1
|
Fornai L, Angelini A, Klinkert I, Giskes F, Kiss A, Eijkel G, Hove EAAV, Klerk LA, Fedrigo M, Pieraccini G, Moneti G, Valente M, Thiene G, Heeren RMA. Three-dimensional molecular reconstruction of rat heart with mass spectrometry imaging. Anal Bioanal Chem 2012; 404:2927-38. [DOI: 10.1007/s00216-012-6451-3] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2012] [Revised: 09/17/2012] [Accepted: 09/21/2012] [Indexed: 01/03/2023]
|
2
|
Proteome reference map and regulation network of neonatal rat cardiomyocyte. Acta Pharmacol Sin 2011; 32:1116-27. [PMID: 21841810 DOI: 10.1038/aps.2011.86] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023] Open
Abstract
AIM To study and establish a proteome reference map and regulation network of neonatal rat cardiomyocyte. METHODS Cultured cardiomyocytes of neonatal rats were used. All proteins expressed in the cardiomyocytes were separated and identified by two-dimensional polyacrylamide gel electrophoresis (2-DE) and matrix-assisted laser desorption/ionization-time of flight mass spectrometry (MALDI-TOF MS). Biological networks and pathways of the neonatal rat cardiomyocytes were analyzed using the Ingenuity Pathway Analysis (IPA) program (www.ingenuity.com). A 2-DE database was made accessible on-line by Make2ddb package on a web server. RESULTS More than 1000 proteins were separated on 2D gels, and 148 proteins were identified. The identified proteins were used for the construction of an extensible markup language-based database. Biological networks and pathways were constructed to analyze the functions associate with cardiomyocyte proteins in the database. The 2-DE database of rat cardiomyocyte proteins can be accessed at http://2d.bjmu.edu.cn. CONCLUSION A proteome reference map and regulation network of the neonatal rat cardiomyocytes have been established, which may serve as an international platform for storage, analysis and visualization of cardiomyocyte proteomic data.
Collapse
|
3
|
González A, López B, Beaumont J, Ravassa S, Arias T, Hermida N, Zudaire A, Díez J. Cardiovascular translational medicine (III). Genomics and proteomics in heart failure research. Rev Esp Cardiol 2010; 62:305-13. [PMID: 19268076 DOI: 10.1016/s1885-5857(09)71561-0] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Abstract
Heart failure is a complex syndrome and is one of the main causes of morbidity and mortality in developed countries. Despite considerable research effort in recent years, heart failure prevention and treatment strategies still suffer significant limitations. New theoretical and technical approaches are, therefore, required. It is in this context that the "omic" sciences have a role to play in heart failure. The incorporation of "omic" methodologies into the study of human disease has substantially changed biological approaches to disease and has given an enormous impetus to the search for new disease mechanisms, as well as for novel biomarkers and therapeutic targets. The application of genomics, proteomics and metabonomics to heart failure research could increase our understanding of the origin and development of the different processes contributing to this syndrome, thereby enabling the establishment of specific diagnostic profiles and therapeutic templates that could help improve the poor prognosis associated with heart failure. This brief review contains a short description of the fundamental principles of the "omic" sciences and an evaluation of how these new techniques are currently contributing to research into human heart failure. The focus is mainly on the analysis of gene expression microarrays in the field of genomics and on studies using two-dimensional electrophoresis with mass spectrometry in the area of proteomics.
Collapse
Affiliation(s)
- Arantxa González
- Area de Ciencias Cardiovasculares, Centro de Investigación Médica, Universidad de Navarra, 31008 Pamplona, Navarra, Spain
| | | | | | | | | | | | | | | |
Collapse
|
4
|
Bottoni P, Giardina B, Scatena R. Proteomic profiling of heat shock proteins: An emerging molecular approach with direct pathophysiological and clinical implications. Proteomics Clin Appl 2009; 3:636-53. [DOI: 10.1002/prca.200800195] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
|
5
|
Nebrich G, Herrmann M, Hartl D, Diedrich M, Kreitler T, Wierling C, Klose J, Giavalisco P, Zabel C, Mao L. PROTEOMER: A workflow-optimized laboratory information management system for 2-D electrophoresis-centered proteomics. Proteomics 2009; 9:1795-808. [DOI: 10.1002/pmic.200800522] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
|
6
|
González A, López B, Beaumont J, Ravassa S, Arias T, Hermida N, Zudaire A, Díez J. La genómica y la proteómica en la investigación de la insuficiencia cardiaca. Rev Esp Cardiol (Engl Ed) 2009. [DOI: 10.1016/s0300-8932(09)70375-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|
7
|
Abstract
Heart diseases resulting in heart failure are among the leading causes of morbidity and mortality in developed countries. Underlying molecular causes of cardiac dysfunction in most heart diseases are still largely unknown but are expected to result from causal alterations in gene and protein expression. Proteomic technology now allows us to examine global alterations in protein expression in the diseased heart and can provide new insights into cellular mechanisms involved in cardiac dysfunction. The majority of proteomic investigations still use 2D gel electrophoresis (2-DE) with immobilized pH gradients to separate the proteins in a sample and combine this with mass spectrometry (MS) technologies to identify proteins. In spite of the development of novel gel-free technologies, 2-DE remains the only technique that can be routinely applied to parallel quantitative expression profiling of large sets of complex protein mixtures such as whole cell lysates. It can resolve >5000 proteins simultaneously (approximately 2000 proteins routinely) and can detect <1 ng of protein per spot. Furthermore, 2-DE delivers a map of intact proteins, which reflects changes in protein expression level, isoforms, or post-translational modifications. The use of proteomics to investigate heart disease should result in the generation of new diagnostic and therapeutic markers. In this article, we review the current status of proteomic technologies, describing the 2-DE proteomics workflow, with an overview of protein identification by MS and how these technologies are being applied to studies of human heart disease.
Collapse
|
8
|
Komatsu S. Rice proteome database: a step toward functional analysis of the rice genome. PLANT MOLECULAR BIOLOGY 2005; 59:179-90. [PMID: 16217611 DOI: 10.1007/s11103-005-2160-z] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/11/2004] [Accepted: 02/11/2005] [Indexed: 05/04/2023]
Abstract
The technique of proteome analysis using two-dimensional polyacrylamide gel electrophoresis (2D-PAGE) has the power to monitor global changes that occur in the protein complement of tissues and subcellular compartments. In this study, the proteins of rice were cataloged, a rice proteome database was constructed, and a functional characterization of some of the identified proteins was undertaken. Proteins extracted from various tissues and subcellular compartments in rice were separated by 2D-PAGE and an image analyzer was used to construct a display of the proteins. The Rice Proteome Database contains 23 reference maps based on 2D-PAGE of proteins from various rice tissues and subcellular compartments. These reference maps comprise 13129 identified proteins, and the amino acid sequences of 5092 proteins are entered in the database. Major proteins involved in growth or stress responses were identified using the proteome approach. Some of these proteins, including a beta-tubulin, calreticulin, and ribulose-1,5-bisphosphate carboxylase/oxygenase activase in rice, have unexpected functions. The information obtained from the Rice Proteome Database will aid in cloning the genes for and predicting the function of unknown proteins.
Collapse
Affiliation(s)
- Setsuko Komatsu
- Department of Molecular Genetics, National Institute of Agrobiological Sciences, Tsukuba 305-8602, Japan.
| |
Collapse
|
9
|
Komatsu S, Tanaka N. Rice proteome analysis: A step toward functional analysis of the rice genome. Proteomics 2005; 5:938-49. [PMID: 15627974 DOI: 10.1002/pmic.200401040] [Citation(s) in RCA: 51] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
The technique of proteome analysis using 2-DE has the power to monitor global changes that occur in the protein complement of tissues and subcellular compartments. In this review, we describe construction of the rice proteome database, the cataloging of rice proteins, and the functional characterization of some of the proteins identified. Initially, proteins extracted from various tissues and organelles were separated by 2-DE and an image analyzer was used to construct a display or reference map of the proteins. The rice proteome database currently contains 23 reference maps based on 2-DE of proteins from different rice tissues and subcellular compartments. These reference maps comprise 13 129 rice proteins, and the amino acid sequences of 5092 of these proteins are entered in the database. Major proteins involved in growth or stress responses have been identified by using a proteomics approach and some of these proteins have unique functions. Furthermore, initial work has also begun on analyzing the phosphoproteome and protein-protein interactions in rice. The information obtained from the rice proteome database will aid in the molecular cloning of rice genes and in predicting the function of unknown proteins.
Collapse
Affiliation(s)
- Setsuko Komatsu
- Department of Molecular Genetics, National Institute of Agrobiological Sciences, Tsukuba, Japan.
| | | |
Collapse
|
10
|
Hirayama E, Atagi H, Hiraki A, Kim J. Heat shock protein 70 is related to thermal inhibition of nuclear export of the influenza virus ribonucleoprotein complex. J Virol 2004; 78:1263-70. [PMID: 14722281 PMCID: PMC321380 DOI: 10.1128/jvi.78.3.1263-1270.2004] [Citation(s) in RCA: 64] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The influenza virus genome replicates and forms a viral ribonucleoprotein complex (vRNP) with nucleoprotein (NP) and RNA polymerases in the nuclei of host cells. vRNP is then exported into the cytoplasm for viral morphogenesis at the cell membrane. Matrix protein 1 (M1) and nonstructural protein 2/nuclear export protein (NS2/NEP) work in the nuclear export of vRNP by associating with it. It was previously reported that influenza virus production was inhibited in Madin-Darby canine kidney (MDCK) cells cultured at 41 degrees C because nuclear export of vRNP was blocked by the dissociation of M1 from vRNP (A. Sakaguchi, E. Hirayama, A. Hiraki, Y. Ishida, and J. Kim, Virology 306:244-253, 2003). Previous data also suggested that a certain protein(s) synthesized only at 41 degrees C inhibited the association of M1 with vRNP. The potential of heat shock protein 70 (HSP70) as a candidate obstructive protein was investigated. Induction of HSP70 by prostaglandin A1 (PGA1) at 37 degrees C caused the suppression of virus production. The nuclear export of viral proteins was inhibited by PGA1, and M1 was not associated with vRNP, indicating that HSP70 prevents M1 from binding to vRNP. An immunoprecipitation assay showed that HSP70 was bound to vRNP, suggesting that the interaction of HSP70 with vRNP is the reason for the dissociation of M1. Moreover, NS2 accumulated in the nucleoli of host cells cultured at 41 degrees C, showing that the export of NS2 was also disturbed at 41 degrees C. However, NS2 was exported normally from the nucleus, irrespective of PGA1 treatment at 37 degrees C, suggesting that HSP70 does not influence NS2.
Collapse
Affiliation(s)
- Etsuko Hirayama
- Institute of Molecular and Cellular Biology for Pharmaceutical Sciences, Kyoto Pharmaceutical University, 1, Shichonocho, Misasagi, Yamashina-ku, Kyoto 607-8412, Japan
| | | | | | | |
Collapse
|
11
|
Komatsu S, Kojima K, Suzuki K, Ozaki K, Higo K. Rice Proteome Database based on two-dimensional polyacrylamide gel electrophoresis: its status in 2003. Nucleic Acids Res 2004; 32:D388-92. [PMID: 14681440 PMCID: PMC308755 DOI: 10.1093/nar/gkh020] [Citation(s) in RCA: 70] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
The Rice Proteome Database is the first detailed database to describe the proteome of rice. The current release contains 21 reference maps based on two-dimensional polyacrylamide gel electrophoresis (2D-PAGE) of proteins from rice tissues and subcellular compartments. These reference maps comprise 11 941 identified proteins showing tissue and subcellular localization, corresponding to 4180 separate protein entries in the database. The Rice Proteome Database contains the calculated properties of each protein such as molecular weight, isoelectric point and expression; experimentally determined properties such as amino acid sequences obtained using protein sequencers and mass spectrometry; and the results of database searches such as sequence homologies. The database is searchable by keyword, accession number, protein name, isoelectric point, molecular weight and amino acid sequence, or by selection of a spot on one of the 2D-PAGE reference maps. Cross-references are provided to tools for proteomics and to other 2D-PAGE databases, which in turn provide many links to other molecular databases. The information in the Rice Proteome Database is updated weekly, and is available on the World Wide Web at http://gene64.dna.affrc.go.jp/RPD/.
Collapse
Affiliation(s)
- Setsuko Komatsu
- National Institute of Agrobiological Sciences, 2-1-2 Kannondai, Tsukuba, Ibaraki 305-8602, Japan.
| | | | | | | | | |
Collapse
|
12
|
Abstract
Heart diseases resulting in heart failure are among the leading causes of morbidity and mortality in developed countries. The underlying molecular causes of cardiac dysfunction in most heart diseases are still largely unknown, but are likely to result from underlying alterations in gene and protein expression. Proteomics now allows us to examine global alterations in protein expression in the diseased heart and will provide new insights into cellular mechanisms involved in cardiac dysfunction and should also result in the generation of new diagnostic and therapeutic markers. In this article we review the current status of proteomic technologies and describe how these are being applied to studies of human heart disease.
Collapse
Affiliation(s)
- Emma McGregor
- Proteome Sciences plc, Kings College, University of London, London SE5 8AF, UK.
| | | |
Collapse
|
13
|
Abstract
Proteomics is a research field aiming to characterize molecular and cellular dynamics in protein expression and function on a global level. The introduction of proteomics has been greatly broadening our view and accelerating our path in various medical researches. The most significant advantage of proteomics is its ability to examine a whole proteome or sub-proteome in a single experiment so that the protein alterations corresponding to a pathological or biochemical condition at a given time can be considered in an integrated way. Proteomic technology has been extensively used to tackle a wide variety of medical subjects including biomarker discovery and drug development. By complement with other new technique advances in genomics and bioinformatics, proteomics has a great potential to make considerable contribution to biomarker identification and to revolutionize drug development process. This article provides a brief overview of the proteomic technologies and their application in biomarker discovery and drug development.
Collapse
Affiliation(s)
- Qing-Yu He
- Department of Chemistry, University of Hong Kong, Pokfulam, Hong Kong, China.
| | | |
Collapse
|
14
|
Jäger D, Jungblut PR, Müller-Werdan U. Separation and identification of human heart proteins. J Chromatogr B Analyt Technol Biomed Life Sci 2002; 771:131-53. [PMID: 12015996 DOI: 10.1016/s1570-0232(02)00039-9] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
Heart failure is not a uniform disease entity, but a syndrome with various causes, including hypertension, ischemia and congenital heart disease, cardiomyopathy, myocarditis and intoxication. During the recent years a number of molecular and cellular alterations have been identified in the diseased heart, but a direct causative link between these changes and functional impairment, medical responsiveness, progression of the disease and the patients' outcome remains to be established. After an accumulation of large amounts of DNA sequence data in genomic projects, scientists have now turned their attention to the central executors of all programs of life, the proteins. In complementation of the genomic initiatives, proteomics based approaches have lined up not only for large-scale identification of proteins and their post-translational modifications, but also to study the function of protein complexes, protein-protein interactions and regulatory and signalling cascades in the cellular network. In concert with genomic data functional proteomics will hold the key for a better understanding and therapeutical management of cardiovascular diseases in the future.
Collapse
Affiliation(s)
- D Jäger
- Department of Medicine III, Martin-Luther University, Halle-Wittenberg, Germany.
| | | | | |
Collapse
|
15
|
Laussmann T, Janosi RA, Fingas CD, Schlieper GR, Schlack W, Schrader J, Decking UKM. Myocardial proteome analysis reveals reduced NOS inhibition and enhanced glycolytic capacity in areas of low local blood flow. FASEB J 2002; 16:628-30. [PMID: 11919176 DOI: 10.1096/fj.01-0574fje] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
In the heart, in situ local myocardial blood flow (MBF) varies greater than 10-fold between individual areas and displays a spatially heterogeneous pattern. To analyze its molecular basis, we analyzed protein expression of low and high flow samples (300 mg, <50% or >150% of mean MBF, each n=30) of six beagle dogs by 2-D polyacrylamide gel electrophoresis (380 +/- 78 spots/gel). In low flow samples, dimethylarginine dimethylaminohydrolase (DDAH1) was increased greatly (+377%, compared with high flow samples). This increase resulted in a 75% reduction of asymmetric dimethylarginine (ADMA), the potent endogenous inhibitor of NO synthase, whereas eNOS showed no difference. Low flow samples exhibited enhanced expression of GAPDH (+89%) and phosphoglycerate kinase (+100%), whereas hydroxyacyl-CoA dehydrogenase, electron transfer flavoprotein, myoglobin, and desmin were decreased. Assessing local MBF on different days within 2 weeks revealed a high degree of MBF stability (r2 > 0.79). Thus, stable differences in local MBF are associated with significant differences in local gene and protein expression. In low flow areas, the increased DDAH1 reduces ADMA concentration and NOS inhibition, which strongly suggests enhanced NO formation. Low flow areas are also characterized by a higher glycolytic and a lower fatty acid oxidation capacity. Both the shift in substrate utilization and the rise in NO may contribute to the known lower oxygen consumption in these areas.
Collapse
Affiliation(s)
- Tim Laussmann
- Department of Physiology, Heinrich-Heine-University Düsseldorf, Germany
| | | | | | | | | | | | | |
Collapse
|
16
|
Abstract
The development of proteomics is a timely one for cardiovascular research. Analyses at the organ, subcellular, and molecular levels have revealed dynamic, complex, and subtle intracellular processes associated with heart and vascular disease. The power and flexibility of proteomic analyses, which facilitate protein separation, identification, and characterization, should hasten our understanding of these processes at the protein level. Properly applied, proteomics provides researchers with cellular protein "inventories" at specific moments in time, making it ideal for documenting protein modification due to a particular disease, condition, or treatment. This is accomplished through the establishment of species- and tissue-specific protein databases, providing a foundation for subsequent proteomic studies. Evolution of proteomic techniques has permitted more thorough investigation into molecular mechanisms underlying cardiovascular disease, facilitating identification not only of modified proteins but also of the nature of their modification. Continued development should lead to functional proteomic studies, in which identification of protein modification, in conjunction with functional data from established biochemical and physiological methods, has the ability to further our understanding of the interplay between proteome change and cardiovascular disease.
Collapse
Affiliation(s)
- D K Arrell
- Departments of Physiology, Queen's University, Kingston, Ontario, Canada
| | | | | |
Collapse
|
17
|
Verrills NM, Harry JH, Walsh BJ, Hains PG, Robinson ES. Cross-matching marsupial proteins with eutherian mammal databases: proteome analysis of cells from UV-induced skin tumours of an opossum (Monodelphis domestica). Electrophoresis 2000; 21:3810-22. [PMID: 11271499 DOI: 10.1002/1522-2683(200011)21:17<3810::aid-elps3810>3.0.co;2-3] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
The identification and characterisation of Monodelphis proteins has required cross-species analysis. Protein expression was investigated in normal, nonirradiated adult fibroblasts and also in fibroblastic cells from a benign cutaneous tumour after chronic ultraviolet (UVB) exposure and a metastatic cutaneous tumour after intermittent exposure. Proteins were separated and visualised by two-dimensional gel electrophoresis (2-D PAGE) and a peptide mass fingerprint (PMF) was obtained for protein spots using matrix assisted laser desorption/ionisation-time of flight-mass spectrometry (MALDITOF-MS). Cross-species PMF database analysis facilitated the identification of 120 proteins, constituting 46.5% of the proteins analysed. The identification of two proteins was confirmed by internal amino acid sequencing using tandem MS. Differential protein expression was observed between normal fibroblasts and those in tumours chronically or intermittently exposed. A number of tropomyosin and vimentin isoforms were expressed only in cells from the metastatic tumour induced by intermittent exposure to UV radiation. These results highlight the value of cross-species PMF analysis for the rapid characterisation of proteins from a poorly defined species and also show how proteomics can be used to detect changes in protein expression in differentially treated cells.
Collapse
Affiliation(s)
- N M Verrills
- Australian Proteome Analysis Facility, Macquarie University, Sydney.
| | | | | | | | | |
Collapse
|
18
|
Abstract
Mass spectrometry (MS) has become the technique of choice to identify proteins. This has been largely accomplished by the combination of high-resolution two-dimensional (2-D) gel separation with robotic sample preparation, automated MS measurement, data analysis, and database query. Developments during the last five years in MS associated with protein gel separation are reviewed.
Collapse
Affiliation(s)
- H W Lahm
- F. Hoffmann-LaRoche Ltd., Pharmaceutical Research, Roche Genetics, Basel, Switzerland.
| | | |
Collapse
|
19
|
Abstract
The pathogenic mechanisms underlying cardiac dysfunction in heart disease are still largely unknown. It is likely, though, that significant alterations in myocardial gene and protein expression underlie these disease processes and determine their progression and outcome. Most molecular studies of cardiac dysfunction have been carried out on specific cellular systems. However, the application of the proteomic approach to the study of heart disease has made it possible to characterize global alterations in protein expression. This promises new insights into the cellular mechanisms involved in cardiac dysfunction and is likely to result in the discovery of novel diagnostic markers and new therapeutic opportunities.
Collapse
|
20
|
Hoogland C, Sanchez JC, Tonella L, Binz PA, Bairoch A, Hochstrasser DF, Appel RD. The 1999 SWISS-2DPAGE database update. Nucleic Acids Res 2000; 28:286-8. [PMID: 10592248 PMCID: PMC102456 DOI: 10.1093/nar/28.1.286] [Citation(s) in RCA: 74] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/1999] [Accepted: 10/07/1999] [Indexed: 11/13/2022] Open
Abstract
SWISS-2DPAGE (http://www.expasy.ch/ch2d/ ) is an annotated two-dimensional polyacrylamide gel electro-phoresis (2-DE) database established in 1993. The current release contains 24 reference maps from human and mouse biological samples, as well as from Saccharomyces cerevisiae, Escherichia coli and Dictyostelium discoideum origin. These reference maps have now 2824 identified spots, corresponding to 614 separate protein entries in the database, in addition to virtual entries for each SWISS-PROT sequence or any user-entered amino acids sequence. Last year improvements in the SWISS-2DPAGE database are as follows: three new maps have been created and several others have been updated; cross-references to newly built federated 2-DE databases have been added; new functions to access the data have been provided through the ExPASy proteomics server.
Collapse
Affiliation(s)
- C Hoogland
- Swiss Institute of Bioinformatics, 1 rue Michel-Servet, CH-1211 Genève 4, Switzerland.
| | | | | | | | | | | | | |
Collapse
|
21
|
Mollenkopf HJ, Jungblut PR, Raupach B, Mattow J, Lamer S, Zimny-Arndt U, Schaible UE, Kaufmann SH. A dynamic two-dimensional polyacrylamide gel electrophoresis database: the mycobacterial proteome via Internet. Electrophoresis 1999; 20:2172-80. [PMID: 10493122 DOI: 10.1002/(sici)1522-2683(19990801)20:11<2172::aid-elps2172>3.0.co;2-m] [Citation(s) in RCA: 55] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
Proteome analysis by two-dimensional polyacrylamide gel electrophoresis (2-D PAGE) and mass spectrometry, in combination with protein chemical methods, is a powerful approach for the analysis of the protein composition of complex biological samples. Data organization is imperative for efficient handling of the vast amount of information generated. Thus we have constructed a 2-D PAGE database to store and compare protein patterns of cell-associated and culture-supernatant proteins of different mycobacterial strains. In accordance with the guidelines for federated 2-DE databases, we developed a program that generates a dynamic 2-D PAGE database for the World-Wide-Web to organise and publish, via the internet, our results from proteome analysis of different Mycobacterium tuberculosis as well as Mycobacterium bovis BCG strains. The uniform resource locator for the database is http://www.mpiib-berlin.mpg.de/2D-PAGE and can be read with a Java compatible browser. The interactive hypertext markup language documents displayed are generated dynamically in each individual session from a rational data file, a 2-D gel image file and a map file describing the protein spots as polygons. The program consists of common gateway interface scripts written in PERL, minimizing the administrative workload of the database. Furthermore, the database facilitates not only interactive use, but also worldwide active participation of other scientific groups with their own data, requiring only minimal computer hardware and knowledge of information technology.
Collapse
Affiliation(s)
- H J Mollenkopf
- Max-Planck-Institute for Infection Biology, Department of Immunology, Berlin, Germany.
| | | | | | | | | | | | | | | |
Collapse
|
22
|
Heinke MY, Wheeler CH, Yan JX, Amin V, Chang D, Einstein R, Dunn MJ, dos Remedios CG. Changes in myocardial protein expression in pacing-induced canine heart failure. Electrophoresis 1999; 20:2086-93. [PMID: 10451120 DOI: 10.1002/(sici)1522-2683(19990701)20:10<2086::aid-elps2086>3.0.co;2-4] [Citation(s) in RCA: 61] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
Canine rapid ventricular pacing produces a low output cardiomyopathic state which is similar to dilated cardiomyopathy. In this study dogs were paced at 245 beats per minute (bpm) for 3-4 weeks until signs of heart failure were apparent. Unpaced dogs were used as controls. A previous study identified myocardial protein changes in the pH region 4-7 following ventricular pacing by using two-dimensional electrophoresis (2-DE) (Heinke et al., Electrophoresis 1998 19, 2021-2030). Many of these proteins were associated with mitochondria, energy metabolism within the cardiomyocyte, the cytoskeleton and calcium cycling. The present study aimed to examine the proteins migrating in the more basic region of the 2-DE pattern using immobilised pH gradient 3-10 strips to separate myocardial proteins. The expression of 31 proteins was altered in the paced myocardium: 21 were decreased and 10 increased. Following the identification of 23 of these spots by either amino acid compositional analysis or peptide mass fingerprinting or a combination of both, we confirm that many of the proteins whose expression is altered following ventricular pacing are associated with the mitochondria and energy production within the cardiomyocyte, including creatine kinase M, triosephosphate isomerase, phosphoglycerate mutase, cytochrome c oxidase, cytochrome b5, hydroxymethyl glutaryl CoA synthase, myoglobin, and 3,2-trans-enoyl-CoA transferase. Additionally, the cytoskeletal protein actin was increased in the paced hearts. These results strongly support the notion that energy production is impaired and mitochondrial dysfunction is involved in the development of heart failure in the paced dog.
Collapse
Affiliation(s)
- M Y Heinke
- Institute for Biomedical Research, The University of Sydney, NSW, Australia.
| | | | | | | | | | | | | | | |
Collapse
|
23
|
Wilkins MR, Gasteiger E, Wheeler CH, Lindskog I, Sanchez JC, Bairoch A, Appel RD, Dunn MJ, Hochstrasser DF. Multiple parameter cross-species protein identification using MultiIdent--a world-wide web accessible tool. Electrophoresis 1998; 19:3199-206. [PMID: 9932815 DOI: 10.1002/elps.1150191824] [Citation(s) in RCA: 43] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
Recent increases in the number of genome sequencing projects means that the amount of protein sequence in databases is increasing at an astonishing pace. In proteome studies, this is facilitating the identification of proteins from molecularly well-defined organisms. However, in studies of proteins from the majority of organisms, proteins must be identified by comparing analytical data to sequences in databases from other species. This process is known as cross-species protein identification. Here we present a new program, MultiIdent, which uses multiple protein parameters such as amino acid composition, peptide masses, sequence tags, estimated protein pI and mass, to achieve cross-species protein identification. The program is structured so that protein amino acid composition, which is highly conserved across species boundaries, first generates a set of candidate proteins. These proteins are then queried with other protein parameters such as sequence tags and peptide masses. A final list of database entries which considers all analytical parameters is presented, ranked by an integrated score. We illustrate the power of the approach with the identification of a set of standard proteins, and the identification of proteins from dog heart separated by two-dimensional gel electrophoresis. The MultiIdent program is available on the world-wide web at: http://www.expasy.ch/sprot/multiident.h tml.
Collapse
Affiliation(s)
- M R Wilkins
- Central Clinical Chemistry Laboratory, Geneva University Hospital, Geneve, Switzerland.
| | | | | | | | | | | | | | | | | |
Collapse
|
24
|
Heinke MY, Wheeler CH, Chang D, Einstein R, Drake-Holland A, Dunn MJ, dos Remedios CG. Protein changes observed in pacing-induced heart failure using two-dimensional electrophoresis. Electrophoresis 1998; 19:2021-30. [PMID: 9740064 DOI: 10.1002/elps.1150191122] [Citation(s) in RCA: 59] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
Rapid ventricular pacing in dogs results in a low output cardiomyopathic state which is similar to idiopathic dilated cardiomyopathy in man. However, the pathophysiological mechanisms which cause this failure following pacing are unknown. Five dogs underwent rapid ventricular pacing. Hearts were stimulated at 245 beats per min (bpm) for four weeks and then reduced to 190 bpm to stabilize the failure. Six unoperated dogs were used as controls. This paper compares the two-dimensional gel electrophoresis (2-DE) protein patterns of left ventricular samples from the paced myocardium with the control dogs. Changes in protein expression were analyzed qualitatively and semi-quantitatively. In the paced dog samples 69 protein spots were significantly altered of which 42 were decreased and 27 were elevated. One qualitative change was observed: elongation factor Tu was present only the control hearts. Of these proteins, 20 have been identified by a combination of N-terminal protein microsequencing, peptide mass profiling by mass spectrometry, amino acid compositional analysis, and by comparison with databases of canine and human ventricular proteins. Ten of these are associated with mitochondria and energy production, including: pyruvate dehydrogenase E1 component, isocitrate dehydrogenase subunit alpha, HSP60 and HSP70, creatine kinase M and fatty acid binding protein. The cytoskeletal protein desmin was detected in reduced quantities and a spot corresponding to a fragment of desmin was increased. These results indicate that the development of heart failure in the paced dog involves alterations in mitochondrial energy production, the cytoskeleton and calcium activation.
Collapse
Affiliation(s)
- M Y Heinke
- Muscle Research Unit, Institute of Biomedical Research, The University of Sydney, NSW, Australia.
| | | | | | | | | | | | | |
Collapse
|