1
|
Faserl K, Kremser L, Müller M, Teis D, Lindner HH. Quantitative proteomics using ultralow flow capillary electrophoresis-mass spectrometry. Anal Chem 2015; 87:4633-40. [PMID: 25839223 PMCID: PMC4423236 DOI: 10.1021/acs.analchem.5b00312] [Citation(s) in RCA: 43] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
![]()
In this work, we evaluate the incorporation
of an ultralow flow
interface for coupling capillary electrophoresis (CE) and mass spectrometry
(MS), in combination with reversed-phase high-pressure liquid chromatography
(HPLC) fractionation as an alternate workflow for quantitative proteomics.
Proteins, extracted from a SILAC (stable isotope labeling by amino
acids in cell culture) labeled and an unlabeled yeast strain were
mixed and digested enzymatically in solution. The resulting peptides
were fractionated using RP-HPLC and analyzed by CE–MS yielding
a total of 28 538 quantified peptides that correspond to 3 272
quantified proteins. CE–MS analysis was performed using a neutral
capillary coating, providing the highest separation efficiency at
ultralow flow conditions (<10 nL/min). Moreover, we were able to
demonstrate that CE–MS is a powerful method for the identification
of low-abundance modified peptides within the same sample. Without
any further enrichment strategies, we succeeded in quantifying 1 371
phosphopeptides present in the CE–MS data set and found 49
phosphopeptides to be differentially regulated in the two yeast strains.
Including acetylation, phosphorylation, deamidation, and oxidized
forms, a total of 8 106 modified peptides could be identified
in addition to 33 854 unique peptide sequences found. The work
presented here shows the first quantitative proteomics approach that
combines SILAC labeling with CE–MS analysis.
Collapse
Affiliation(s)
- Klaus Faserl
- †Division of Clinical Biochemistry, Biocenter, Innsbruck Medical University, Innrain 80-82, A-6020 Innsbruck, Austria
| | - Leopold Kremser
- †Division of Clinical Biochemistry, Biocenter, Innsbruck Medical University, Innrain 80-82, A-6020 Innsbruck, Austria
| | - Martin Müller
- ‡Division of Cell Biology, Biocenter, Innsbruck Medical University, Innrain 80-82, A-6020 Innsbruck, Austria
| | - David Teis
- ‡Division of Cell Biology, Biocenter, Innsbruck Medical University, Innrain 80-82, A-6020 Innsbruck, Austria
| | - Herbert H Lindner
- †Division of Clinical Biochemistry, Biocenter, Innsbruck Medical University, Innrain 80-82, A-6020 Innsbruck, Austria
| |
Collapse
|
2
|
Capillary electrophoresis of seed albumins fromVicia species using uncoated and surface-modified fused silica capillaries. Chromatographia 2014. [DOI: 10.1007/bf02688007] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
3
|
Sarg B, Faserl K, Kremser L, Halfinger B, Sebastiano R, Lindner HH. Comparing and combining capillary electrophoresis electrospray ionization mass spectrometry and nano-liquid chromatography electrospray ionization mass spectrometry for the characterization of post-translationally modified histones. Mol Cell Proteomics 2013; 12:2640-56. [PMID: 23720761 DOI: 10.1074/mcp.m112.024109] [Citation(s) in RCA: 63] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023] Open
Abstract
We present the first comprehensive capillary electrophoresis electrospray ionization mass spectrometry (CESI-MS) analysis of post-translational modifications derived from H1 and core histones. Using a capillary electrophoresis system equipped with a sheathless high-sensitivity porous sprayer and nano-liquid chromatography electrospray ionization mass spectrometry (nano-LC-ESI-MS) as two complementary techniques, we characterized H1 histones isolated from rat testis. Without any pre-separation of the perchloric acid extraction, a total of 70 different modified peptides, including 50 phosphopeptides, were identified in the rat linker histones H1.0, H1a-H1e, and H1t. Out of the 70 modified H1 histone peptides, 27 peptides could be identified with CESI-MS only, and 11 solely with LC-ESI-MS. Immobilized metal-affinity chromatography enrichment prior to MS analysis yielded a total of 55 phosphopeptides; 22 of these peptides could be identified only by CESI-MS, and 19 only by LC-ESI-MS, showing the complementarity of the two techniques. We mapped 42 H1 modification sites, including 31 phosphorylation sites, of which 8 were novel sites. For the analysis of core histones, we chose a different strategy. In a first step, the sulfuric-acid-extracted core histones were pre-separated using reverse-phase high-performance liquid chromatography. Individual rat testis core histone fractions obtained in this way were digested and analyzed via bottom-up CESI-MS. This approach yielded the identification of 42 different modification sites including acetylation (lysine and N(α)-terminal); mono-, di-, and trimethylation; and phosphorylation. When we applied CESI-MS for the analysis of intact core histone subtypes from butyrate-treated mouse tumor cells, we were able to rapidly detect their degree of modification, and we found this method very useful for the separation of isobaric trimethyl and acetyl modifications. Taken together, our results highlight the need for additional techniques for the comprehensive analysis of post-translational modifications. CESI-MS is a promising new proteomics tool as demonstrated by this, the first comprehensive analysis of histone modifications, using rat testis as an example.
Collapse
Affiliation(s)
- Bettina Sarg
- Division of Clinical Biochemistry, Biocenter, Innsbruck Medical University, A-6020 Innsbruck, Austria
| | | | | | | | | | | |
Collapse
|
4
|
Kostova NN, Srebreva L, Markov DV, Sarg B, Lindner HH, Rundquist I. Histone H5-chromatin interactions in situ are strongly modulated by H5 C-terminal phosphorylation. Cytometry A 2012; 83:273-9. [DOI: 10.1002/cyto.a.22221] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2012] [Revised: 09/21/2012] [Accepted: 09/22/2012] [Indexed: 12/23/2022]
|
5
|
Faserl K, Sarg B, Kremser L, Lindner H. Optimization and Evaluation of a Sheathless Capillary Electrophoresis–Electrospray Ionization Mass Spectrometry Platform for Peptide Analysis: Comparison to Liquid Chromatography–Electrospray Ionization Mass Spectrometry. Anal Chem 2011; 83:7297-305. [DOI: 10.1021/ac2010372] [Citation(s) in RCA: 133] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Affiliation(s)
- Klaus Faserl
- Division of Clinical Biochemistry, Biocenter, Innsbruck Medical University, Fritz-Pregl-Strasse 3, A-6020 Innsbruck, Austria
| | - Bettina Sarg
- Division of Clinical Biochemistry, Biocenter, Innsbruck Medical University, Fritz-Pregl-Strasse 3, A-6020 Innsbruck, Austria
| | - Leopold Kremser
- Division of Clinical Biochemistry, Biocenter, Innsbruck Medical University, Fritz-Pregl-Strasse 3, A-6020 Innsbruck, Austria
| | - Herbert Lindner
- Division of Clinical Biochemistry, Biocenter, Innsbruck Medical University, Fritz-Pregl-Strasse 3, A-6020 Innsbruck, Austria
| |
Collapse
|
6
|
Gréen A, Sarg B, Gréen H, Lönn A, Lindner HH, Rundquist I. Histone H1 interphase phosphorylation becomes largely established in G1 or early S phase and differs in G1 between T-lymphoblastoid cells and normal T cells. Epigenetics Chromatin 2011; 4:15. [PMID: 21819549 PMCID: PMC3177758 DOI: 10.1186/1756-8935-4-15] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2011] [Accepted: 08/05/2011] [Indexed: 01/01/2023] Open
Abstract
Background Histone H1 is an important constituent of chromatin, and is involved in regulation of its structure. During the cell cycle, chromatin becomes locally decondensed in S phase, highly condensed during metaphase, and again decondensed before re-entry into G1. This has been connected to increasing phosphorylation of H1 histones through the cell cycle. However, many of these experiments have been performed using cell-synchronization techniques and cell cycle-arresting drugs. In this study, we investigated the H1 subtype composition and phosphorylation pattern in the cell cycle of normal human activated T cells and Jurkat T-lymphoblastoid cells by capillary electrophoresis after sorting of exponentially growing cells into G1, S and G2/M populations. Results We found that the relative amount of H1.5 protein increased significantly after T-cell activation. Serine phosphorylation of H1 subtypes occurred to a large extent in late G1 or early S phase in both activated T cells and Jurkat cells. Furthermore, our data confirm that the H1 molecules newly synthesized during S phase achieve a similar phosphorylation pattern to the previous ones. Jurkat cells had more extended H1.5 phosphorylation in G1 compared with T cells, a difference that can be explained by faster cell growth and/or the presence of enhanced H1 kinase activity in G1 in Jurkat cells. Conclusion Our data are consistent with a model in which a major part of interphase H1 phosphorylation takes place in G1 or early S phase. This implies that H1 serine phosphorylation may be coupled to changes in chromatin structure necessary for DNA replication. In addition, the increased H1 phosphorylation of malignant cells in G1 may be affecting the G1/S transition control and enabling facilitated S-phase entry as a result of relaxed chromatin condensation. Furthermore, increased H1.5 expression may be coupled to the proliferative capacity of growth-stimulated T cells.
Collapse
Affiliation(s)
- Anna Gréen
- Division of Cell Biology, Department of Clinical and Experimental Medicine, Linköping University, SE-58185 Linköping, Sweden.
| | | | | | | | | | | |
Collapse
|
7
|
Young NL, Dimaggio PA, Garcia BA. The significance, development and progress of high-throughput combinatorial histone code analysis. Cell Mol Life Sci 2010; 67:3983-4000. [PMID: 20683756 PMCID: PMC11115713 DOI: 10.1007/s00018-010-0475-7] [Citation(s) in RCA: 64] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2010] [Revised: 07/05/2010] [Accepted: 07/20/2010] [Indexed: 01/18/2023]
Abstract
The physiological state of eukaryotic DNA is chromatin. Nucleosomes, which consist of DNA in complex with histones, are the fundamental unit of chromatin. The post-translational modifications (PTMs) of histones play a critical role in the control of gene transcription, epigenetics and other DNA-templated processes. It has been known for several years that these PTMs function in concert to allow for the storage and transduction of highly specific signals through combinations of modifications. This code, the combinatorial histone code, functions much like a bar code or combination lock providing the potential for massive information content. The capacity to directly measure these combinatorial histone codes has mostly been laborious and challenging, thus limiting efforts often to one or two samples. Recently, progress has been made in determining such information quickly, quantitatively and sensitively. Here we review both the historical and recent progress toward routine and rapid combinatorial histone code analysis.
Collapse
Affiliation(s)
- Nicolas L Young
- Department of Molecular Biology, Princeton University, 415 Schultz Laboratory, Princeton, NJ 08544, USA
| | | | | |
Collapse
|
8
|
Lindner HH. Analysis of histones, histone variants, and their post-translationally modified forms. Electrophoresis 2008; 29:2516-32. [PMID: 18494025 DOI: 10.1002/elps.200800094] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
For many years, histones were considered passive structural components of eukaryotic chromatin. Meanwhile it has been proven that histones also participate in gene regulation and repression via post-translational modification. The multitude of these post-translational modifications and the existence of numerous histone variants require particular separation strategies for their analysis, a prerequisite for studying biological processes. The most widely utilized techniques for the separation of histones, namely PAGE, HPCE, RP-HPLC, and hydrophilic Interaction LC, are reviewed here. Problems inherent to the analysis of histones owing to their unique physical and chemical properties along with advantages and shortcomings of particular methods are discussed.
Collapse
Affiliation(s)
- Herbert H Lindner
- Division of Clinical Biochemistry, Biocenter, Innsbruck Medical University, Innsbruck, Austria.
| |
Collapse
|
9
|
Gréen A, Sarg B, Koutzamani E, Genheden U, Lindner HH, Rundquist I. Histone H1 Dephosphorylation Is Not a General Feature in Early Apoptosis. Biochemistry 2008; 47:7539-47. [DOI: 10.1021/bi702311x] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Affiliation(s)
- Anna Gréen
- Division of Cell Biology, Department of Clinical and Experimental Medicine, Linköping University, SE-58185 Linköping, Sweden, and Division of Clinical Biochemistry, Biocenter, Innsbruck Medical University, Fritz-Pregl-Strasse 3, A-6020 Innsbruck, Austria
| | - Bettina Sarg
- Division of Cell Biology, Department of Clinical and Experimental Medicine, Linköping University, SE-58185 Linköping, Sweden, and Division of Clinical Biochemistry, Biocenter, Innsbruck Medical University, Fritz-Pregl-Strasse 3, A-6020 Innsbruck, Austria
| | - Elisavet Koutzamani
- Division of Cell Biology, Department of Clinical and Experimental Medicine, Linköping University, SE-58185 Linköping, Sweden, and Division of Clinical Biochemistry, Biocenter, Innsbruck Medical University, Fritz-Pregl-Strasse 3, A-6020 Innsbruck, Austria
| | - Ulrika Genheden
- Division of Cell Biology, Department of Clinical and Experimental Medicine, Linköping University, SE-58185 Linköping, Sweden, and Division of Clinical Biochemistry, Biocenter, Innsbruck Medical University, Fritz-Pregl-Strasse 3, A-6020 Innsbruck, Austria
| | - Herbert H. Lindner
- Division of Cell Biology, Department of Clinical and Experimental Medicine, Linköping University, SE-58185 Linköping, Sweden, and Division of Clinical Biochemistry, Biocenter, Innsbruck Medical University, Fritz-Pregl-Strasse 3, A-6020 Innsbruck, Austria
| | - Ingemar Rundquist
- Division of Cell Biology, Department of Clinical and Experimental Medicine, Linköping University, SE-58185 Linköping, Sweden, and Division of Clinical Biochemistry, Biocenter, Innsbruck Medical University, Fritz-Pregl-Strasse 3, A-6020 Innsbruck, Austria
| |
Collapse
|
10
|
Su X, Ren C, Freitas MA. Mass spectrometry-based strategies for characterization of histones and their post-translational modifications. Expert Rev Proteomics 2007; 4:211-25. [PMID: 17425457 PMCID: PMC2572816 DOI: 10.1586/14789450.4.2.211] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
Due to the intimate interactions between histones and DNA, the characterization of histones has become the focus of great attention. A series of mass spectrometry-based technologies have been dedicated to the characterization and quantitation of different histone forms. This review focuses on the discussion of mass spectrometry-based strategies used for the characterization of histones and their post-translational modifications.
Collapse
Affiliation(s)
- Xiaodan Su
- The Ohio State Unviersity, Department of Molecular Virology Immunology & Medical Genetics, Human Cancer Genetics, Columbus, OH, USA
| | | | | |
Collapse
|
11
|
Rundquist I, Lindner HH. Analyses of linker histone--chromatin interactions in situ. Biochem Cell Biol 2007; 84:427-36. [PMID: 16936816 DOI: 10.1139/o06-071] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Recent studies, using cytometric techniques based on fluorescence microscopy, have provided new information on how linker histones interact with chromatin in vivo or in situ. In particular, the use of green fluorescent proteins (GFPs) has enabled detailed studies of how individual H1 subtypes, and specific motifs in them, interact with chromatin in vivo. Furthermore, the development of cytochemical methods to study the interaction between linker histones and chromatin using DNA-binding fluorochromes as indirect probes for linker histone affinity in situ, in combination with highly sensitive and specific analytical methods, has provided additional information on the interactions between linker histones and chromatin in several cell systems. Such results verified that linker histones have a substantially higher affinity for chromatin in mature chicken erythrocytes than in frog erythrocytes, and they also indicated that the affinity decreased during differentiation of the frog erythrocytes. Furthermore, in cultured human fibroblasts, the linker histones showed a relatively high affinity for chromatin in interphase, whereas it showed a significantly lower affinity in highly condensed metaphase chromosomes. This method also enables the analysis of linker histone affinity for chromatin in H1-depleted fibroblasts reconstituted with purified linker histones. No consistent correlation between linker histone affinity and chromatin condensation has so far been detected.
Collapse
Affiliation(s)
- Ingemar Rundquist
- Department of Biomedicine and Surgery, Division of Cell Biology, Faculty of Health Sciences, Linköpings universitet, SE-58185 Linköping, Sweden.
| | | |
Collapse
|
12
|
Kostova NN, Srebreva LN, Milev AD, Bogdanova OG, Rundquist I, Lindner HH, Markov DV. Immunohistochemical demonstration of histone H10 in human breast carcinoma. Histochem Cell Biol 2006; 124:435-43. [PMID: 16158288 DOI: 10.1007/s00418-005-0052-6] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/18/2005] [Indexed: 10/25/2022]
Abstract
Histone H1(0) is a linker histone subvariant present in tissues of low proliferation rate. It is supposed to participate in the expression and maintenance of the terminal differentiation phenotype. The aim of this work was to study histone H1(0) distribution in human breast carcinoma and its relationship with the processes of proliferation and differentiation. Most of the cells in carcinomas of moderate and high level of differentiation expressed histone H1(0) including cells invading connective and adipose tissues. In low differentiated tumours, the number of H1(0) expressing cells was considerably lower. Staining of myoepithelial cells, when seen, and of stromal fibroblasts was variable. The metastatic malignant cells in the lymph nodes also accumulated H1(0) but lymphocytes were always negative. All immunopositive malignant cells exhibited signs of polymorphism. Double H1(0)/Ki-67 staining showed that the growth fraction in more differentiated tumours belonged to the H1(0)-positive cells, while in poorly differentiated carcinomas it also included a cell subpopulation not expressing H1(0). If expressed, p27Kip1 was always found in H1(0)-positive cells. These findings are inconsistent with the widespread view that histone H1(0) is expressed only in terminally differentiated cells. Rather, they suggest that the protein is expressed in cells in a prolonged intermitotic period irrespective of their level of differentiation. Double H1(0)/Ki-67 immunostaining could be a useful tool in studying the growth fraction in tumours.
Collapse
Affiliation(s)
- Nora N Kostova
- Institute of Molecular Biology, Bulgarian Academy of Sciences, Acad. G. Bonchev Street, Building 21, Sofia, 1113, Bulgaria
| | | | | | | | | | | | | |
Collapse
|
13
|
Sarg B, Gréen A, Söderkvist P, Helliger W, Rundquist I, Lindner HH. Characterization of sequence variations in human histone H1.2 and H1.4 subtypes. FEBS J 2005; 272:3673-83. [PMID: 16008566 DOI: 10.1111/j.1742-4658.2005.04793.x] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
In humans, eight types of histone H1 exist (H1.1-H1.5, H1 degrees , H1t and H1oo), all consisting of a highly conserved globular domain and less conserved N- and C-terminal tails. Although the precise functions of these isoforms are not yet understood, and H1 subtypes have been found to be dispensable for mammalian development, it is now clear that specific functions may be assigned to certain individual H1 subtypes. Moreover, microsequence variations within the isoforms, such as polymorphisms or mutations, may have biological significance because of the high degree of sequence conservation of these proteins. This study used a hydrophilic interaction liquid chromatographic method to detect sequence variants within the subtypes. Two deviations from wild-type H1 sequences were found. In K562 erythroleukemic cells, alanine at position 17 in H1.2 was replaced by valine, and, in Raji B lymphoblastoid cells, lysine at position 173 in H1.4 was replaced by arginine. We confirmed these findings by DNA sequencing of the corresponding gene segments. In K562 cells, a homozygous GCC-->GTC shift was found at codon 18, giving rise to H1.2 Ala17Val because the initial methionine is removed in H1 histones. Raji cells showed a heterozygous AAA-->AGA codon change at position 174 in H1.4, corresponding to the Lys173Arg substitution. The allele frequency of these sequence variants in a normal Swedish population was found to be 6.8% for the H1.2 GCC-->GTC shift, indicating that this is a relatively frequent polymorphism. The AAA-->AGA codon change in H1.4 was detected only in Raji cells and was not present in a normal population or in six other cell lines derived from individuals suffering from Burkitt's lymphoma. The significance of these sequence variants is unclear, but increasing evidence indicates that minor sequence variations in linker histones may change their binding characteristics, influence chromatin remodeling, and specifically affect important cellular functions.
Collapse
Affiliation(s)
- Bettina Sarg
- Division of Clinical Biochemistry, Biocenter, Innsbruck Medical University, Austria
| | | | | | | | | | | |
Collapse
|
14
|
Margesin R, Dieplinger H, Hofmann J, Sarg B, Lindner H. A cold-active extracellular metalloprotease from Pedobacter cryoconitis—production and properties. Res Microbiol 2005; 156:499-505. [PMID: 15862448 DOI: 10.1016/j.resmic.2004.12.008] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2004] [Revised: 12/22/2004] [Accepted: 12/27/2004] [Indexed: 11/30/2022]
Abstract
An extracellular protease from Pedobacter cryoconitis, isolated from alpine cryoconite on glacier ice, was purified and characterized. Despite high cell densities at a temperature range of 1-25 degrees C, the optimum temperature for protease production was 15 degrees C. Maximum enzyme production was achieved when the strain was grown in a pH-neutral medium containing soybean meal, wheat flour and citrate over 72 h. The 27-kDa enzyme was a metalloprotease (sensitive to EDTA, EGTA and phenanthroline) and showed maximal activity towards azocasein at 40 degrees C and pH 8. The protease was stable for 60 min at 20-30 degrees C, lost 50% of activity after 30 min at 40 degrees C, and was inactivated at 50 degrees C, but was resistant to repeated freezing and thawing. Calcium ions had no protective effect against thermal denaturation. More than 80% of the maximum activity were retained at a pH in the range of 7-10. No activity loss was detected after 1 h at pH 7-9 and 20 degrees C, nor after 1 h of incubation with 3 M urea or 0.1% perborate.
Collapse
Affiliation(s)
- Rosa Margesin
- Institute of Microbiology, Leopold Franzens University, Technikerstrasse 25, 6020 Innsbruck, Austria.
| | | | | | | | | |
Collapse
|
15
|
Mizzen CA. Purification and Analyses of Histone H1 Variants and H1 Posttranslational Modifications. Methods Enzymol 2003; 375:278-97. [PMID: 14870674 DOI: 10.1016/s0076-6879(03)75019-8] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/28/2023]
Affiliation(s)
- Craig A Mizzen
- Department of Cell & Structural Biology, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, USA
| |
Collapse
|
16
|
Koutzamani E, Loborg H, Sarg B, Lindner HH, Rundquist I. Linker histone subtype composition and affinity for chromatin in situ in nucleated mature erythrocytes. J Biol Chem 2002; 277:44688-94. [PMID: 12223471 DOI: 10.1074/jbc.m203533200] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The replacement linker histones H1(0) and H5 are present in frog and chicken erythrocytes, respectively, and their accumulation coincides with cessation of proliferation and compaction of chromatin. These cells have been analyzed for the affinity of linker histones for chromatin with cytochemical and biochemical methods. Our results show a stronger association between linker histones and chromatin in chicken erythrocyte nuclei than in frog erythrocyte nuclei. Analyses of linker histones from chicken erythrocytes using capillary electrophoresis showed H5 to be the subtype strongest associated with chromatin. The corresponding analyses of frog erythrocyte linker histones using reverse-phase high performance liquid chromatography showed that H1(0) dissociated from chromatin at somewhat higher ionic strength than the three additional subtypes present in frog blood but at lower ionic strength than chicken H5. Which of the two H1(0) variants in frog is expressed in erythrocytes has thus far been unknown. Amino acid sequencing showed that H1(0)-2 is the only H1(0) subtype present in frog erythrocytes and that it is 100% acetylated at its N termini. In conclusion, our results show differences between frog and chicken linker histone affinity for chromatin probably caused by the specific subtype composition present in each cell type. Our data also indicate a lack of correlation between linker histone affinity and chromatin condensation.
Collapse
Affiliation(s)
- Elisavet Koutzamani
- Department of Biomedicine and Surgery, Division of Cell Biology, Faculty of Health Sciences, Linköpings universitet, SE-581 85 Linköping, Sweden
| | | | | | | | | |
Collapse
|
17
|
Asatiani NV, Abuladze MK, Birkaya BG, Sapojnikova NA, Tsibakhashvili NY, Mosulishvili LM. Application of capillary electrophoresis to the analysis of soluble chromatin. Biomed Chromatogr 2000; 14:489-92. [PMID: 11113930 DOI: 10.1002/1099-0801(200011)14:7<489::aid-bmc998>3.0.co;2-f] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
Capillary electrophoresis (CE) has been applied to study DNA-protein complexes using as the test system soluble chromatin from chicken erythrocytes and rapidly proliferated cultured Chinese hamster fibroblast-like cells B11-dii-FAF-28. Separation was performed with home-made CE apparatus, using a regulated high-voltage power supply, UV-detector and fused silica capillaries with inner diameter 75 microm. The heterogeneity of nucleosomal particles with different DNA lengths after micrococcal nuclease digestion was detected.
Collapse
Affiliation(s)
- N V Asatiani
- Institute of Physics, Georgian Academy of Sciences, Tamarashvili str. 6, Tbilisi, Georgia
| | | | | | | | | | | |
Collapse
|
18
|
Mizzen CA, McLachlan DR. Capillary electrophoresis of histone H1 variants at neutral pH in dynamically modified fused- silica tubing. Electrophoresis 2000; 21:2359-67. [PMID: 10939446 DOI: 10.1002/1522-2683(20000701)21:12<2359::aid-elps2359>3.0.co;2-b] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Existing methods for the analysis of histone H1 by capillary electrophoresis (CE) employ acidic buffers (pH <3.0) to suppress silanol ionization and minimize the loss of these extremely basic proteins by adsorption to capillary walls. Here we describe the use of Polybrene (PB) as a dynamic modification reagent in a simple procedure that facilitates the analysis of chicken H1 at neutral pH. PB is adsorbed to the inner surfaces of capillaries to render them cationic prior to use and a low concentration of PB is included in the electrolyte to replenish the coating during use. Inclusion of ethylenediaminetetraacetic acid (EDTA) in the electrolyte results in the assembly of a dynamic cation-exchange layer upon the immobilized PB that influences the relative mobilities of H1 variants. The six nonallelic variants of H1 known in this species as well as certain allelic variants are resolved. Because the procedure is effective in preventing the adsorption of proteins as basic as H1 at neutral pH, this strategy should facilitate CE analyses of many basic proteins under conditions that maintain their native conformation.
Collapse
Affiliation(s)
- C A Mizzen
- Centre for Research in Neurodegenerative Diseases, University of Toronto, ON, Canada.
| | | |
Collapse
|
19
|
Eggena M, Cohavy O, Parseghian MH, Hamkalo BA, Clemens D, Targan SR, Gordon LK, Braun J. Identification of histone H1 as a cognate antigen of the ulcerative colitis-associated marker antibody pANCA. J Autoimmun 2000; 14:83-97. [PMID: 10648119 DOI: 10.1006/jaut.1999.0340] [Citation(s) in RCA: 63] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Perinuclear anti-neutrophil cytoplasmic antibody (pANCA)(4)is a predominant serum marker of ulcerative colitis (UC), and a familial trait associated with disease susceptibility and disease associated MHC haplotypes. This study characterizes the pANCA antigen defined by representative UC-pANCA human monoclonal antibodies, Fab 5-3 and 5-2. Western blot analysis probed with Fab 5-3 revealed specific binding to a nuclear protein doublet (apparent MW=32-33 kDa) expressed in several cell types. Purification and tryptic peptide sequencing identified the protein as histone H1, and this specificity was confirmed by Fab 5-3 binding to purified H1. Rabbit anti-histone H1 immunostaining and Western blot analysis confirmed that the pANCA epitope is preferentially immunoaccessible in polymorphonuclear neutrophils (PMN). The epitope was localized to the COOH-terminal region by site-specific proteolysis, and recombinant deletants further localized binding activity for both Fab 5-2 and 5-3 to two non-overlapping segments (AA 69-171 and 172-226) associated with a recurring PKKAK motif. Serum IgG binding was detectable to these segments, but was not significantly correlated with pANCA titer or disease status. These findings indicate that histone H1 bears a recurring COOH-terminal epitope recognized by monoclonal ulcerative colitis-associated pANCA marker antibodies, but this epitope is not a predominant specificity of serum pANCA.
Collapse
Affiliation(s)
- M Eggena
- Molecular Biology Institute and Department of Pathology and Laboratory Medicine, University of California, Los Angeles, CA, 90095, USA
| | | | | | | | | | | | | | | |
Collapse
|
20
|
Sarg B, Helliger W, Hoertnagl B, Puschendorf B, Lindner H. The N-terminally acetylated form of mammalian histone H1(o), but not that of avian histone H5, increases with age. Arch Biochem Biophys 1999; 372:333-9. [PMID: 10600172 DOI: 10.1006/abbi.1999.1503] [Citation(s) in RCA: 19] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
We report here on the HPCE separation of two chicken H5 histones, which do not show the heterogeneity (Gln/Arg) at residue 15 first found by Greenaway and Murray [Greenaway and Murray (1971) Nat. New Biol. 229, 233-238]. The two subfractions obtained were identified using reversed-phase HPLC, hydrophilic interaction HPLC, Edman degradation, and MALDI-MS analysis. We found that the two H5 subcomponents differ only by an acetylated (designated H5a) and an unacetylated N-terminus (H5b). In contrast to the N-terminally acetylated form of rat kidney histone H1(o), which increased by about 40% with aging of the animal, the corresponding form of chicken H5 did not: the ratio N-terminally acetylated: unacetylated remained constant (30:70) when histone H5 was extracted from erythrocytes of newly hatched chickens and from adult chickens, respectively. The HPCE technique used in this investigation represents a quick and convenient method for analyzing N-terminally acetylated proteins in the presence of unacetylated forms.
Collapse
Affiliation(s)
- B Sarg
- Institute of Medical Chemistry, University of Innsbruck, Fritz Preglstrasse 3, Innsbruck, A-6020, Austria
| | | | | | | | | |
Collapse
|
21
|
Abstract
The complete set of seven human H1 histone subtype genes was heterologously expressed in yeast. Since Saccharomyces cerevisiae lacks standard histone H1 we could isolate each recombinantly expressed human H1 subtype in pure form without contamination by endogenous H I histones. For isolation of the H1 histones in this expression system no tagging was needed and the isoforms could be extracted with the authentic primary structure by a single extraction step with 5%(0.74 M) perchloric acid. The isolated H1 histone proteins were used to assign the subtype genes to the corresponding protein spots or peaks after two-dimensional gel electrophoresis and capillary zone electrophoresis, respectively. This allowed us to correlate transcriptional data with protein data, which was barely possible until now.
Collapse
Affiliation(s)
- W Albig
- Institut für Biochemie und Molekulare Zellbiologie, Georg-August-Universität Göttingen, Germany
| | | | | | | |
Collapse
|
22
|
Franke K, Drabent B, Doenecke D. Expression of murine H1 histone genes during postnatal development. BIOCHIMICA ET BIOPHYSICA ACTA 1998; 1398:232-42. [PMID: 9655912 DOI: 10.1016/s0167-4781(98)00062-1] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Murine genes encoding the seven H1 histone isoforms H1.1-H1.5, H1(o) and H1t have been isolated and sequenced. We have established expression patterns of these genes in several tissues during postnatal development. For that analysis, RNase protection assay rather than Northern blot hybridization was used, since the sequences of these genes are highly similar and would cross-hybridize under Northern blot conditions. Expression patterns of H1.1 to H1.5 and H1(o) were determined in tissues of animals at days 5, 9 and 20 after birth and of adult mice. In addition, RNA was analyzed in three mouse cell lines (NIH3T3, P19, TM4). Transcription of the subtype genes H1.2 and H1.4 was found in all tissues and cell lines studied. The most varied expression patterns were obtained with the H1.1 subtype. H1.1 mRNA was found at high concentrations in thymus and spleen throughout development and in testis beginning with a low expression in 5-day-old animals and increasing levels in testis RNA from 9- and 20-day-old and adult mice. H1(o) mRNA was found primarily in highly differentiated tissues with concentrations decreasing from 5-day-old to adult animals.
Collapse
Affiliation(s)
- K Franke
- Institut für Biochemie und Molekulare Zellbiologie, Georg-August-Universität, Humboldtallee 23, D-37073 Göttingen, Germany
| | | | | |
Collapse
|
23
|
Lindner H, Sarg B, Hoertnagl B, Helliger W. The microheterogeneity of the mammalian H1(0) histone. Evidence for an age-dependent deamidation. J Biol Chem 1998; 273:13324-30. [PMID: 9582379 DOI: 10.1074/jbc.273.21.13324] [Citation(s) in RCA: 47] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Histone H1(0) is known to consist of two subfractions named H1(0)a and H1(0)b. The present work was performed with the aim of elucidating the nature of these two subfractions. By using reversed-phase high performance liquid chromatography in combination with hydrophilic interaction liquid chromatography, we fractionated human histone H1(0) into even four subfractions. Hydrophilic interaction liquid chromatographic analysis of the peptide fragments obtained after cleavage with cyanogen bromide and digestion with chymotrypsin suggested that the four H1(0) subfractions differ only in their small N-terminal end of the H1(0) molecule (30 residues). Edman degradation of the N-terminal H1(0) peptide fragments and mass spectra analysis have indicated that human histone H1(0) consists of intact histones H1(0) (named H1(0) Asn-3) and deamidated H1(0) forms (H1(0) Asp-3) having an aspartic acid residue at position 3 instead of asparagine. Moreover, both H1(0) Asn-3 and H1(0) Asp-3 are blocked (H1(0)a Asn-3, H1(0)a Asp-3) and unblocked (H1(0)b Asn-3, H1(0)b Asp-3) on their N terminus. Acid-urea gel electrophoretic analysis has shown that the histone subfraction, in the literature originally named H1(0)a, actually consists of a mixture of H1(0)a Asn-3 and H1(0)a Asp-3, whereas H1(0)b consists of H1(0)b Asn-3 and H1(0)b Asp-3. Furthermore, we found that hydrophilic interaction liquid chromatography separates rat and mouse histone H1(0) just like human H1(0) into four subfractions. Hydrophilic interaction liquid chromatographic analysis of brain and liver histone H1(0) from rats of different ages revealed an age-dependent increase of both the N-terminally acetylated and the deamidated forms of H1(0). In addition, we found that the relative proportions of the four forms of H1(0) histones differ from tissue to tissue.
Collapse
Affiliation(s)
- H Lindner
- Institute of Medical Chemistry and Biochemistry, University of Innsbruck, Fritz Preglstrasse 3, A-6020 Innsbruck, Austria.
| | | | | | | |
Collapse
|
24
|
Salmanowicz BP. Capillary electrophoresis of seed albumins fromVicia species using uncoated and surface-modified fused silica capillaries. Chromatographia 1995. [DOI: 10.1007/bf02274202] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
|
25
|
Lindner H, Helliger W, Sarg B, Meraner C. Effect of buffer composition on the migration order and separation of histone H1 subtypes. Electrophoresis 1995; 16:604-10. [PMID: 7588532 DOI: 10.1002/elps.1150160197] [Citation(s) in RCA: 39] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
The effects of different buffer concentrations and compositions on the elution order and separation of H1 histone subtypes and their phosphorylated modifications isolated from several species was studied using high-performance capillary electrophoresis (CE). Various cations and anions were tested in an untreated silica capillary and low pH buffers, in the presence of the dynamic coating agent hydroxypropylmethyl cellulose. It was found that the cations and anions of buffers have a remarkable influence on both the efficiency and the selectivity of protein separations. A triethylammonium methanephosphonate system proved efficacious for the separation of rat histone subtype H1c from H1e and a perchlorate/triethylammonium phosphate system for the analysis of chicken and mouse linker histones. CE provides an attractive alternative to high-performance liquid chromatography and conventional gel electrophoresis.
Collapse
Affiliation(s)
- H Lindner
- Institute of Medical Chemistry and Biochemistry, Innsbruck, Austria
| | | | | | | |
Collapse
|
26
|
Klepárník K, Malá Z, Doskar J, Rosypal S, Bocek P. An improvement of restriction analysis of bacteriophage DNA using capillary electrophoresis in agarose solution. Electrophoresis 1995; 16:366-76. [PMID: 7607171 DOI: 10.1002/elps.1150160163] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
Seven representatives of the serogroup B Staphylococcus aureus bacteriophages, 29, 53, 55, 83A, 85, phi 11 and 80 alpha, were examined by capillary electrophoresis (CE) for genomic homology using DNA restriction analysis. Genomic DNA of individual bacteriophages was cleaved by HindIII restriction endonuclease, and the resulting restriction fragments were separated by standard horizontal agarose slab gel electrophoresis (SGE) as well as by CE in low-melting-point agarose solutions. The number and size of restriction fragments identified by both methods were compared. The high separation power of CE makes it possible to extend the restriction fragment patterns. In most of the restriction patterns, some additional restriction fragments as small as 150 bp, not identified by SGE, were detected. With respect to speed, high separation efficiency, low sample consumption and automation, CE offers a simple procedure for processing of multiple samples cost-effectively in a reasonable time. The comparison of the complemented restriction patterns of the different phage strains and the subsequent identification of their common fragments leads to a deeper understanding of their phylogenetic relationships. The genome homologies expressed for individual phage pairs in terms of coefficient F values ranged from 15 to 69%. These values are in good accordance with the degree of DNA homology of these phages as determined by DNA hybridization studies and thermal denaturation analysis of DNA by other authors. The total size of each phage genome was estimated by adding the sizes of individual restriction fragments.
Collapse
Affiliation(s)
- K Klepárník
- Institute of Analytical Chemistry, Academy of Sciences of the Czech Republic, Brno
| | | | | | | | | |
Collapse
|