1
|
Onofri M, Severini S, Tommolini F, Lancia M, Gambelunghe C, Carlini L, Carnevali E. The Usefulness of qPCR Data for Sample Pre-Assessment and Interpretation of Genetic Typing Results. Genes (Basel) 2024; 15:744. [PMID: 38927680 PMCID: PMC11203103 DOI: 10.3390/genes15060744] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2024] [Revised: 05/31/2024] [Accepted: 06/04/2024] [Indexed: 06/28/2024] Open
Abstract
DNA quantification is a crucial step in the STR typing workflow for human identification purposes. Given the reaction's nature, qPCR assays may be subjected to the same stochastic effects of traditional PCR for low-input concentrations. The study aims to evaluate the precision of the PowerQuant® (Promega) kit assay measurements and the degree of variability for DNA templates falling below the optimal threshold of the PowerPlex® ESX-17 Fast STR typing kit (Promega). Five three-fold dilutions of the 2800 M control DNA (Promega) were set up. Each dilution (concentrations: 0.05, 0.0167, 0.0055, 0.00185, and 0.000617 ng/µL) was quantified and amplified in four replicates. Variability for qPCR results, STR profile completeness, and EPGs' peak height were evaluated. The qPCR-estimated concentration of casework samples was correlated with profile completeness and peak intensity, to assess the predictive value of qPCR results for the successful STR typing of scarce samples. qPCR was subjected to stochastic effects, of which the degree was inversely proportional to the initial input template. Quantitation results and the STR profile's characteristics were strongly correlated. Due to the intrinsic nature of real casework samples, a qPCR-derived DNA concentration threshold for correctly identifying probative STR profiles may be difficult to establish. Quantitation data may be useful in interpreting and corroborating STR typing results and for clearly illustrating them to the stakeholders.
Collapse
Affiliation(s)
- Martina Onofri
- Section of Legal Medicine, Department of Medicine and Surgery, Santa Maria Hospital, University of Perugia, 05100 Terni, Italy; (S.S.); (F.T.); (E.C.)
- Section of Legal Medicine, Department of Medicine and Surgery, University of Perugia, 06123 Perugia, Italy; (M.L.); (C.G.); (L.C.)
| | - Simona Severini
- Section of Legal Medicine, Department of Medicine and Surgery, Santa Maria Hospital, University of Perugia, 05100 Terni, Italy; (S.S.); (F.T.); (E.C.)
| | - Federica Tommolini
- Section of Legal Medicine, Department of Medicine and Surgery, Santa Maria Hospital, University of Perugia, 05100 Terni, Italy; (S.S.); (F.T.); (E.C.)
| | - Massimo Lancia
- Section of Legal Medicine, Department of Medicine and Surgery, University of Perugia, 06123 Perugia, Italy; (M.L.); (C.G.); (L.C.)
| | - Cristiana Gambelunghe
- Section of Legal Medicine, Department of Medicine and Surgery, University of Perugia, 06123 Perugia, Italy; (M.L.); (C.G.); (L.C.)
| | - Luigi Carlini
- Section of Legal Medicine, Department of Medicine and Surgery, Santa Maria Hospital, University of Perugia, 05100 Terni, Italy; (S.S.); (F.T.); (E.C.)
- Section of Legal Medicine, Department of Medicine and Surgery, University of Perugia, 06123 Perugia, Italy; (M.L.); (C.G.); (L.C.)
| | - Eugenia Carnevali
- Section of Legal Medicine, Department of Medicine and Surgery, Santa Maria Hospital, University of Perugia, 05100 Terni, Italy; (S.S.); (F.T.); (E.C.)
| |
Collapse
|
2
|
Kim YT, Heo HY, Oh SH, Lee SH, Kim DH, Seo TS. Microchip-based forensic short tandem repeat genotyping. Electrophoresis 2015; 36:1728-37. [DOI: 10.1002/elps.201400477] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2014] [Revised: 03/06/2015] [Accepted: 04/20/2015] [Indexed: 11/10/2022]
Affiliation(s)
- Yong Tae Kim
- Department of Chemical and Biomolecular Engineering (BK21 plus program), Institute for the BioCentury; Korea Advanced Institute of Science and Technology (KAIST); Daejeon Republic of Korea
| | - Hyun Young Heo
- Department of Chemical and Biomolecular Engineering (BK21 plus program), Institute for the BioCentury; Korea Advanced Institute of Science and Technology (KAIST); Daejeon Republic of Korea
| | - Shin Hye Oh
- DNA Analysis Laboratory, Division of Forensic DNA; Supreme Prosecutors’ Office; Seoul Republic of Korea
| | - Seung Hwan Lee
- DNA Analysis Laboratory, Division of Forensic DNA; Supreme Prosecutors’ Office; Seoul Republic of Korea
| | - Do Hyun Kim
- Department of Chemical and Biomolecular Engineering (BK21 plus program), Institute for the BioCentury; Korea Advanced Institute of Science and Technology (KAIST); Daejeon Republic of Korea
| | - Tae Seok Seo
- Department of Chemical and Biomolecular Engineering (BK21 plus program), Institute for the BioCentury; Korea Advanced Institute of Science and Technology (KAIST); Daejeon Republic of Korea
| |
Collapse
|
3
|
Genotyping of Short Tandem Repeat Based on Ultraviolet Spectroscopy Combined with Artificial Neural Network. CHINESE JOURNAL OF ANALYTICAL CHEMISTRY 2012. [DOI: 10.3724/sp.j.1096.2011.01701] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
4
|
Cho SW, Kang DK, Choo JB, Demllo AJ, Chang SI. Recent advances in microfluidic technologies for biochemistry and molecular biology. BMB Rep 2011; 44:705-12. [DOI: 10.5483/bmbrep.2011.44.11.705] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023] Open
|
5
|
Liu P, Scherer JR, Greenspoon SA, Chiesl TN, Mathies RA. Integrated sample cleanup and capillary array electrophoresis microchip for forensic short tandem repeat analysis. Forensic Sci Int Genet 2011; 5:484-92. [DOI: 10.1016/j.fsigen.2010.10.009] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2010] [Revised: 10/07/2010] [Accepted: 10/07/2010] [Indexed: 10/18/2022]
|
6
|
Wu J, Gu M. Microfluidic sensing: state of the art fabrication and detection techniques. JOURNAL OF BIOMEDICAL OPTICS 2011; 16:080901. [PMID: 21895307 DOI: 10.1117/1.3607430] [Citation(s) in RCA: 67] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/20/2023]
Abstract
Here we introduce the existing fabrication techniques, detection methods, and related techniques for microfluidic sensing, with an emphasis on the detection techniques. A general survey and comparison of the fabrication techniques were given, including prototyping (hot embossing, inject molding, and soft lithography) and direct fabrication (laser micromachining, photolithography, lithography, and x-ray lithography) techniques. This is followed by an in-depth look at detection techniques: optical, electrochemical, mass spectrometry, as well as nuclear magnetic resonance spectroscopy-based sensing approaches and related techniques. In the end, we highlight several of the most important issues for future work on microfluidic sensing. This article aims at providing a tutorial review with both introductory materials and inspiring information on microfluidic fabrication and sensing for nonspecialists.
Collapse
Affiliation(s)
- Jing Wu
- Zhejiang University, State Key Lab of Modern Optical Instrumentation, Department of Optical Engineering, Institute of Advanced Nanophotonics, Zheda Road 38, Xihu District, Hangzhou, Zhejiang 310027, China.
| | | |
Collapse
|
7
|
Chen Y, Choi JY, Choi SJ, Seo TS. Sample stacking capillary electrophoretic microdevice for highly sensitive mini Y short tandem repeat genotyping. Electrophoresis 2010; 31:2974-80. [PMID: 20715129 DOI: 10.1002/elps.201000270] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
Lab-on-a-chip provides an ideal platform for short tandem repeat (STR) genotyping due to its intrinsic low sample consumption, rapid analysis, and high-throughput capability. One of the challenges, however, in the forensic human identification on the microdevice is the detection sensitivity derived from the nanoliter volume sample handling. To overcome such a sensitivity issue, here we developed a sample stacking CE microdevice for mini Y STR genotyping. The mini Y STR includes redesigned primer sequences to generate smaller-sized PCR amplicons to enhance the PCR efficiency and the success rate for a low copy number and degraded DNA. The mini Y STR amplicons occupied in the 5- and 10-mm stacking microchannels are preconcentrated efficiently in a defined narrow region through the optimized sample stacking CE scheme, resulting in more than tenfold improved fluorescence peak intensities compared with that of a conventional cross-injection microcapillary electrophoresis method. Such signal enhancement allows us to successfully analyze the Y STR typing with only 25 pg of male genomic DNA, with high background of female genomic DNA, and with highly degraded male genomic DNA. The combination of the mini Y STR system with the novel sample stacking CE microdevice provides the highly sensitive Y STR typing on a chip, making it promising to perform high-performance on-site forensic human identification.
Collapse
Affiliation(s)
- Yuchao Chen
- Department of Chemical and Biomolecular Engineering (BK21 program) KAIST, 335 Gwahangno, Yuseong-Gu, Daejeon, Republic of Korea
| | | | | | | |
Collapse
|
8
|
van Oorschot RAH, Ballantyne KN, Mitchell RJ. Forensic trace DNA: a review. INVESTIGATIVE GENETICS 2010; 1:14. [PMID: 21122102 PMCID: PMC3012025 DOI: 10.1186/2041-2223-1-14] [Citation(s) in RCA: 185] [Impact Index Per Article: 13.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 07/20/2010] [Accepted: 12/01/2010] [Indexed: 11/10/2022]
Abstract
DNA analysis is frequently used to acquire information from biological material to aid enquiries associated with criminal offences, disaster victim identification and missing persons investigations. As the relevance and value of DNA profiling to forensic investigations has increased, so too has the desire to generate this information from smaller amounts of DNA. Trace DNA samples may be defined as any sample which falls below recommended thresholds at any stage of the analysis, from sample detection through to profile interpretation, and can not be defined by a precise picogram amount. Here we review aspects associated with the collection, DNA extraction, amplification, profiling and interpretation of trace DNA samples. Contamination and transfer issues are also briefly discussed within the context of trace DNA analysis. Whilst several methodological changes have facilitated profiling from trace samples in recent years it is also clear that many opportunities exist for further improvements.
Collapse
Affiliation(s)
- Roland AH van Oorschot
- Forensic Services Department, Victoria Police, 31 Forensic Drive, Macleod 3085, Victoria, Australia
| | - Kaye N Ballantyne
- Department of Forensic Molecular Biology, Erasmus University Medical Center, 3000 CA Rotterdam, The Netherlands
| | - R John Mitchell
- Department of Genetics, La Trobe University, Melbourne, Victoria 3086, Australia
| |
Collapse
|
9
|
Arora A, Simone G, Salieb-Beugelaar GB, Kim JT, Manz A. Latest Developments in Micro Total Analysis Systems. Anal Chem 2010; 82:4830-47. [PMID: 20462185 DOI: 10.1021/ac100969k] [Citation(s) in RCA: 372] [Impact Index Per Article: 26.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Affiliation(s)
- Arun Arora
- KIST Europe, Korea Institute of Science and Technology, Campus E71, 66123 Saarbrücken, Germany, FRIAS, Freiburg Institute for Advanced Studies, Albert-Ludwigs-Universität Freiburg, Albertstrasse 19, 79104 Freiburg, Germany, IMTEK, Institute for Microsystem Technology, University of Freiburg, Georges-Köhler-Allee 103, 79110 Freiburg, Germany, and MESA+ Institute for Nanotechnology/Lab-on-a-Chip Group, Twente University, Building Carré, 7500 AE, Enschede, The Netherlands
| | - Giuseppina Simone
- KIST Europe, Korea Institute of Science and Technology, Campus E71, 66123 Saarbrücken, Germany, FRIAS, Freiburg Institute for Advanced Studies, Albert-Ludwigs-Universität Freiburg, Albertstrasse 19, 79104 Freiburg, Germany, IMTEK, Institute for Microsystem Technology, University of Freiburg, Georges-Köhler-Allee 103, 79110 Freiburg, Germany, and MESA+ Institute for Nanotechnology/Lab-on-a-Chip Group, Twente University, Building Carré, 7500 AE, Enschede, The Netherlands
| | - Georgette B. Salieb-Beugelaar
- KIST Europe, Korea Institute of Science and Technology, Campus E71, 66123 Saarbrücken, Germany, FRIAS, Freiburg Institute for Advanced Studies, Albert-Ludwigs-Universität Freiburg, Albertstrasse 19, 79104 Freiburg, Germany, IMTEK, Institute for Microsystem Technology, University of Freiburg, Georges-Köhler-Allee 103, 79110 Freiburg, Germany, and MESA+ Institute for Nanotechnology/Lab-on-a-Chip Group, Twente University, Building Carré, 7500 AE, Enschede, The Netherlands
| | - Jung Tae Kim
- KIST Europe, Korea Institute of Science and Technology, Campus E71, 66123 Saarbrücken, Germany, FRIAS, Freiburg Institute for Advanced Studies, Albert-Ludwigs-Universität Freiburg, Albertstrasse 19, 79104 Freiburg, Germany, IMTEK, Institute for Microsystem Technology, University of Freiburg, Georges-Köhler-Allee 103, 79110 Freiburg, Germany, and MESA+ Institute for Nanotechnology/Lab-on-a-Chip Group, Twente University, Building Carré, 7500 AE, Enschede, The Netherlands
| | - Andreas Manz
- KIST Europe, Korea Institute of Science and Technology, Campus E71, 66123 Saarbrücken, Germany, FRIAS, Freiburg Institute for Advanced Studies, Albert-Ludwigs-Universität Freiburg, Albertstrasse 19, 79104 Freiburg, Germany, IMTEK, Institute for Microsystem Technology, University of Freiburg, Georges-Köhler-Allee 103, 79110 Freiburg, Germany, and MESA+ Institute for Nanotechnology/Lab-on-a-Chip Group, Twente University, Building Carré, 7500 AE, Enschede, The Netherlands
| |
Collapse
|
10
|
Microchip-based capillary electrophoretic analysis of telomerase activity for cancer diagnostics. BIOCHIP JOURNAL 2010. [DOI: 10.1007/s13206-010-4107-y] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
11
|
Choi JY, Seo TS. An integrated microdevice for high-performance short tandem repeat genotyping. Biotechnol J 2010; 4:1530-41. [PMID: 19844914 DOI: 10.1002/biot.200900202] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Short tandem repeat (STR) analysis provides genetic fingerprinting of individuals, and is considered as a powerful and indispensable technique for forensic human identification. However, the current state-of-the-art STR genotyping processes and instruments are labor intensive, expensive, time consuming, and lack portability. Micro-total-analysis systems or lab-on-a-chip platforms based on microfabrication technologies have the capability to miniaturize and integrate bioanalysis steps in a single format. Recent progress in microsystems has demonstrated their successful performance for the forensic STR typing with a reduced cost, high speed, and improved high throughput. The purpose of this review article is to highlight up-to-date work on advanced microdevices for high-throughput STR genotyping, and a portable integrated microsystem for on-site forensic DNA analysis.
Collapse
Affiliation(s)
- Jong Young Choi
- Department of Chemical and Biomolecular Engineering (BK21 Program), Institute for the BioCentury, KAIST, Daejeon, Korea
| | | |
Collapse
|
12
|
Affiliation(s)
- T. A. Brettell
- Department of Chemical and Physical Sciences, Cedar Crest College, 100 College Drive, Allentown, Pennsylvania 18104-6196
| | - J. M. Butler
- Biochemical Science Division, National Institute of Standards and Technology, Gaithersburg, Maryland 20899-8312
| | - J. R. Almirall
- Department of Chemistry and Biochemistry and International Forensic Research Institute, Florida International University, University Park, Miami, Florida 33199
| |
Collapse
|
13
|
Yeung SHI, Liu P, Del Bueno N, Greenspoon SA, Mathies RA. Integrated Sample Cleanup−Capillary Electrophoresis Microchip for High-Performance Short Tandem Repeat Genetic Analysis. Anal Chem 2008; 81:210-7. [DOI: 10.1021/ac8018685] [Citation(s) in RCA: 57] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Stephanie H. I. Yeung
- UCSF/UCB Joint Graduate Group in Bioengineering, University of California, Berkeley, California 94720, Virginia Department of Forensic Science, Richmond, Virginia 23219, and Department of Chemistry, University of California, Berkeley, California 94720
| | - Peng Liu
- UCSF/UCB Joint Graduate Group in Bioengineering, University of California, Berkeley, California 94720, Virginia Department of Forensic Science, Richmond, Virginia 23219, and Department of Chemistry, University of California, Berkeley, California 94720
| | - Nadia Del Bueno
- UCSF/UCB Joint Graduate Group in Bioengineering, University of California, Berkeley, California 94720, Virginia Department of Forensic Science, Richmond, Virginia 23219, and Department of Chemistry, University of California, Berkeley, California 94720
| | - Susan A. Greenspoon
- UCSF/UCB Joint Graduate Group in Bioengineering, University of California, Berkeley, California 94720, Virginia Department of Forensic Science, Richmond, Virginia 23219, and Department of Chemistry, University of California, Berkeley, California 94720
| | - Richard A. Mathies
- UCSF/UCB Joint Graduate Group in Bioengineering, University of California, Berkeley, California 94720, Virginia Department of Forensic Science, Richmond, Virginia 23219, and Department of Chemistry, University of California, Berkeley, California 94720
| |
Collapse
|