, Khaoulani S, Ktari N, Lo M, Khalil AM, Zerrouki C, Fourati N, Chehimi MM. Towards Clean and Safe Water: A Review on the Emerging Role of Imprinted Polymer-Based Electrochemical Sensors. SENSORS (BASEL, SWITZERLAND) 2021; 21:4300. [PMID: 34201852 PMCID: PMC8271813 DOI: 10.3390/s21134300] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/29/2021] [Revised: 06/09/2021] [Accepted: 06/17/2021] [Indexed: 12/20/2022]
Abstract
This review critically summarizes the knowledge of imprinted polymer-based electrochemical sensors for the detection of pesticides, metal ions and waterborne pathogenic bacteria, focusing on the last five years. MIP-based electrochemical sensors exhibit low limits of detection (LOD), high selectivity, high sensitivity and low cost. We put the emphasis on the design of imprinted polymers and their composites and coatings by radical polymerization, oxidative polymerization of conjugated monomers or sol-gel chemistry. Whilst most imprinted polymers are used in conjunction with differential pulse or square wave voltammetry for sensing organics and metal ions, electrochemical impedance spectroscopy (EIS) appears as the chief technique for detecting bacteria or their corresponding proteins. Interestingly, bacteria could also be probed via their quorum sensing signaling molecules or flagella proteins. If much has been developed in the past decade with glassy carbon or gold electrodes, it is clear that carbon paste electrodes of imprinted polymers are more and more investigated due to their versatility. Shortlisted case studies were critically reviewed and discussed; clearly, a plethora of tricky strategies of designing selective electrochemical sensors are offered to "Imprinters". We anticipate that this review will be of interest to experts and newcomers in the field who are paying time and effort combining electrochemical sensors with MIP technology.
Collapse
Affiliation(s)
- Xiaofeng Zheng
- Université de Paris, CNRS, ITODYS (UMR 7086), 75013 Paris, France;
| | - Sohayb Khaoulani
- SATIE, UMR CNRS 8029, Cnam, 75003 Paris, France; (S.K.); (C.Z.); (N.F.)
| | - Nadia Ktari
- Laboratoire Matériaux, Traitement et Analyse, INRAP, BiotechPole Sidi-Thabet, Ariana 2032, Tunisia;
| | - Momath Lo
- Département de Chimie, Laboratoire de Chimie Physique Organique & Analyse Instrumentale, Faculté des Sciences, Université Cheikh Anta Diop, Dakar 5005, Senegal;
| | - Ahmed M. Khalil
- Photochemistry Department, National Research Centre, Dokki, Giza 12622, Egypt;
- Université Paris Est, CNRS, ICMPE, UMR7182, 94320 Thiais, France
| | - Chouki Zerrouki
- SATIE, UMR CNRS 8029, Cnam, 75003 Paris, France; (S.K.); (C.Z.); (N.F.)
| | - Najla Fourati
- SATIE, UMR CNRS 8029, Cnam, 75003 Paris, France; (S.K.); (C.Z.); (N.F.)
| | - Mohamed M. Chehimi
- Université de Paris, CNRS, ITODYS (UMR 7086), 75013 Paris, France;
- Université Paris Est, CNRS, ICMPE, UMR7182, 94320 Thiais, France
| |
Collapse
|