1
|
Li J, Sun Y, Liu L, Zhao H, Zhao W, He L, Zhang S. Fabrication and evaluation of tetraazahexaphenylmacrocycle-bonded stationary phase with multiple retention mechanisms. J Chromatogr A 2021; 1651:462296. [PMID: 34144400 DOI: 10.1016/j.chroma.2021.462296] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2021] [Revised: 05/22/2021] [Accepted: 05/25/2021] [Indexed: 11/17/2022]
Abstract
A 34-membered tetraazahexaphenylmacrocycle (N4Ph6) with a rigid π-conjugated moiety was chemically bonded to silica gel with 3-chloropropyltrimethoxysilane as the coupling agent to prepare a novel SiO2@N4Ph6 stationary phase. Several common organic analytes, including alkylbenzenes, polycyclic aromatic hydrocarbons, anilines, phenols, phthalates, and folic acid, were selected as probes to investigate its chromatographic performance. The as-developed SiO2@N4Ph6 stationary phase showed superiority retention and high selectivity for probe molecules through multiple interactions, including hydrophobic, π-π, hydrogen-bonding, and steric interactions. Density functional theory calculation results using folic acid as model solute provided an intuitive and a quantitative description of the multiple retention mechanisms.
Collapse
Affiliation(s)
- Junnan Li
- School of Chemistry and Chemical Engineering, Henan University of Technology, Zhengzhou 450001, China
| | - Yaming Sun
- School of Chemistry and Chemical Engineering, Henan University of Technology, Zhengzhou 450001, China; Key Laboratory of Accurate Separation and Analysis for Complex Matrix of Zhengzhou City, Zhengzhou 450001, China.
| | - Longhui Liu
- School of Chemistry and Chemical Engineering, Henan University of Technology, Zhengzhou 450001, China
| | - Hailiang Zhao
- School of Environmental Engineering, Henan University of Technology, Zhengzhou, 450001, China
| | - Wenjie Zhao
- School of Chemistry and Chemical Engineering, Henan University of Technology, Zhengzhou 450001, China; Key Laboratory of Accurate Separation and Analysis for Complex Matrix of Zhengzhou City, Zhengzhou 450001, China
| | - Lijun He
- School of Chemistry and Chemical Engineering, Henan University of Technology, Zhengzhou 450001, China; Key Laboratory of Accurate Separation and Analysis for Complex Matrix of Zhengzhou City, Zhengzhou 450001, China.
| | - Shusheng Zhang
- Center for Modern Analysis and Gene Sequencing, Zhengzhou University, Zhengzhou 450001, China
| |
Collapse
|
2
|
Kip Ç, Erkakan D, Gökaltun A, Çelebi B, Tuncel A. Synthesis of a reactive polymethacrylate capillary monolith and its use as a starting material for the preparation of a stationary phase for hydrophilic interaction chromatography. J Chromatogr A 2015; 1396:86-97. [PMID: 25900740 DOI: 10.1016/j.chroma.2015.04.005] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2014] [Revised: 04/01/2015] [Accepted: 04/02/2015] [Indexed: 12/18/2022]
Abstract
Poly(3-chloro-2-hydroxypropyl methacrylate-co-ethylene dimethacrylate), poly(HPMA-Cl-co-EDMA) capillary monolith was proposed as a reactive starting material with tailoring flexibility for the preparation of monolithic stationary phases. The reactive capillary monolith was synthesized by free radical copolymerization of 3-chloro-2-hydroxypropyl methacrylate (HPMA-Cl) and ethylene dimethacrylate (EDMA). The mean pore size, the specific surface area and the permeability of poly(HPMA-Cl-co-EDMA) monoliths were controlled by adjusting porogen/monomer volume ratio, porogen composition and polymerization temperature. The porogen/monomer volume ratio was found as the most effective factor controlling the porous properties of poly(HPMA-Cl-co-EDMA) monolith. Triethanolamine (TEA-OH) functionalized polymethacrylate monoliths were prepared by using the reactive chloropropyl group of poly(HPMA-Cl-co-EDMA) monolith via one-pot and simple post-functionalization process. Poly(HPMA-Cl-co-EDMA) monolith reacted with TEA-OH was evaluated as a stationary phase in nano-hydrophilic interaction chromatography (nano-HILIC). Nucleotides, nucleosides and benzoic acid derivatives were satisfactorily separated with the plate heights up to 20μm. TEA-OH attached-poly(HPMA-Cl-co-EDMA) monolith showed a reproducible and stable retention behaviour in nano-HILIC runs. However, a decrease in the column performance (i.e. an increase in the plate height) was observed with the increasing retention factor. Hence "retention-dependent column efficiency" behaviour was shown for HILIC mode using the chromatographic data collected with the polymer based monolith synthesized.
Collapse
Affiliation(s)
- Çiğdem Kip
- Hacettepe University, Chemical Engineering Department, Beytepe/Ankara, Turkey
| | - Damla Erkakan
- Hacettepe University, Chemical Engineering Department, Beytepe/Ankara, Turkey
| | - Aslıhan Gökaltun
- Hacettepe University, Chemical Engineering Department, Beytepe/Ankara, Turkey
| | - Bekir Çelebi
- Hacettepe University, Chemical Engineering Department, Beytepe/Ankara, Turkey
| | - Ali Tuncel
- Hacettepe University, Chemical Engineering Department, Beytepe/Ankara, Turkey; Hacettepe University, Division of Nanotechnology & Nanomedicine, Ankara, Turkey.
| |
Collapse
|
3
|
Modification of copolymers using nucleophilic reactions between glycidyl methacrylate and 9-anthracene carboxylic acid. INTERNATIONAL JOURNAL OF INDUSTRIAL CHEMISTRY 2014. [DOI: 10.1007/s40090-014-0006-8] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
|
4
|
Gökaltun A, Aydoğan C, Çelebi B, Denizli A, Tuncel A. Preparation of an Electrochromatographic Stationary Phase Using a New Polymethacrylate Monolith with Chloropropyl Functionality. Chromatographia 2014. [DOI: 10.1007/s10337-013-2620-6] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
|
5
|
Chen Z, Wang J, Chen D, Fan G, Wu Y. Sodium desoxycholate-assisted capillary electrochromatography with methacrylate ester-based monolithic column on fast separation and determination of coumarin analogs in Angelica dahurica extract. Electrophoresis 2012; 33:2884-91. [PMID: 22930555 DOI: 10.1002/elps.201200120] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2012] [Revised: 05/11/2012] [Accepted: 05/14/2012] [Indexed: 11/11/2022]
Abstract
A rapid and sensitive CEC method with methacrylate ester-based monolithic column has been developed for separation and determination of five coumarins (byakangelicin, oxypeucedanin hydrate, xanthotoxol, 5-hydroxy-8-methoxypsoralen and bergapten) in Angelica dahurica extract. Surfactant sodium desoxycholate (SDC) was introduced into the mobile phase as the pseudostationary to dynamically increase the selectivity of analytes instead of increasing the hydrophobicity of stationary phase. In addition, other factors, pH of phosphate buffer, ACN content and applied voltage, for instance, have also an obvious effect on the resolution but little on the retention time. Satisfactory separation of these five coumarins was achieved within 6 min under a 30:70 v/v ACN-buffer containing 20 mM sodium dihydrogen phosphate (NaH(2) PO(4) ) and 0.25 mM SDC at pH 2.51. The RSDs of intraday and interday for relative peak areas were less than 3.0% and 4.7%, respectively; and the recoveries were between 87.5% and 95.0%. The LODs were lower than 0.15 μg/mL and the LOQs were lower than 0.30 μg/mL, respectively, while calibration curves showed a good linearity (r(2) > 0.9979). Finally, five target coumarins from the crude extracts of A. dahurica were separated, purified, and concentrated by D-101 macroporous resin, and were successfully separated and quantitatively determined within 6 min.
Collapse
Affiliation(s)
- Zhao Chen
- Department of Pharmaceutical Analysis, Second Military Medical University, Shanghai, People's Republic of China. cz04101103@ hotmail.com
| | | | | | | | | |
Collapse
|
6
|
Wang M, Feng R, Shen J, Chen H, Zeng Z. Capillary Electrochromatography with Liquid Crystal Crown Ether Modified Hybrid Silica Monolith for Analysis of Imidacloprid and Carbendazim in Tomatoes. B KOREAN CHEM SOC 2012. [DOI: 10.5012/bkcs.2012.33.7.2224] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
7
|
Nordborg A, Hilder EF, Haddad PR. Monolithic phases for ion chromatography. ANNUAL REVIEW OF ANALYTICAL CHEMISTRY (PALO ALTO, CALIF.) 2011; 4:197-226. [PMID: 21689046 DOI: 10.1146/annurev-anchem-061010-113929] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/30/2023]
Abstract
Monolithic media are continuing to increase in popularity in chromatographic applications, and the ongoing use of commercially available materials in ion chromatography (IC) has made monoliths a viable alternative to packed-bed columns for routine use. We discuss different strategies for the synthesis of polymeric and silica monoliths with ion-exchange functionality, such as direct incorporation of ion-exchange functionality during monolith preparation and different postpolymerization alterations such as grafting and coating. The formulations and strategies presented are focused on materials intended for use in IC. We also discuss strategies for materials characterization, with emphasis on nondestructive techniques for the characterization of monolith surface functionality, especially those with applicability to in situ analysis. Finally, we describe selected IC applications of polymeric and silica monoliths published from 2008 to 2010.
Collapse
Affiliation(s)
- Anna Nordborg
- Australian Center for Research on Separation Science, School of Chemistry, University of Tasmania, Hobart, Tasmania 7001, Australia.
| | | | | |
Collapse
|
8
|
Assay of vitamin B in urine by capillary electrochromatography with methacrylate-based monolithic column. Electrophoresis 2010; 31:3227-32. [DOI: 10.1002/elps.201000147] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
|
9
|
Cheng J, Zhang L, Lu Q, Lu M, Chen Z, Chen G. pCEC coupling with ESI-MS for the analysis of β2-agonists and narcotics using a poly-(1-hexadecene-co-TMPTMA) monolithic column. Electrophoresis 2010; 31:1991-7. [DOI: 10.1002/elps.201000088] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
|
10
|
Feng R, Tian Y, Chen H, Huang Z, Zeng Z. Terminal-vinyl liquid crystal crown ether-modified, vinyl-functionalized hybrid silica monolith for capillary electrochromatography. Electrophoresis 2010; 31:1975-82. [DOI: 10.1002/elps.200900627] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
|
11
|
Lu M, Feng Q, Lu Q, Cai Z, Zhang L, Chen G. Preparation and evaluation of the highly cross-linked poly(1-hexadecane-co-trimethylolpropane trimethacrylate) monolithic column for capillary electrochromatography. Electrophoresis 2009; 30:3540-7. [DOI: 10.1002/elps.200900018] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
|
12
|
Svec F. CEC: selected developments that caught my eye since the year 2000. Electrophoresis 2009; 30 Suppl 1:S68-82. [PMID: 19517503 DOI: 10.1002/elps.200900062] [Citation(s) in RCA: 45] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
During the last decade, a number of new developments have emerged in the field of CEC. This paper focuses only on monolithic columns prepared from synthetic polymers. Monolithic columns have become a well-established format of stationary phases for CEC immediately after their inception in the mid-1990s. They are readily prepared in situ from liquid precursors. Also, the control over both porous properties and surface chemistries is easy to achieve. These advantages make the monolithic separation media an attractive alternative to capillary columns packed with particulate materials. Since the number of papers concerned with just this single topic of polymer-based monolithic CEC columns is large, this overview describes only those approaches this author found interesting.
Collapse
Affiliation(s)
- Frantisek Svec
- The Molecular Foundry, E. O. Lawrence Berkeley National Laboratory, Berkeley, CA 94720-8197, USA.
| |
Collapse
|
13
|
Nordborg A, Hilder EF. Recent advances in polymer monoliths for ion-exchange chromatography. Anal Bioanal Chem 2009; 394:71-84. [DOI: 10.1007/s00216-009-2636-9] [Citation(s) in RCA: 90] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2008] [Revised: 01/19/2009] [Accepted: 01/20/2009] [Indexed: 11/24/2022]
|
14
|
Tian Y, Zhong C, Fu E, Zeng Z. Novel β-cyclodextrin derivative functionalized polymethacrylate-based monolithic columns for enantioselective separation of ibuprofen and naproxen enantiomers in capillary electrochromatography. J Chromatogr A 2009; 1216:1000-7. [DOI: 10.1016/j.chroma.2008.12.014] [Citation(s) in RCA: 65] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2008] [Revised: 11/09/2008] [Accepted: 12/05/2008] [Indexed: 11/16/2022]
|