1
|
Chromikova V, Mader A, Hofbauer S, Göbl C, Madl T, Gach JS, Bauernfried S, Furtmüller PG, Forthal DN, Mach L, Obinger C, Kunert R. Introduction of germline residues improves the stability of anti-HIV mAb 2G12-IgM. BIOCHIMICA ET BIOPHYSICA ACTA-PROTEINS AND PROTEOMICS 2015; 1854:1536-44. [PMID: 25748881 PMCID: PMC4582045 DOI: 10.1016/j.bbapap.2015.02.018] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/23/2014] [Revised: 02/16/2015] [Accepted: 02/24/2015] [Indexed: 11/02/2022]
Abstract
Immunoglobulins M (IgMs) are gaining increasing attention as biopharmaceuticals since their multivalent mode of binding can give rise to high avidity. Furthermore, IgMs are potent activators of the complement system. However, they are frequently difficult to express recombinantly and can suffer from low conformational stability. Here, the broadly neutralizing anti-HIV-1 antibody 2G12 was class-switched to IgM and then further engineered by introduction of 17 germline residues. The impact of these changes on the structure and conformational stability of the antibody was then assessed using a range of biophysical techniques. We also investigated the effects of the class switch and germline substitutions on the ligand-binding properties of 2G12 and its capacity for HIV-1 neutralization. Our results demonstrate that the introduced germline residues improve the conformational and thermal stability of 2G12-IgM without altering its overall shape and ligand-binding properties. Interestingly, the engineered protein was found to exhibit much lower neutralization potency than its wild-type counterpart, indicating that potent antigen recognition is not solely responsible for IgM-mediated HIV-1 inactivation.
Collapse
Affiliation(s)
- Veronika Chromikova
- Department of Biotechnology, Vienna Institute of BioTechnology at BOKU, University of Natural Resources and Life Sciences, Vienna, Austria
| | - Alexander Mader
- Department of Biotechnology, Vienna Institute of BioTechnology at BOKU, University of Natural Resources and Life Sciences, Vienna, Austria
| | - Stefan Hofbauer
- Department of Chemistry, Division of Biochemistry, Vienna Institute of BioTechnology at BOKU, University of Natural Resources and Life Sciences, Vienna, Austria; Department for Structural and Computational Biology, Max F. Perutz Laboratories, University of Vienna, Austria
| | - Christoph Göbl
- Center for Integrated Protein Science Munich at Chair of Biomolecular NMR Spectroscopy, Department of Chemistry, Technical University Munich, Garching, Germany; Institute of Structural Biology, Helmholtz Center Munich, Neuherberg, Germany
| | - Tobias Madl
- Center for Integrated Protein Science Munich at Chair of Biomolecular NMR Spectroscopy, Department of Chemistry, Technical University Munich, Garching, Germany; Institute of Structural Biology, Helmholtz Center Munich, Neuherberg, Germany; Institute of Molecular Biology and Biochemistry, Center of Molecular Medicine, Medical University of Graz, Austria
| | - Johannes S Gach
- Department of Medicine, Division of Infectious Diseases, University of CA, Irvine, USA
| | - Stefan Bauernfried
- Department of Biotechnology, Vienna Institute of BioTechnology at BOKU, University of Natural Resources and Life Sciences, Vienna, Austria
| | - Paul G Furtmüller
- Department of Chemistry, Division of Biochemistry, Vienna Institute of BioTechnology at BOKU, University of Natural Resources and Life Sciences, Vienna, Austria
| | - Donald N Forthal
- Department of Medicine, Division of Infectious Diseases, University of CA, Irvine, USA
| | - Lukas Mach
- Department of Applied Genetics and Cell Biology, Vienna Institute of BioTechnology at BOKU, University of Natural Resources and Life Sciences, Vienna, Austria
| | - Christian Obinger
- Department of Chemistry, Division of Biochemistry, Vienna Institute of BioTechnology at BOKU, University of Natural Resources and Life Sciences, Vienna, Austria.
| | - Renate Kunert
- Department of Biotechnology, Vienna Institute of BioTechnology at BOKU, University of Natural Resources and Life Sciences, Vienna, Austria.
| |
Collapse
|
2
|
Reichel C, Thevis M. Detection of EPO-Fc fusion protein in human blood: screening and confirmation protocols for sports drug testing. Drug Test Anal 2012; 4:818-29. [PMID: 22764129 DOI: 10.1002/dta.1381] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2012] [Revised: 05/13/2012] [Accepted: 05/14/2012] [Indexed: 11/09/2022]
Abstract
The neonatal Fc receptor (FcRn) has been under investigation for several years as a pharmaceutical drug target. Clinical studies have shown that fusion proteins consisting of human recombinant erythropoietin (rhEPO) and the Fc-part of IgG can be transported after pulmonary administration via FcRn across the airway epithelium to the blood stream. So far, no clinically approved pharmaceutical formulation of EPO-Fc is available. Since various forms of recombinant erythropoietins have been frequently misused by athletes as performance-enhancing agents, EPO-Fc might play a similar role in sports in the future. In order to investigate the detectability of EPO-Fc in human blood, different strategies were tested and developed. Only two of them fulfilled the necessary requirements regarding sensitivity and specificity. A rapid protocol useful for screening purposes first enriches EPO-Fc from human serum via high capacity protein A beads and subsequently detects EPO-Fc in the eluate with a commercial EPO ELISA kit. The limit of detection (LOD) of the method is about 5 pg (45 amol) EPO-Fc and is independent of the serum volume used. For screening and/or confirmation purposes a second protocol was evaluated, which consists of a fast EPO immunopurification step followed by sodium dodecyl sulfate or sarcosyl polyacrylamide gel electrophoresis (SDS-PAGE, SAR-PAGE) and Western double-blotting with chemiluminescence detection - a method already established in routine EPO anti-doping control. The latter strategy allows the detection of EPO-Fc in serum together with all other recombinant erythropoietins and with an identical LOD (5 pg/45 amol) as for the rapid screening protocol.
Collapse
Affiliation(s)
- Christian Reichel
- Doping Control Laboratory, AIT Seibersdorf Laboratories, A-2444 Seibersdorf, Austria.
| | | |
Collapse
|
3
|
Zhang P, Lifen Tan D, Heng D, Wang T, Mariati, Yang Y, Song Z. A functional analysis of N-glycosylation-related genes on sialylation of recombinant erythropoietin in six commonly used mammalian cell lines. Metab Eng 2010; 12:526-36. [DOI: 10.1016/j.ymben.2010.08.004] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2010] [Revised: 07/28/2010] [Accepted: 08/31/2010] [Indexed: 12/30/2022]
|
4
|
Vorauer-Uhl K, Wallner J, Lhota G, Katinger H, Kunert R. IgM characterization directly performed in crude culture supernatants by a new simple electrophoretic method. J Immunol Methods 2010; 359:21-7. [PMID: 20493871 DOI: 10.1016/j.jim.2010.05.003] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2010] [Revised: 05/11/2010] [Accepted: 05/12/2010] [Indexed: 11/25/2022]
Abstract
A new electrophoretic technique for the qualitative and quantitative analyses of IgM isoforms and fragments has been developed. IgMs which are more complex than many other recombinantly expressed immunoglobulins are characterized by their high molecular weighted active forms and many additional isoforms and fragments in the molecular range between 25 and 1200kDa. To analyze the multimers, isoforms and fragments simultaneously a high-resolution method, which enables sufficient migration and separation is required. Furthermore, this method should be appropriate to analyze IgMs in crude culture supernatants as well as purified samples. Simple sample preparation avoiding unspecific protein loss has been established. Currently no standard method to analyze all of them accordingly is available. The IgM-SDS-PAGE investigated for this purpose includes all these aspects. The combination of simple sample preparation and the application of precast gels make this electrophoretic method suitable for research but also quality control. The selective quantification of the multimers and the relative isoform distribution were performed by sensitive Sypro Ruby staining obtaining reliable and reproducible data in clone screening and process development which has been demonstrated by recombinantly expressed IgMs with significantly different isoform pattern.
Collapse
Affiliation(s)
- Karola Vorauer-Uhl
- Department of Biotechnology, University of Natural Resources and Applied Life Sciences, Muthgasse 18, A-1190 Vienna, Austria.
| | | | | | | | | |
Collapse
|
6
|
Sommer GJ, Singh AK, Hatch AV. On-chip isoelectric focusing using photopolymerized immobilized pH gradients. Anal Chem 2008; 80:3327-33. [PMID: 18341355 DOI: 10.1021/ac702523g] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
We present the first successful adaptation of immobilized pH gradients (IPGs) to the microscale (muIPGs) using a new method for generating precisely defined polymer gradients on-chip. Gradients of monomer were established via diffusion along 6 mm flow-restricted channel segments. Precise control over boundary conditions and the resulting gradient is achieved by continuous flow of stock solutions through side channels flanking the gradient segment. Once the desired gradient is established, it is immobilized via photopolymerization. Precise gradient formation was verified with spatial and temporal detection of a fluorescent dye added to one of the flanking streams. Rapid (<20 min) isoelectric focusing of several fluorescent pI markers and proteins is demonstrated across pH 3.8-7.0 muIPGs using both denaturing and nondenaturing conditions, without the addition of carrier ampholytes. The muIPG format yields improved stability and comparable resolution to prominent on-chip IEF techniques. In addition to rapid, high-resolution separations, the reported muIPG format is amenable to multiplexed and multidimensional analysis via custom gradients as well as integration with other on-chip separation methods.
Collapse
Affiliation(s)
- Greg J Sommer
- Biosystems Research Department, Sandia National Laboratories, Livermore, California 94551, USA
| | | | | |
Collapse
|