1
|
Luo Y, Liao X, Wu FX, Wang J. Computational Approaches for Transcriptome Assembly Based on Sequencing Technologies. Curr Bioinform 2020. [DOI: 10.2174/1574893614666190410155603] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Transcriptome assembly plays a critical role in studying biological properties and
examining the expression levels of genomes in specific cells. It is also the basis of many
downstream analyses. With the increase of speed and the decrease in cost, massive sequencing
data continues to accumulate. A large number of assembly strategies based on different
computational methods and experiments have been developed. How to efficiently perform
transcriptome assembly with high sensitivity and accuracy becomes a key issue. In this work, the
issues with transcriptome assembly are explored based on different sequencing technologies.
Specifically, transcriptome assemblies with next-generation sequencing reads are divided into
reference-based assemblies and de novo assemblies. The examples of different species are used to
illustrate that long reads produced by the third-generation sequencing technologies can cover fulllength
transcripts without assemblies. In addition, different transcriptome assemblies using the
Hybrid-seq methods and other tools are also summarized. Finally, we discuss the future directions
of transcriptome assemblies.
Collapse
Affiliation(s)
- Yuwen Luo
- School of Computer Science and Engineering, Central South University, Changsha, China
| | - Xingyu Liao
- School of Computer Science and Engineering, Central South University, Changsha, China
| | - Fang-Xiang Wu
- Division of Biomedical Engineering, University of Saskatchewan, Saskatchewan, Canada
| | - Jianxin Wang
- School of Computer Science and Engineering, Central South University, Changsha, China
| |
Collapse
|
2
|
Zhuang B. Introduction. DEVELOPMENT OF A FULLY INTEGRATED “SAMPLE-IN-ANSWER-OUT” SYSTEM FOR AUTOMATIC GENETIC ANALYSIS 2018:1-30. [DOI: 10.1007/978-981-10-4753-4_1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/01/2023]
|
3
|
Zhuang B. Construction of a General Platform for Capillary Electrophoresis. DEVELOPMENT OF A FULLY INTEGRATED “SAMPLE-IN-ANSWER-OUT” SYSTEM FOR AUTOMATIC GENETIC ANALYSIS 2018:31-61. [DOI: 10.1007/978-981-10-4753-4_2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/01/2023]
|
4
|
|
5
|
Qiu C, Kumar S, Guo J, Yu L, Guo W, Shi S, Russo JJ, Ju J. Design and synthesis of cleavable biotinylated dideoxynucleotides for DNA sequencing by matrix-assisted laser desorption/ionization time-of-flight mass spectrometry. Anal Biochem 2012; 427:193-201. [PMID: 22543091 DOI: 10.1016/j.ab.2012.04.021] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2012] [Accepted: 04/17/2012] [Indexed: 01/03/2023]
Abstract
Matrix-assisted laser desorption/ionization time-of-flight mass spectrometry (MALDI-TOF MS)-based methods have been widely explored for DNA sequencing. We report here the design, synthesis, and evaluation of a novel set of chemically cleavable biotinylated dideoxynucleotides, ddNTPs-N₃-biotin, for the DNA polymerase extension reaction and its application in DNA sequencing by mass spectrometry (MS). These nucleotide analogs have a biotin moiety attached to the 5 position of the pyrimidines (C and U) or the 7 position of the purines (A and G) via a chemically cleavable azido-based linker, with different length linker arms serving as mass tags that contribute to large mass differences among the nucleotides. We demonstrate that these modified nucleotides are efficiently incorporated by DNA polymerase, and the DNA strand bearing biotinylated nucleotides is captured by streptavidin-coated beads and efficiently released using tris(2-carboxyethyl)phosphine in aqueous solution, which is compatible with DNA and downstream procedures. We performed Sanger sequencing reactions using these nucleotides to generate DNA fragments for MALDI-TOF MS analysis. Both synthetic DNA and polymerase chain reaction (PCR) products were accurately decoded, and a read length of approximately 37 bases was achieved using these nucleotides in MS sequencing.
Collapse
Affiliation(s)
- Chunmei Qiu
- Columbia Genome Center, Columbia University College of Physicians and Surgeons, New York, NY 10032, USA
| | | | | | | | | | | | | | | |
Collapse
|
6
|
Liedert R, Amundsen LK, Hokkanen A, Mäki M, Aittakorpi A, Pakanen M, Scherer JR, Mathies RA, Kurkinen M, Uusitalo S, Hakalahti L, Nevanen TK, Siitari H, Söderlund H. Disposable roll-to-roll hot embossed electrophoresis chip for detection of antibiotic resistance gene mecA in bacteria. LAB ON A CHIP 2012; 12:333-9. [PMID: 22127494 DOI: 10.1039/c1lc20782b] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/10/2023]
Abstract
We present a high-throughput roll-to-roll (R2R) manufacturing process for foil-based polymethyl methacrylate (PMMA) chips of excellent optical quality. These disposable, R2R hot embossed microfluidic chips are used for the identification of the antibiotic resistance gene mecA in Staphylococcus epidermidis. R2R hot embossing is an emerging manufacturing technology for polymer microfluidic devices. It is based on continuous feeding of a thermoplastic foil through a pressurized area between a heated embossing cylinder and a blank counter cylinder. Although mass fabrication of foil-based microfluidic chips and their use for biological applications were foreseen already some years ago, no such studies have been published previously.
Collapse
Affiliation(s)
- Ralph Liedert
- VTT Technical Research Centre of Finland, Kaitoväylä 1, P.O. Box 1100, 90571, Oulu, Finland.
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
7
|
AL-Othman ZA, Ali I. NANO CAPILLARY ELECTROPHORESIS IN MICROCHIPS: A NEED OF THE PRESENT CENTURY. J LIQ CHROMATOGR R T 2011. [DOI: 10.1080/10826076.2011.566031] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
Affiliation(s)
- Zeid A. AL-Othman
- a Department of Chemistry, College of Science , King Saud University , Riyadh, Kingdom of Saudi Arabia
| | - Imran Ali
- b Department of Chemistry , Jamia Millia Islamia, (Central University) , New Delhi, India
| |
Collapse
|
8
|
Mihály Z, Gyorffy B. [Next generation sequencing technologies (NGST) -- development and applications]. Orv Hetil 2011; 152:55-62. [PMID: 21177232 DOI: 10.1556/oh.2011.29007] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
In the past ten years the development of next generation sequencing technologies brought a new era in the field of quick and efficient DNA sequencing. In our study we give an overview of the methodological achievements from Sanger's chain-termination sequencing in 1975 to those allowing real-time DNA sequencing today. Sequencing methods that utilize clonal amplicons for parallel multistrand sequencing comprise the basics of currently available next generation sequencing techniques. Nowadays next generation sequencing is mainly used for basic research in functional genomics, providing quintessential information in the meta-analyses of data from signal transduction pathways, onthologies, proteomics and metabolomics. Although next generation sequencing is yet sparsely used in clinical practice, cardiology, oncology and epidemiology already show an immense need for the additional knowledge obtained by this new technology. The main barrier of its spread is the lack of standardization of analysis evaluation methods, which obscure objective assessment of the results.
Collapse
Affiliation(s)
- Zsuzsanna Mihály
- Semmelweis Egyetem, Általános Orvostudományi Kar, I. Gyermekgyógyászati Klinika, Budapest, Bókay J. u. 53., 1083.
| | | |
Collapse
|
9
|
Jiang D, Sims CE, Allbritton NL. Microelectrophoresis platform for fast serial analysis of single cells. Electrophoresis 2010; 31:2558-65. [PMID: 20603824 DOI: 10.1002/elps.201000054] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
A capillary-based microelectrophoresis platform for fast serial analysis of single cells is described. In this system, the capillary remains fixed and a two-channel flow system is used to rapidly switch the buffer surrounding the capillary inlet from a physiological buffer to an electrophoretic buffer. Single cells are retained in the physiologic buffer channel utilizing an array of cell microwells patterned into the channel floor. The defined addresses of the cells on the array enable the sequential delivery of individual cells to the inlet of the capillary, where a focused laser pulse lyses the cell. The cell chamber is moved along a preordained route so that the inlet of the capillary is located in the electrophoresis buffer for separation and the physiological buffer during cell sampling. The throughput of the current system is limited by peak overlap between successive samples. Key characterizations of this system including the fluid flow rates, the cell array dimensions, and laser energies were performed. To demonstrate this system, 28 cells loaded with Oregon green and fluorescein were serially analyzed in under 16 min, a rate of 1.8 cells/min.
Collapse
Affiliation(s)
- Dechen Jiang
- Department of Chemistry, University of North Carolina, Chapel Hill, NC, USA
| | | | | |
Collapse
|
10
|
Forster RE, Chiesl TN, Fredlake CP, White CV, Barron AE. Hydrophobically modified polyacrylamide block copolymers for fast, high-resolution DNA sequencing in microfluidic chips. Electrophoresis 2009; 29:4669-76. [PMID: 19053064 DOI: 10.1002/elps.200800353] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
By using a microfluidic electrophoresis platform to perform DNA sequencing, genomic information can be obtained more quickly and affordably than the currently employed capillary array electrophoresis instruments. Previous research in our group has shown that physically cross-linked, hydrophobically modified polyacrylamide matrices separate dsDNA more effectively than linear polyacrylamide (LPA) solutions. Expanding upon this work, we have synthesized a series of LPA-co-dihexylacrylamide block copolymers specifically designed to electrophoretically sequence ssDNA quickly and efficiently on a microfluidic device. By incorporating very small amounts of N,N-dihexylacrylamide, a hydrophobic monomer, these copolymer solutions achieved up to approximately 10% increases in average DNA sequencing read length over LPA homopolymer solutions of matched molar mass. Additionally, the inclusion of the small amount of hydrophobe does not significantly increase the polymer solution viscosities, relative to LPA solutions, so that channel loading times between the copolymers and the homopolymers are similar. The resulting polymer solutions are capable of providing enhanced sequencing separations in a short period of time without compromising the ability to rapidly load and unload the matrix from a microfluidic device.
Collapse
Affiliation(s)
- Ryan E Forster
- Department of Materials Science and Engineering, Northwestern University, Evanston, IL, USA
| | | | | | | | | |
Collapse
|
11
|
Ali I, Aboul-Enein HY, Gupta VK. Microchip-Based Nano Chromatography and Nano Capillary Electrophoresis in Genomics and Proteomics. Chromatographia 2008. [DOI: 10.1365/s10337-008-0813-1] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
|
12
|
Abstract
Over the past decade, chemical cytometry performed by capillary electrophoresis (CE) has become increasingly valuable as a bioanalytical tool to quantify analytes from single cells. However, extensive use of CE-based chemical cytometry has been hindered by the relatively low throughput for the analysis of single adherent cells. In order to overcome the low throughput of CE-based analysis of adherent cells and increase its utility in evaluating cellular attributes, new higher throughput methods are needed. Integration of a coaxial buffer exchange system with CE-based chemical cytometry increased the rate of serial analyses of cells. In the designed system, fluid flow through a tube coaxial to the separation capillary was used to supply electrophoretic buffer to the capillary. This sheath or coaxial fluid was turned off between analysis of cells and on during cell sampling and electrophoresis. Thus, living cells were not exposed to the nonphysiologic electrophoretic buffer prior to lysis. Key parameters of the system such as the relative capillary-sheath positions, buffer flow velocities, and the cell chamber design were optimized. To demonstrate the utility of the system, rat basophilic leukemic cells loaded with Oregon green and fluorescein were serially lysed and loaded into a capillary. Separation of the contents of 20 cells at a rate of 0.5 cells/min was demonstrated.
Collapse
Affiliation(s)
- Paul J Marc
- Department of Biomedical Engineering, University of California, Irvine, California 92697, USA
| | | | | |
Collapse
|
13
|
Affiliation(s)
- Karel Klepárník
- Institute of Analytical Chemistry, Academy of Sciences of the Czech Republic, Veveří 97, CZ-602 00 Brno, Czech Republic
| | - Petr Boček
- Institute of Analytical Chemistry, Academy of Sciences of the Czech Republic, Veveří 97, CZ-602 00 Brno, Czech Republic
| |
Collapse
|
14
|
Karlinsey JM, Landers JP. Multicolor Fluorescence Detection on an Electrophoretic Microdevice Using an Acoustooptic Tunable Filter. Anal Chem 2006; 78:5590-6. [PMID: 16878900 DOI: 10.1021/ac0607358] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
An acoustooptic tunable filter (AOTF) is used to detect multiple fluorescent signals on a fluidic microdevice. A confocal laser-induced fluorescence detection setup is used to excite fluorescent dyes in glass microchannels, presenting a streamlined and robust detection system consisting of the narrow-bandwidth AO filter and a single photodetector. The flexibility of the filter is demonstrated by alternating between wavelengths for precise microchannel alignment and sweeping through a range of wavelengths for preliminary spectral characterization of subnanoliter probe volumes of target analytes. The AOTF is also coupled with an electrophoretic separation for the multicolor detection of PCR-amplified DNA against a labeled sizing standard, the discrimination of multiple amplicons overlapped in time, and the identification of amplified biowarfare agents in a fluorescent spiking experiment. Finally, to demonstrate the multicolor capability of the system, 19-wavelength detection is performed during the separation of a three-dye sample mixture.
Collapse
Affiliation(s)
- James M Karlinsey
- Department of Chemistry, University of Virginia, Charlottesville, Virginia 22904, USA
| | | |
Collapse
|
15
|
Abstract
Demand for DNA sequence information has never been greater, yet current Sanger technology is too costly, time consuming, and labor intensive to meet this ongoing demand. Applications span numerous research interests, including sequence variation studies, comparative genomics and evolution, forensics, and diagnostic and applied therapeutics. Several emerging technologies show promise of delivering next-generation solutions for fast and affordable genome sequencing. In this review article, the DNA polymerase-dependent strategies of Sanger sequencing, single nucleotide addition, and cyclic reversible termination are discussed to highlight recent advances and potential challenges these technologies face in their development for ultrafast DNA sequencing.
Collapse
Affiliation(s)
- Michael L Metzker
- Human Genome Sequencing Center and Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, Texas 77030, USA.
| |
Collapse
|
16
|
Fiorini GS, Chiu DT. Disposable microfluidic devices: fabrication, function, and application. Biotechniques 2005; 38:429-46. [PMID: 15786809 DOI: 10.2144/05383rv02] [Citation(s) in RCA: 245] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
Abstract
This review article describes recent developments in microfluidics, with special emphasis on disposable plastic devices. Included is an overview of the common methods used in the fabrication of polymer microfluidic systems, including replica and injection molding, embossing, and laser ablation. Also described are the different methods by which on-chip operations--such as the pumping and valving of fluid flow, the mixing of different reagents, and the separation and detection of different chemical species--have been implemented in a microfluidic format. Finally, a few select biotechnological applications of microfluidics are presented to illustrate both the utility of this technology and its potential for development in the future.
Collapse
|
17
|
Edwards JR, Ruparel H, Ju J. Mass-spectrometry DNA sequencing. Mutat Res 2005; 573:3-12. [PMID: 15829234 DOI: 10.1016/j.mrfmmm.2004.07.021] [Citation(s) in RCA: 54] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2004] [Accepted: 07/15/2004] [Indexed: 11/15/2022]
Abstract
Matrix-assisted laser desorption ionization time-of-flight mass spectrometry (MALDI-TOF MS) has been explored widely for DNA sequencing. Compared to gel electrophoresis based sequencing systems, mass spectrometry produces very high resolution of sequencing fragments, rapid separation on microsecond time scales, and completely eliminates compressions associated with gel-based systems. While most of the research efforts have focused on using mass spectrometers to analyze the DNA products from Sanger sequencing or enzymatic digestion reactions, the read lengths attainable are currently insufficient for large-scale de novo sequencing. The advantage of mass-spectrometry sequencing is that one can unambiguously identify frameshift mutations and heterozygous mutations making it an ideal choice for resequencing projects. In these applications, DNA sequencing fragments that are the same length but with different base compositions are generated, which are challenging to consistently distinguish in gel-based sequencing systems. In contrast, MALDI-TOF MS produces mass spectra of these DNA sequencing fragments with nearly digital resolution, allowing accurate determination of the mixed bases. For these reasons mass spectrometry based sequencing has mainly been focused on the detection of frameshift mutations and single nucleotide polymorphisms (SNPs). More recently, assays have been developed to indirectly sequence DNA by first converting it into RNA. These assays take advantage of the increased resolution and detection ability of MALDI-TOF MS for RNA.
Collapse
Affiliation(s)
- John R Edwards
- Columbia Genome Center, Columbia University College of Physicians and Surgeons, Room 405A, Russ Berrie Medical Science Pavilion, New York, NY 10032, USA
| | | | | |
Collapse
|
18
|
Ruparel H, Bi L, Li Z, Bai X, Kim DH, Turro NJ, Ju J. Design and synthesis of a 3'-O-allyl photocleavable fluorescent nucleotide as a reversible terminator for DNA sequencing by synthesis. Proc Natl Acad Sci U S A 2005; 102:5932-7. [PMID: 15829589 PMCID: PMC1087948 DOI: 10.1073/pnas.0501962102] [Citation(s) in RCA: 63] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023] Open
Abstract
DNA sequencing by synthesis (SBS) offers an approach for potential high-throughput sequencing applications. In this method, the ability of an incoming nucleotide to act as a reversible terminator for a DNA polymerase reaction is an important requirement to unambiguously determine the identity of the incorporated nucleotide before the next nucleotide is added. A free 3'-OH group on the terminal nucleotide of the primer is necessary for the DNA polymerase to incorporate an incoming nucleotide. Therefore, if the 3'-OH group of an incoming nucleotide is capped by a chemical moiety, it will cause the polymerase reaction to terminate after the nucleotide is incorporated into the DNA strand. If the capping group is subsequently removed to generate a free 3'-OH, the polymerase reaction will reinitialize. We report here the design and synthesis of a 3'-modified photocleavable fluorescent nucleotide, 3'-O-allyl-dUTP-PC-Bodipy-FL-510 (PC-Bodipy, photocleavable 4,4-difluoro-4-bora-3alpha,4alpha-diaza-s-indacene), as a reversible terminator for SBS. This nucleotide analogue contains an allyl moiety capping the 3'-OH group and a fluorophore Bodipy-FL-510 linked to the 5 position of the uracil through a photocleavable 2-nitrobenzyl linker. Here, we have shown that this nucleotide is a good substrate for a DNA polymerase. After the nucleotide was successfully incorporated into a growing DNA strand and the fluorophore was photocleaved, the allyl group was removed by using a Pd-catalyzed reaction to reinitiate the polymerase reaction, thereby establishing the feasibility of using such nucleotide analogues as reversible terminators for SBS.
Collapse
Affiliation(s)
- Hameer Ruparel
- Columbia Genome Center, Columbia University College of Physicians and Surgeons, New York, NY 10032, USA
| | | | | | | | | | | | | |
Collapse
|
19
|
Lewis EK, Haaland WC, Nguyen F, Heller DA, Allen MJ, MacGregor RR, Berger CS, Willingham B, Burns LA, Scott GBI, Kittrell C, Johnson BR, Curl RF, Metzker ML. Color-blind fluorescence detection for four-color DNA sequencing. Proc Natl Acad Sci U S A 2005; 102:5346-51. [PMID: 15800037 PMCID: PMC556273 DOI: 10.1073/pnas.0501606102] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
We present an approach called pulsed multiline excitation (PME) for measurements of multicomponent, fluorescence species and demonstrate its application in capillary electrophoresis for DNA sequencing. To fully demonstrate the advantages of PME, a fluorescent dye set has been developed whose absorption maxima span virtually the entire visible spectrum. Unlike emission wavelength-dependent approaches for identifying fluorescent species, the removal of the spectral component in PME confers a number of advantages including higher and normalized signals from all dyes present in the assay, the elimination of spectral cross-talk between dyes, and higher signal collection efficiency. Base-calling is unambiguously determined once dye mobility corrections are made. These advantages translate into significantly enhanced signal quality as illustrated in the primary DNA sequencing data and provide a means for achieving accurate base-calling at lower reagent concentrations.
Collapse
Affiliation(s)
- Ernest K Lewis
- Human Genome Sequencing Center, Department of Molecular and Human Genetics, Cell and Molecular Biology Program, Baylor College of Medicine, Houston, TX 77030
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
20
|
Kan CW, Fredlake CP, Doherty EAS, Barron AE. DNA sequencing and genotyping in miniaturized electrophoresis systems. Electrophoresis 2004; 25:3564-88. [PMID: 15565709 DOI: 10.1002/elps.200406161] [Citation(s) in RCA: 92] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
Advances in microchannel electrophoretic separation systems for DNA analyses have had important impacts on biological and biomedical sciences, as exemplified by the successes of the Human Genome Project (HGP). As we enter a new era in genomic science, further technological innovations promise to provide other far-reaching benefits, many of which will require continual increases in sequencing and genotyping efficiency and throughput, as well as major decreases in the cost per analysis. Since the high-resolution size- and/or conformation-based electrophoretic separation of DNA is the most critical step in many genetic analyses, continual advances in the development of materials and methods for microchannel electrophoretic separations will be needed to meet the massive demand for high-quality, low-cost genomic data. In particular, the development (and commercialization) of miniaturized genotyping platforms is needed to support and enable the future breakthroughs of biomedical science. In this review, we briefly discuss the major sequencing and genotyping techniques in which high-throughput and high-resolution electrophoretic separations of DNA play a significant role. We review recent advances in the development of technology for capillary electrophoresis (CE), including capillary array electrophoresis (CAE) systems. Most of these CE/CAE innovations are equally applicable to implementation on microfabricated electrophoresis chips. Major effort is devoted to discussing various key elements needed for the development of integrated and practical microfluidic sequencing and genotyping platforms, including chip substrate selection, microchannel design and fabrication, microchannel surface modification, sample preparation, analyte detection, DNA sieving matrices, and device integration. Finally, we identify some of the remaining challenges, and some of the possible routes to further advances in high-throughput DNA sequencing and genotyping technologies.
Collapse
Affiliation(s)
- Cheuk-Wai Kan
- Department of Chemical and Biological Engineering, Northwestern University, Evanston, IL 60208, USA
| | | | | | | |
Collapse
|
21
|
Kim S, Ruparel HD, Gilliam TC, Ju J. Digital genotyping using molecular affinity and mass spectrometry. Nat Rev Genet 2004; 4:1001-8. [PMID: 14631360 DOI: 10.1038/nrg1230] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
The goal of DNA sequencing and genotyping is to efficiently generate accurate high-throughput digital genetic information that unambiguously identifies sources of genetic variation and clearly distinguishes heterozygous from homozygous variants. Recent advances in mass-spectrometry-based DNA sequencing and genotyping bode well for meeting these criteria. Pilot studies show that these recently developed approaches allow unambiguous multiplex detection of heterozygous variants and the identification of deletion and insertion variants.
Collapse
Affiliation(s)
- Sobin Kim
- Columbia Genome Center and the Department of Chemical Engineering, Columbia University College of Physicians and Surgeons, New York 10032, USA
| | | | | | | |
Collapse
|
22
|
Bromberg A, Mathies RA. Homogeneous immunoassay for detection of TNT and its analogues on a microfabricated capillary electrophoresis chip. Anal Chem 2003; 75:1188-95. [PMID: 12641240 DOI: 10.1021/ac020599g] [Citation(s) in RCA: 92] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
A homogeneous immunoassay for TNT and its analogues is developed using a microfabricated capillary electrophoresis chip. The assay is based on the rapid electrophoretic separation of an equilibrated mixture of an anti-TNT antibody, fluorescein-labeled TNT, and unlabeled TNT or its analogue. The band intensities of the free fluorescein-labeled TNT and of the antibody-antigen complex reveal the relative equilibrated concentrations. Titration of the anti-TNT antibody with a fluorescein-labeled TNT derivative yields a binding constant of (3.9 +/- 1.3) x 10(9) M(-1). The dissociation rate constant of the complex is determined by kinetic capillary electrophoresis using a folded channel and a rotary scanner to interrogate the separation at multiple time points. The dissociation rate constant is found to be 0.035 +/- 0.005 s(-1), and the resulting binding rate constant is (1.4 +/- 0.7) x 10(7) M(-1) s(-1). Binding constants of TNT and five of its analogues are determined by competitive assays: TNT (4.3 +/- 2.6) x 10(8) M(-1); 1,3,5-trinitrobenzene (5.1 +/- 3.3) x 10(7) M(-1); picric acid (7.5 +/- 4.4) x 10(6) M(-1); 2,4-dinitrotoluene (7.9 +/- 4.0) x 10(6) M(-1); 1,3-dinitrobenzene (1.0 +/- 0.7) x 10(6) M(-1); and 2,4-dinitrophenol (5.1 +/- 3.0) x 10(4) M(-1). TNT and its analogues can be assayed with high sensitivity (LOD 1 ng/mL) and with a wide dynamic range (1-300 ng/mL) using this chip-based method.
Collapse
Affiliation(s)
- Avraham Bromberg
- Department of Chemistry, University of California, Berkeley, California 94720, USA
| | | |
Collapse
|
23
|
Li Z, Bai X, Ruparel H, Kim S, Turro NJ, Ju J. A photocleavable fluorescent nucleotide for DNA sequencing and analysis. Proc Natl Acad Sci U S A 2003; 100:414-9. [PMID: 12515853 PMCID: PMC141009 DOI: 10.1073/pnas.242729199] [Citation(s) in RCA: 52] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/28/2002] [Indexed: 11/18/2022] Open
Abstract
DNA sequencing by synthesis during a polymerase reaction using laser-induced fluorescence detection is an approach that has a great potential to increase the throughput and data quality of DNA sequencing. We report the design and synthesis of a photocleavable fluorescent nucleoside triphosphate, one of the essential molecules required for the sequencing-by-synthesis approach. We synthesized this nucleoside triphosphate by attaching a fluorophore, 4,4-difluoro-5,7-dimethyl-4-bora-3alpha,4alpha-diaza-s-indacene propionic acid (BODIPY), to the 5 position of 2'-deoxyuridine triphosphate via a photocleavable 2-nitrobenzyl linker. We demonstrate that the nucleotide analogue can be faithfully incorporated by a DNA polymerase Thermo Sequenase into the growing DNA strand in a DNA-sequencing reaction and that its incorporation does not hinder the addition of the subsequent nucleotide. These results indicate that the nucleotide analogue is an excellent substrate for Thermo Sequenase. We also systematically studied the photocleavage of the fluorescent dye from a DNA molecule that contained the nucleotide analogue. UV irradiation at 340 nm of the DNA molecule led to the efficient release of the fluorescent dye, ensuring that a previous fluorescence signal did not leave any residue that could interfere with the detection of the next nucleotide. Thus, our results indicate that it should be feasible to use four different fluorescent dyes with distinct fluorescence emissions as unique tags to label the four nucleotides (A, C, G, and T) through the photocleavable 2-nitrobenzyl linker. These fluorescent tags can be removed easily by photocleavage after the identification of each nucleotide in the DNA sequencing-by-synthesis approach.
Collapse
Affiliation(s)
- Zengmin Li
- Columbia Genome Center, Columbia University College of Physicians and Surgeons, New York, NY 10032, USA
| | | | | | | | | | | |
Collapse
|
24
|
Abstract
False terminations occurring in fluorescent dye-primer DNA sequencing, and nonsequencing primer extension DNA fragments generated in dye-terminator sequencing cause background noise in fluorescent electropherograms, leading to errors in sequence determination. We describe here a DNA sequencing chemistry that produces accurate and clean sequencing data on a fluorescent DNA sequencer, eliminating the false terminations and background noise. The procedure involves coupling fluorescence energy transfer (ET) primers that produce high fluorescent signals with solid-phase-capturable biotinylated dideoxynucleotides to generate Sanger DNA sequencing fragments. After the sequencing reaction,the DNA extension fragments that carry a biotin at the 3' end are captured with streptavidin-coated magnetic beads, while the other components in the sequencing reaction are washed away. Only pure DNA extension products terminated by the biotinylated dideoxynucleotides are released from the magnetic beads and are loaded onto a sequencing gel to produce accurate sequencing data.
Collapse
Affiliation(s)
- Jingyue Ju
- Laboratory of DNA Sequencing and Chemical Biology, Columbia Genome Center, Russ Berrie Medical Science Pavilion, Columbia University College of Physicians and Surgeons, 1150 St. Nicholas Avenue, New York, NY 10032, USA.
| |
Collapse
|
25
|
Paegel BM, Yeung SHI, Mathies RA. Microchip bioprocessor for integrated nanovolume sample purification and DNA sequencing. Anal Chem 2002; 74:5092-8. [PMID: 12380835 DOI: 10.1021/ac0203645] [Citation(s) in RCA: 93] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
A microfabricated electrophoretic bioprocessor for integrated DNA sequencing sample desalting, template removal, preconcentration, and CE analysis is presented. A low-viscosity gel capture matrix, containing an acrylamide-copolymerized oligonucleotide complementary to the 20-base sequence directly 3' of the M13-40 universal forward priming site, is introduced into the 60-nL capture chamber. Unpurified DNA sequencing reaction products are electrophoretically driven through the chamber; extension products hybridize to the matrix, while contaminating buffering ions, Cl-, excess primer, and template DNA are unretained. Purification under optimized conditions is complete in only 120 s (binding temperature 50 degrees C, driving voltage 250 V). High-speed, integrated sequencing analysis is accomplished by releasing the gel-purified duplex at 67 degrees C and directly injecting onto a 15.9-cm effective length CE microchannel. Electrophoretic resolution of the sequencing products is complete in 32 min, producing a total of 560 bp with phred quality q > or = 20 (accuracy > or = 99%). This fully integrated nanoliter process decreases the purification time approximately 10-fold and the process volume approximately 100-fold while providing state-of-the-art sequencing results.
Collapse
Affiliation(s)
- Brian M Paegel
- Department of Chemistry, University of California, Berkeley 94720, USA
| | | | | |
Collapse
|
26
|
Abstract
A review on copolymers used as DNA separation media in capillary electrophoresis is presented. Copolymers can combine the desirable properties of different monomers, yielding many attractive features, such as high sieving ability, low viscosity, self-assembly behavior and dynamic coating ability. Copolymers with different molecular architecture, including block copolymers, random copolymers, and graft copolymers, have been developed and tested as DNA separation media with unique and tailored properties that cannot be achieved easily by using only homopolymers.
Collapse
Affiliation(s)
- Benjamin Chu
- Chemistry Department, State University of New York at Stony Brook, 11794-3400, USA.
| | | |
Collapse
|
27
|
Premstaller A, Oberacher H, Rickert A, Huber CG, Oefner PJ. Multiplex analysis of single-nucleotide extension products on a 16-capillary, denaturing, high-performance liquid chromatography array. Genomics 2002; 79:793-8. [PMID: 12036293 DOI: 10.1006/geno.2002.6784] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
We constructed a high-performance liquid chromatography array consisting of 16 monolithic poly(styrene/divinylbenzene) capillaries for the parallel multiplex analysis of fluorescent dye-labeled single-nucleotide extension products. Because of the high chemical and physical robustness of the column bed that is covalently linked to the inner surface of the fused silica capillary, the array can be reused thousands of times without replenishment. The choice of fluorophore exerts a significant effect on resolution of the extension products. FAM, HEX, and TAMRA allowed complete resolution of all four possible allelic extension products not only from the extension primer but also from each other. The quantitative accuracy of the method enables the genetic typing of bi- and triallelic single-nucleotide polymorphisms in polyploid genomes and pooled samples.
Collapse
|
28
|
Paegel BM, Emrich CA, Wedemayer GJ, Scherer JR, Mathies RA. High throughput DNA sequencing with a microfabricated 96-lane capillary array electrophoresis bioprocessor. Proc Natl Acad Sci U S A 2002; 99:574-9. [PMID: 11792836 PMCID: PMC117347 DOI: 10.1073/pnas.012608699] [Citation(s) in RCA: 213] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
High throughput DNA sequencing has been performed by using a microfabricated 96-channel radial capillary array electrophoresis (microCAE) microchannel plate detected by a 4-color rotary confocal fluorescence scanner. The microchannel plate features a novel injector for uniform sieving matrix loading as well as high resolution, tapered turns that provide an effective separation length of 15.9 cm on a compact 150-mm diameter wafer. Expanded common buffer chambers for the cathode, anode, and waste reservoirs are used to simplify electrode addressing and to counteract buffering capacity depletion arising from the high electrophoretic current. DNA sequencing data from 95 successful lanes out of 96 lanes run in parallel were batch-processed with basefinder, producing an average read length of 430 bp (phred q > or = 20). Phred quality values were found to exceed 40 (0.01% probability of incorrectly calling a base) for over 80% of the read length. The microCAE system demonstrated here produces sequencing data at a rate of 1.7 kbp/min, a 5-fold increase over current commercial capillary array electrophoresis technology. Additionally, this system permits lower reagent volumes and lower sample concentrations, and it presents numerous possibilities for integrated sample preparation and handling. The unique capabilities of microCAE technology should make it the next generation, high performance DNA sequencing platform.
Collapse
Affiliation(s)
- Brian M Paegel
- Department of Chemistry and Biophysics Graduate Group, University of California, Berkeley, CA 94720, USA
| | | | | | | | | |
Collapse
|
29
|
Edwards JR, Itagaki Y, Ju J. DNA sequencing using biotinylated dideoxynucleotides and mass spectrometry. Nucleic Acids Res 2001; 29:E104-4. [PMID: 11691941 PMCID: PMC60203 DOI: 10.1093/nar/29.21.e104] [Citation(s) in RCA: 40] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Matrix-assisted laser desorption ionization time-of-flight mass spectrometry (MS) has been explored widely for DNA sequencing. The major requirement for this method is that the DNA sequencing fragments must be free from alkaline and alkaline earth salts as well as other contaminants for accurately measuring the masses of the DNA fragments. We report here the development of a novel MS DNA sequencing method that generates Sanger-sequencing fragments in one tube using biotinylated dideoxynucleotides. The DNA sequencing fragments that carry a biotin at the 3'-end are made free from salts and other components in the sequencing reaction by capture with streptavidin-coated magnetic beads. Only correctly terminated biotinylated DNA fragments are subsequently released and loaded onto a mass spectrometer to obtain accurate DNA sequencing data. Compared with gel electrophoresis-based sequencing systems, MS produces a very high resolution of DNA-sequencing fragments, fast separation on microsecond time scales, and completely eliminates the compressions associated with gel electrophoresis. The high resolution of MS allows accurate mutation and heterozygote detection. This optimized solid-phase DNA-sequencing chemistry plus future improvements in detector sensitivity for large DNA fragments in MS instrumentation will further improve MS for DNA sequencing.
Collapse
Affiliation(s)
- J R Edwards
- Laboratory of DNA Sequencing and Chemical Biology, Columbia Genome Center, Columbia University College of Physicians and Surgeons, New York, NY 10032, USA
| | | | | |
Collapse
|
30
|
Premstaller A, Xiao W, Oberacher H, O'Keefe M, Stern D, Willis T, Huber CG, Oefner PJ. Temperature-modulated array high-performance liquid chromatography. Genome Res 2001; 11:1944-51. [PMID: 11691859 PMCID: PMC311160 DOI: 10.1101/gr.200401] [Citation(s) in RCA: 20] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2001] [Accepted: 07/31/2001] [Indexed: 11/24/2022]
Abstract
Using novel monolithic poly(styrene-divinylbenzene) capillary columns with an internal diameter of 0.2 mm, we demonstrate for the first time the feasibility of constructing high-performance liquid chromatography arrays for the detection of mutations by heteroduplex analysis under partially denaturing conditions. In one embodiment, such an array can be used to analyze one sample simultaneously at different temperatures to maximize the detection of mutations in DNA fragments containing multiple discrete melting domains. Alternatively, one may inject different samples onto columns kept at the same effective temperature. Further improvements in throughput can be obtained by means of laser-induced fluorescence detection and the differential labeling of samples with up to four different fluorophores. Major advantages of monolithic capillary high-performance liquid chromatographic arrays over their capillary electrophoretic analogs are the chemical inertness of the poly(styrene-divinylbenzene) stationary phase, the physical robustness of the column bed due to its covalent linkage to the inner surface of the fused silica capillary, and the feasibility to modify the stationary phase thereby allowing the separation of compounds not only on the principle of size exclusion, but also adsorption, distribution, and ion exchange. Analyses times are on the order of a few minutes and turnaround time is extremely short as there is no need for the replenishment of the separation matrix between runs.
Collapse
Affiliation(s)
- A Premstaller
- Stanford Genome Technology Center, Palo Alto, CA 94304, USA
| | | | | | | | | | | | | | | |
Collapse
|
31
|
Mitnik L, Novotny M, Felten C, Buonocore S, Koutny L, Schmalzing D. Recent advances in DNA sequencing by capillary and microdevice electrophoresis. Electrophoresis 2001; 22:4104-17. [PMID: 11824631 DOI: 10.1002/1522-2683(200111)22:19<4104::aid-elps4104>3.0.co;2-f] [Citation(s) in RCA: 34] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Abstract
A number of significant improvements in the electrophoretic performance and design of DNA sequencing devices have culminated in the introduction of truly industrial grade production scale instruments. These instruments have been the workhorses behind the massive increase in genomic sequencing data available in public and private databases. We highlight the recent progress in aspects of capillary electrophoresis (CE) that has enabled these achievements. In addition, we summarize recent developments in the use of microfabricated devices for DNA sequencing that promise to bring the next leap in productivity.
Collapse
Affiliation(s)
- L Mitnik
- Whitehead Institute for Biomedical Research, Cambridge, MA 02142, USA.
| | | | | | | | | | | |
Collapse
|
32
|
Medintz IL, Paegel BM, Blazej RG, Emrich CA, Berti L, Scherer JR, Mathies RA. High-performance genetic analysis using microfabricated capillary array electrophoresis microplates. Electrophoresis 2001; 22:3845-56. [PMID: 11700713 DOI: 10.1002/1522-2683(200110)22:18<3845::aid-elps3845>3.0.co;2-0] [Citation(s) in RCA: 65] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
Abstract
This review focuses on some recent advances in realizing microfabricated capillary array electrophoresis (microCAE). In particular, the development of a novel rotary scanning confocal fluorescence detector has facilitated the high-speed collection of sequencing and genotyping data from radially formatted microCAE devices. The concomitant development of a convenient energy-transfer cassette labeling chemistry allows sensitive multicolor labeling of any DNA genotyping or sequencing analyte. High-performance hereditary haemochromatosis and short tandem repeat genotyping assays are demonstrated on these devices along with rapid mitochondrial DNA sequence polymorphism analysis. Progress in supporting technology such as robotic fluid dispensing and batched data analysis is also presented. The ultimate goal is to develop a parallel analysis platform capable of integrated sample preparation and automated electrophoretic analysis with a throughput 10-100 times that of current technology.
Collapse
Affiliation(s)
- I L Medintz
- Department of Chemistry, University of California, Berkeley 94720, USA
| | | | | | | | | | | | | |
Collapse
|
33
|
Medintz IL, Berti L, Emrich CA, Tom J, Scherer JR, Mathies RA. Genotyping Energy-Transfer-Cassette-labeled Short-Tandem-Repeat Amplicons with Capillary Array Electrophoresis Microchannel Plates. Clin Chem 2001. [DOI: 10.1093/clinchem/47.9.1614] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
Abstract
Background: Genetic analysis of microsatellite DNA is a powerful tool used in linkage analysis, gene mapping, and clinical diagnosis. To address the expanding needs of studies of short tandem repeats (STRs), we demonstrated high-performance STR analysis on a high-throughput microchannel plate-based platform.
Methods: Energy-transfer-cassette-labeled STR amplicons were separated and typed on a microfabricated 96-channel radial capillary array electrophoresis (CAE) microchannel plate system. Four-color detection was accomplished with a laser-excited confocal fluorescence rotary scanner.
Results: Multiplex STR analysis with single base-pair resolution was demonstrated on denaturing polyacrylamide gel media. The high-throughput multiplex capabilities of this genetic analysis platform were demonstrated by the simultaneous separation of STR amplicons representing 122 samples in ninety-six 5.5-cm-long channels in <8 min. Sizing values obtained for these amplicons on the CAE microchannel plate were comparable to those measured on a conventional commercial CAE instrument and exhibit <1% sizing variance.
Conclusions: Energy-transfer-cassette labeling and microfabricated CAE microchannel plates allow high-performance multiplex STR analyses.
Collapse
Affiliation(s)
- Igor L Medintz
- Department of Chemistry, University of California, Berkeley, CA 94720
| | - Lorenzo Berti
- Department of Chemistry, University of California, Berkeley, CA 94720
| | - Charles A Emrich
- Department of Chemistry, University of California, Berkeley, CA 94720
| | - Jennifer Tom
- Department of Chemistry, University of California, Berkeley, CA 94720
| | - James R Scherer
- Department of Chemistry, University of California, Berkeley, CA 94720
| | - Richard A Mathies
- Department of Chemistry, University of California, Berkeley, CA 94720
| |
Collapse
|
34
|
Berti L, Xie J, Medintz IL, Glazer AN, Mathies RA. Energy transfer cassettes for facile labeling of sequencing and PCR primers. Anal Biochem 2001; 292:188-97. [PMID: 11355850 DOI: 10.1006/abio.2001.5069] [Citation(s) in RCA: 34] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Fluorescence energy transfer (ET) primers and terminators are the reagents of choice for multiplex DNA sequencing and analysis. We present here the design, synthesis and evaluation of a four-color set of ET cassettes, fluorescent labeling reagents that can be quantitatively coupled to a thiol-activated target through a disulfide exchange reaction. The ET cassette consists of a sugar-phosphate spacer with a FAM donor at the 3'-end, an acceptor linked to a modified T-base at the 5'-end of the spacer and a mixed disulfide for coupling to a thiol at the 5'-end. The acceptor dye emission intensities of ET labeled primers produced in this manner are comparable to commercial ET primers. The utility of our ET cassette-labeled primers is demonstrated by performing four-color capillary electrophoresis sequencing with the M13(-21)forward primer and by generating and analyzing a set of single-nucleotide-polymorphism-specific PCR amplicons.
Collapse
Affiliation(s)
- L Berti
- Department of Chemistry, University of California, Berkeley 94720, USA
| | | | | | | | | |
Collapse
|
35
|
Song L, Liang D, Kielescawa J, Liang J, Tjoe E, Fang D, Chu B. DNA sequencing by capillary electrophoresis using copolymers of acrylamide and N,N-dimethylacrylamide. Electrophoresis 2001; 22:729-36. [PMID: 11296928 DOI: 10.1002/1522-2683(200102)22:4<729::aid-elps729>3.0.co;2-o] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
Copolymers of acrylamide (AM) and N,N-dimethylacrylamide (DMA) with AM to DMA molar ratios of 3:1, 2:1 and 1:1 and molecular weights of about 2.2 MDa were synthesized. The polymers were tested as separation media in DNA sequencing analysis by capillary electrophoresis (CE). The dynamic coating ability of polydimethylacrylamide (PDMA) and the hydrophilicity of polyacrylamide (PAM) have been successfully combined in these random copolymers. A separation efficiency of over 10 million theoretical plates per meter has been reached by using the bare capillaries without the additional polymer coating step. Under optimized separation conditions for longer read length DNA sequencing, the separation ability of the copolymers decreased with decreasing AM to DMA molar ratio from 3:1, 2:1 and 1:1. In comparison with PAM, the copolymer with a 3:1 AM:DMA ratio showed a higher separation efficiency. By using a 2.5% w/v copolymer with 3:1 AM:DMA ratio, one base resolution of 0.55 up to 699 bases and 0.30 up to 963 bases have been achieved in about 80 min at ambient temperatures.
Collapse
Affiliation(s)
- L Song
- Chemistry Department, State University of New York at Stony Brook, 11794-3400, USA
| | | | | | | | | | | | | |
Collapse
|
36
|
Abstract
During the last decade, capillary electrophoresis (CE) of DNA has undergone rapid development. This improvement was especially important for DNA sequencing, where CE has now become a standard method facilitating to decipher several genomes within a very short time. Here, we give a review of the fundamentals of DNA separation in CE and the major factors influencing the performance.
Collapse
Affiliation(s)
- C Heller
- Max-Planck-Institut für molekulare Genetik, Berlin-Dahlem, Germany.
| |
Collapse
|
37
|
Medintz I, Wong WW, Berti L, Shiow L, Tom J, Scherer J, Sensabaugh G, Mathies RA. High-performance multiplex SNP analysis of three hemochromatosis-related mutations with capillary array electrophoresis microplates. Genome Res 2001; 11:413-21. [PMID: 11230165 PMCID: PMC311034 DOI: 10.1101/gr.164701] [Citation(s) in RCA: 66] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2000] [Accepted: 01/02/2001] [Indexed: 01/02/2023]
Abstract
An assay is described for high-throughput single nucleotide polymorphism (SNP) genotyping on a microfabricated capillary array electrophoresis (CAE) microchip. The assay targets the three common variants at the HFE locus associated with the genetic disease hereditary hemochromatosis (HHC). The assay employs allele-specific PCR (ASPCR) for the C282Y (845g->a), H63D (187c->g), and S65C (193a->t) variants using fluorescently-labeled energy-transfer (ET) allele-specific primers. Using a 96-channel radial CAE microplate, the labeled ASPCR products generated from 96 samples in a reference Caucasian population are simultaneously separated with single-base-pair resolution and genotyped in under 10 min. Detection is accomplished with a laser-excited rotary four-color fluorescence scanner. The allele-specific amplicons are differentiated on the basis of both their size and the color of the label emission. This study is the first demonstration of the combined use of ASPCR with ET primers and microfabricated radial CAE microplates to perform multiplex SNP analyses in a clinically relevant population.
Collapse
Affiliation(s)
- I Medintz
- Department of Chemistry, University of California, Berkeley, California 94720, USA
| | | | | | | | | | | | | | | |
Collapse
|
38
|
Neumann M, Herten DP, Sauer M. New Techniques for DNA Sequencing Based on Diode Laser Excitation and Time-Resolved Fluorescence Detection. NEW TRENDS IN FLUORESCENCE SPECTROSCOPY 2001. [DOI: 10.1007/978-3-642-56853-4_16] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
|
39
|
Hanning A, Westberg J, Roeraade J. A liquid core waveguide fluorescence detector for multicapillary electrophoresis applied to DNA sequencing in a 91-capillary array. Electrophoresis 2000; 21:3290-304. [PMID: 11001228 DOI: 10.1002/1522-2683(20000901)21:15<3290::aid-elps3290>3.0.co;2-j] [Citation(s) in RCA: 21] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
A new laser-induced fluorescence (LIF) detector for multicapillary electrophoresis is presented. The detection principle is based on waveguiding of the emitted fluorescence from the point of illumination to the capillary ends by total internal reflection (TIR) and imaging of the capillary ends. The capillaries themselves thus act as liquid core waveguides (LCWs). At the illumination point, the capillaries are arranged in a planar array, which allows clean and efficient illumination with a line-focused laser beam. The capillary ends are rearranged into a small, densely packed two-dimensional array, which is imaged end-on with high light collection efficiency and excellent image quality. Wavelength dispersion is obtained with a single prism. Intercapillary optical crosstalk is less than 0.5%, and rejection of stray light is very efficient. The detector is applied to four-color DNA sequencing by gel electrophoresis in a 91-capillary array, with simple fluorescein and rhodamine dyes as fluorophores. Since the imaged two-dimensional array is so compact, the detector has a high potential for very large-scale multiplexing.
Collapse
Affiliation(s)
- A Hanning
- Royal Institute of Technology, Department of Analytical Chemistry, Stockholm, Sweden
| | | | | |
Collapse
|
40
|
Abstract
Automation for genomics has enabled a 43-fold increase in the total finished human genomic sequence in the world in the past four years. This is the second half of a two-part, noncomprehensive review that presents an overview of different types of automation equipment used in genome sequencing. The first part of the review, published in the previous issue, focused on automated procedures used to prepare DNA for sequencing or analysis. This second part of the review presents a look at available DNA sequencers and array technology and concludes with a look at future technologies. Alternate sequencing technologies including mass spectrometry, biochips, and single molecule analysis are included in this review.
Collapse
Affiliation(s)
- D Meldrum
- Department of Electrical Engineering, Genomation Laboratory, University of Washington, Seattle, Washington 98195-2500, USA.
| |
Collapse
|
41
|
Hanning A, Lindberg P, Westberg J, Roeraade J. Laser-induced fluorescence detection by liquid core waveguiding applied to DNA sequencing by capillary electrophoresis. Anal Chem 2000; 72:3423-30. [PMID: 10952522 DOI: 10.1021/ac000326q] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
A new laser-induced fluorescence detector for capillary electrophoresis (CE) is described. The detector is based on transverse illumination and collection of the emitted fluorescent light via total internal reflection along the separation capillary. The capillary is coated with a low refractive index fluoropolymer and serves as a liquid core waveguide (LCW). The emitted light is detected end-on with a CCD camera at the capillary exit. The observed detection limit for fluorescein is 2.7 pM (550 ymol) in the continuous-flow mode and 62 fM in the CE mode. The detector is applied to DNA sequencing. One-color G sequencing is performed with single-base resolution and signal-to-noise ratio approximately 250 for peaks around 500 bases. The signal-to-noise ratio is approximately 50 for peaks around 950 bases. Full four-color DNA sequencing is also demonstrated. The high sensitivity of the detector is suggested to partly be due to the efficient rejection of scattered laser light in the LCW. The concept should be highly suitable for capillary array detection.
Collapse
Affiliation(s)
- A Hanning
- Royal Institute of Technology, Department of Analytical Chemistry, Stockholm, Sweden
| | | | | | | |
Collapse
|
42
|
Salas-Solano O, Schmalzing D, Koutny L, Buonocore S, Adourian A, Matsudaira P, Ehrlich D. Optimization of high-performance DNA sequencing on short microfabricated electrophoretic devices. Anal Chem 2000; 72:3129-37. [PMID: 10939377 DOI: 10.1021/ac000055j] [Citation(s) in RCA: 58] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
We have examined the parametric performance of short microfabricated electrophoresis devices that operate with a replaceable linear poly(acrylamide) (LPA) solution for the application of DNA sequencing. A systematic study is presented of the dependence of selectivity, separation efficiency, and resolution of sequencing fragments on buffer composition, LPA concentration, LPA composition, microdevice temperature, electric field, and device length. A specific optimization is made for DNA sequencing on 11.5-cm devices. Using a separation matrix composed of 3.0% (w/w) 10 MDa plus 1.0% (w/w) 50 kDa LPA, elevated microdevice temperature (50 degrees C), and 200 V/cm, high-speed DNA sequencing of 580 bases on standard M13mp18 was obtained in only 18 min with a base-calling accuracy of 98.5%. Read lengths of 640 bases at 98.5% accuracy were achieved in approximately 30 min by reducing the electric field strength to 125 V/cm. We believe that this constitutes matrix-limited performance for microdevices of this length using LPA sieving matrix and this buffer chemistry. In addition, it was confirmed, that shorter devices are rather impractical for production sequencing applications when LPA is used as sieving matrix.
Collapse
Affiliation(s)
- O Salas-Solano
- Whitehead Institute for Biomedical Research, Cambridge, Massachusetts 02142, USA
| | | | | | | | | | | | | |
Collapse
|
43
|
Medintz I, Wong WW, Sensabaugh G, Mathies RA. High speed single nucleotide polymorphism typing of a hereditary haemochromatosis mutation with capillary array electrophoresis microplates. Electrophoresis 2000; 21:2352-8. [PMID: 10939445 DOI: 10.1002/1522-2683(20000701)21:12<2352::aid-elps2352>3.0.co;2-g] [Citation(s) in RCA: 38] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
A single nucleotide polymorphism (SNP) typing assay is developed and evaluated on a microfabricated capillary array electrophoresis system. Using fluorescently labeled allele-specific primers, the S65C (193A-->T) substitution associated with hereditary haemochromatosis in the HFE gene is genotyped. The covalently labeled polymerase chain reaction (PCR) products are separated on a microfabricated radial capillary array electrophoresis microplate using nondenaturing gel media in under two minutes. Detection is accomplished with a laser-excited rotary confocal scanner. The Rox-labeled A-allele specific amplicon (211 bp) is differentiated from the R110-labeled T-allele specific amplicon (201 bp) by both size and color. This study demonstrates the feasibility of using allele-specific PCR with covalently labeled primers for high speed fluorescent SNP typing on microfabricated radial capillary array electrophoresis microplates.
Collapse
Affiliation(s)
- I Medintz
- Department of Chemistry, University of California, Berkeley 94720, USA
| | | | | | | |
Collapse
|
44
|
Abstract
A simple base-calling scheme based on four-label multicolor detection is suggested for DNA sequencing. The entire spectra of the dye labels were used for identification. Specifically, the maxima of the emission spectra rather than the intensity ratios at selected wavelengths are used to provide excellent discrimination. Capillary gel electrophoresis was used for the separation of DNA fragments. Data acquisition and analysis compatible with fast and high-throughput imaging detection was accomplished. The accuracy of base calling of PGEM/U DNA from the raw data obtained with 5 nm and 7 nm spectroscopic resolution were 98.4% for 386 bases and 98.4% for 385 bases. Base calling of M13mp18 DNA showed 98.3% accuracy for 420 bases.
Collapse
Affiliation(s)
- J M Song
- USDOE and Department of Chemistry Iowa State University, Ames 50011, USA
| | | |
Collapse
|
45
|
Neumann M, Herten DP, Dietrich A, Wolfrum J, Sauer M. Capillary array scanner for time-resolved detection and identification of fluorescently labelled DNA fragments. J Chromatogr A 2000; 871:299-310. [PMID: 10735310 DOI: 10.1016/s0021-9673(99)00909-7] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Abstract
The first capillary array scanner for time-resolved fluorescence detection in parallel capillary electrophoresis based on semiconductor technology is described. The system consists essentially of a confocal fluorescence microscope and a x,y-microscope scanning stage. Fluorescence of the labelled probe molecules was excited using a short-pulse diode laser emitting at 640 nm with a repetition rate of 50 MHz. Using a single filter system the fluorescence decays of different labels were detected by an avalanche photodiode in combination with a PC plug-in card for time-correlated single-photon counting (TCSPC). The time-resolved fluorescence signals were analyzed and identified by a maximum likelihood estimator (MLE). The x,y-microscope scanning stage allows for discontinuous, bidirectional scanning of up to 16 capillaries in an array, resulting in longer fluorescence collection times per capillary compared to scanners working in a continuous mode. Synchronization of the alignment and measurement process were developed to allow for data acquisition without overhead. Detection limits in the subzeptomol range for different dye molecules separated in parallel capillaries have been achieved. In addition, we report on parallel time-resolved detection and separation of more than 400 bases of single base extension DNA fragments in capillary array electrophoresis. Using only semiconductor technology the presented technique represents a low-cost alternative for high throughput DNA sequencing in parallel capillaries.
Collapse
Affiliation(s)
- M Neumann
- Physikalisch-Chemisches-Institut, Universität Heidelberg, Germany.
| | | | | | | | | |
Collapse
|
46
|
Abstract
To comply with the current needs for high-speed DNA sequencing analysis, several instruments and innovative technologies have been introduced by several groups in recent years. This review article discusses and compares the issues regarding high-throughput DNA sequencing by electrophoretic methods in miniaturized systems, such as capillaries, capillary arrays, and microchannels. Initially, general features of several capillary array designs (including commercial ones) will be considered, followed by similar analyses with microfabricated array electrophoretic devices and how they can contribute to the success of large sequencing projects.
Collapse
Affiliation(s)
- E Carrilho
- Instituto de Química de São Carlos, Universidade de São Paulo, Brazil.
| |
Collapse
|
47
|
Shi Y, Simpson PC, Scherer JR, Wexler D, Skibola C, Smith MT, Mathies RA. Radial capillary array electrophoresis microplate and scanner for high-performance nucleic acid analysis. Anal Chem 1999; 71:5354-61. [PMID: 10596215 DOI: 10.1021/ac990518p] [Citation(s) in RCA: 208] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
The design, fabrication, and operation of a radial capillary array electrophoresis microplate and scanner for high-throughput DNA analysis is presented. The microplate consists of a central common anode reservoir coupled to 96 separate microfabricated separation channels connected to sample injectors on the perimeter of the 10-cm-diameter wafer. Detection is accomplished by a laser-excited rotary confocal scanner with four color detection channels. Loading of 96 samples in parallel is achieved using a pressurized capillary array system. High-quality separations of 96 pBR322 restriction digest samples are achieved in < 120 s with the microplate system. The practical utility and multicolor detection capability is demonstrated by analyzing 96 methylenetetrahydrofolate reductase (MTHFR) alleles in parallel using a noncovalent 2-color staining method. This work establishes the feasibility of performing high-throughput genotyping separations with capillary array electrophoresis microplates.
Collapse
Affiliation(s)
- Y Shi
- Chemistry Department, University of California, Berkeley 94720, USA
| | | | | | | | | | | | | |
Collapse
|
48
|
Dolník V. DNA sequencing by capillary electrophoresis (review). JOURNAL OF BIOCHEMICAL AND BIOPHYSICAL METHODS 1999; 41:103-19. [PMID: 10626769 DOI: 10.1016/s0165-022x(99)00041-x] [Citation(s) in RCA: 63] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
Abstract
DNA sequencing by capillary electrophoresis has been reviewed with an emphasis on progress during the last four years. The effects of sample purification, composition of sieving matrices, electric field strength, temperature, wall coating and DNA labeling on the DNA sequencing performance are discussed. Multicapillary array instrumentation is compared with one-capillary systems. Integrated systems that perform the whole DNA sequencing operation online starting from the DNA amplification through base calling and data processing are discussed.
Collapse
Affiliation(s)
- V Dolník
- Molecular Dynamics, Sunnyvale, CA 94086, USA.
| |
Collapse
|
49
|
|
50
|
Kennedy RT, German I, Thompson JE, Witowski SR. Fast analytical-scale separations by capillary electrophoresis and liquid chromatography. Chem Rev 1999; 99:3081-132. [PMID: 11749511 DOI: 10.1021/cr980134j] [Citation(s) in RCA: 55] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- R T Kennedy
- Department of Chemistry, University of Florida, Gainesville, Florida 32611-7200
| | | | | | | |
Collapse
|