1
|
Studzińska S, Li F, Szumski M, Buszewski B, Lämmerhofer M. Cholesterol Stationary Phase in the Separation and Identification of siRNA Impurities by Two-Dimensional Liquid Chromatography-Mass Spectrometry. Int J Mol Sci 2022; 23:ijms232314960. [PMID: 36499291 PMCID: PMC9738757 DOI: 10.3390/ijms232314960] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2022] [Revised: 11/19/2022] [Accepted: 11/25/2022] [Indexed: 12/05/2022] Open
Abstract
The aim of this research was to develop a simple and efficient ion-pair reagent-free chromatographic method for the separation and qualitative determination of oligonucleotide impurities, exemplified by synthesis of raw products of the two single strands of patisiran siRNA. The stationary phases with mixed hydrophobic/hydrophilic properties (cholesterol and alkylamide) were firstly used for this purpose with reversed-phased high-performance liquid chromatography. Several different chromatographic parameters were tested for their impact on impurities separation: type, concentration, pH of salt, as well as organic solvent type in the mobile phase. The pH was the most influential factor on the separation and signal intensities in mass spectrometry detection. Finally, the optimized method included the application of cholesterol stationary phase, with mobile phase containing 20 mM ammonium formate (pH 6.5) and methanol. It allowed good separation and the identification of most impurities within 25 min. Since not all closely related impurities could be fully resolved from the main peak in this oligonucleotide impurity profiling, two-dimensional liquid chromatography was used for peak purity determination of the target oligonucleotides. The Ethylene Bridged Hybrid (BEH) Amide column in hydrophilic interaction liquid chromatography was applied in the second dimension, allowing additional separation of three closely related impurities.
Collapse
Affiliation(s)
- Sylwia Studzińska
- Chair of Environmental Chemistry and Bioanalytics, Faculty of Chemistry, Nicolaus Copernicus University in Toruń, 7 Gagarin Str., 87-100 Toruń, Poland
- Institute of Pharmaceutical Sciences, Pharmaceutical (Bio-)Analysis, University of Tübingen, Auf der Morgenstelle 8, 72076 Tübingen, Germany
- Correspondence: ; Tel.: +48-56-6114753
| | - Feiyang Li
- Institute of Pharmaceutical Sciences, Pharmaceutical (Bio-)Analysis, University of Tübingen, Auf der Morgenstelle 8, 72076 Tübingen, Germany
| | - Michał Szumski
- Centre for Modern Interdisciplinary Technologies, Nicolaus Copernicus University in Toruń, 4 Wilenska St., 87-100 Toruń, Poland
| | - Bogusław Buszewski
- Chair of Environmental Chemistry and Bioanalytics, Faculty of Chemistry, Nicolaus Copernicus University in Toruń, 7 Gagarin Str., 87-100 Toruń, Poland
| | - Michael Lämmerhofer
- Institute of Pharmaceutical Sciences, Pharmaceutical (Bio-)Analysis, University of Tübingen, Auf der Morgenstelle 8, 72076 Tübingen, Germany
| |
Collapse
|
2
|
Analysis of therapeutic nucleic acids by capillary electrophoresis. J Pharm Biomed Anal 2022; 219:114928. [PMID: 35853263 DOI: 10.1016/j.jpba.2022.114928] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2021] [Revised: 05/04/2022] [Accepted: 07/02/2022] [Indexed: 12/19/2022]
Abstract
Nucleic acids are getting increased attention to fulfill unmet medical needs. The past five years have seen more than ten FDA approvals of nucleic acid based therapeutics. New analytical challenges have been posed in discovery, characterization, quality control and bioanalysis of therapeutic nucleic acids. Capillary electrophoresis (CE) has proven to be an efficient separation technique and has been widely used for analyzing oligonucleotides and nucleic acids. This review discusses the recent technical advances of CE in nucleic acid analysis such as polymeric matrices, separation conditions and detection methods, and the applications of CE to various therapeutic nucleic acids including antisense oligonucleotide (ASO), small interfering ribonucleic acid (siRNA), messenger RNA (mRNA), gene editing tools such as clustered regularly interspaced short palindromic repeats (CRISPR)-based gene and cell therapy, and other nucleic acid related therapeutics.
Collapse
|
3
|
Talap J, Zhao J, Shen M, Song Z, Zhou H, Kang Y, Sun L, Yu L, Zeng S, Cai S. Recent advances in therapeutic nucleic acids and their analytical methods. J Pharm Biomed Anal 2021; 206:114368. [PMID: 34571322 DOI: 10.1016/j.jpba.2021.114368] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2021] [Revised: 09/08/2021] [Accepted: 09/09/2021] [Indexed: 12/11/2022]
Abstract
Therapeutic nucleic acids are various chemically modified RNA or DNA with different functions, which mainly play roles at the gene level. Owing to its accurately targeting at pathogenic genes, nucleic acid based therapeutics have a wide range of application prospects. Recently, the improvement on chemical synthesis and delivery materials accelerated the development of therapeutic nucleic acids rapidly. Up to now, 17 nucleic acid based therapeutics approved by Food and Drug Administration (FDA) or European Medicines Agency (EMA). The development of therapeutics raised higher requirements for analytical methods, both in quality control and in clinical research. The first part of this review introduces different classes of therapeutic nucleic acids, including antisense oligonucleotide (ASO), RNA interference (RNAi) therapy, mRNA, aptamer and other classes which are under research. The second part reviews the therapeutic nucleic acids commercialized from 2019 to now. The third part discusses the analytical methods for nucleic acid based therapeutics, including liquid chromatography-based methods, capillary gel electrophoresis (CGE), hybridization enzyme-linked immunosorbent assay (ELISA) and other infrequently used methods. Finally, the advantages and shortcomings of these methods are summarized, and the future development of analysis methods are prospected.
Collapse
Affiliation(s)
- Jadera Talap
- Institute of Drug Metabolism and Pharmaceutical Analysis, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, Zhejiang 310058, China
| | - Jing Zhao
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Macao
| | - Minzhe Shen
- Institute of Drug Metabolism and Pharmaceutical Analysis, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, Zhejiang 310058, China
| | - Zihan Song
- Institute of Drug Metabolism and Pharmaceutical Analysis, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, Zhejiang 310058, China
| | - Hui Zhou
- Institute of Drug Metabolism and Pharmaceutical Analysis, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, Zhejiang 310058, China
| | - Yu Kang
- Institute of Drug Metabolism and Pharmaceutical Analysis, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, Zhejiang 310058, China
| | - Lianli Sun
- Institute of Drug Metabolism and Pharmaceutical Analysis, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, Zhejiang 310058, China
| | - Lushan Yu
- Institute of Drug Metabolism and Pharmaceutical Analysis, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, Zhejiang 310058, China
| | - Su Zeng
- Institute of Drug Metabolism and Pharmaceutical Analysis, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, Zhejiang 310058, China; Cancer Center of Zhejiang University, Zhejiang Province Key Laboratory of Anti-Cancer Drug Research, Hangzhou, China.
| | - Sheng Cai
- Institute of Drug Metabolism and Pharmaceutical Analysis, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, Zhejiang 310058, China; Cancer Center of Zhejiang University, Zhejiang Province Key Laboratory of Anti-Cancer Drug Research, Hangzhou, China.
| |
Collapse
|
4
|
Capaldi D, Teasdale A, Henry S, Akhtar N, den Besten C, Gao-Sheridan S, Kretschmer M, Sharpe N, Andrews B, Burm B, Foy J. Impurities in Oligonucleotide Drug Substances and Drug Products. Nucleic Acid Ther 2017; 27:309-322. [PMID: 29125795 DOI: 10.1089/nat.2017.0691] [Citation(s) in RCA: 53] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
This white paper, which is the 10th in a series intended to address issues associated with the development of therapeutic oligonucleotides, examines the subject of product-related impurities. The authors consider chemistry and safety aspects and advance arguments in favor of platform approaches to impurity identification and qualification. Reporting, identification, and qualification thresholds suitable for product-related impurities of therapeutic oligonucleotides are proposed.
Collapse
Affiliation(s)
| | - Andy Teasdale
- 2 AstraZeneca UK Ltd. , Macclesfield, United Kingdom
| | - Scott Henry
- 1 Ionis Pharmaceuticals, Inc. , Carlsbad, California
| | - Nadim Akhtar
- 2 AstraZeneca UK Ltd. , Macclesfield, United Kingdom
| | | | | | | | - Neal Sharpe
- 5 Anavex Life Sciences Corp. , New York, New York
| | - Ben Andrews
- 6 GlaxoSmithKline , Stevenage, United Kingdom
| | | | | |
Collapse
|
5
|
Barciszewska M, Sucha A, Bałabańska S, Chmielewski MK. Gel electrophoresis in a polyvinylalcohol coated fused silica capillary for purity assessment of modified and secondary-structured oligo- and polyribonucleotides. Sci Rep 2016; 6:19437. [PMID: 26777121 PMCID: PMC4726012 DOI: 10.1038/srep19437] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2015] [Accepted: 12/14/2015] [Indexed: 12/12/2022] Open
Abstract
Application of a polyvinylalcohol-coated (PVA-coated) capillary in capillary gel electrophoresis (CGE) enables the selective separation of oligoribonucleotides and their modifications at high resolution. Quality assessment of shorter oligomers of small interfering RNA (siRNA) is of key importance for ribonucleic acid (RNA) technology which is increasingly being applied in medical applications. CGE is a technique of choice for calculation of chemically synthesized RNAs and their modifications which are frequently obtained as a mixture including shorter oligoribonucleotides. The use of CGE with a PVA-coated capillary to analyze siRNA mixtures presents an alternative to conventionally employed techniques. Here, we present study on identification of the length and purity of RNA mixture ingredients by using PVA-coated capillaries. Also, we demonstrate the use of PVA-coated capillaries to identify and separate phosphorylated siRNAs and secondary structures (e.g. siRNA duplexes).
Collapse
Affiliation(s)
- Martyna Barciszewska
- Institute of Bioorganic Chemistry, Polish Academy of Sciences, Noskowskiego 12/14, 61-704 Poznań, Poland
| | - Agnieszka Sucha
- Poznan Science and Technology Park, Adam Mickiewicz University Foundation, Rubież 46, 61-612 Poznań, Poland
- FutureSynthesis sp. z o.o. ul, Rubież 46, 61-612 Poznań, Poland
| | - Sandra Bałabańska
- Institute of Bioorganic Chemistry, Polish Academy of Sciences, Noskowskiego 12/14, 61-704 Poznań, Poland
| | - Marcin K. Chmielewski
- Institute of Bioorganic Chemistry, Polish Academy of Sciences, Noskowskiego 12/14, 61-704 Poznań, Poland
| |
Collapse
|
6
|
Combining liquid chromatography with multiplexed capillary gel electrophoresis for offline comprehensive analysis of complex oligonucleotide samples. J Chromatogr A 2014; 1336:87-93. [PMID: 24582393 DOI: 10.1016/j.chroma.2014.02.007] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2013] [Revised: 01/23/2014] [Accepted: 02/01/2014] [Indexed: 11/20/2022]
Abstract
Offline two dimensional liquid chromatography (LC)×capillary gel electrophoresis (CGE) and LC×(24) multiplexed-CGE methodologies were developed for the separation of oligonucleotides of therapeutic size. Both ion-pair chromatography (IPC) and ion-exchange chromatography (IEC) were studied as methods for the first dimension and single and multiplexed capillary electrophoresis methods in entangled polymer solutions were used for the second dimension separations. Electrokinetic and pressure injection were evaluated for the analysis of the collected LC fractions. The comprehensive separation was optimized with standard mixtures of poly adenosine, thymidine, cytosine and uracil homodeoxyoligonucleotides up to 35 bases long. Highly orthogonal methodologies and overall peak capacities of 6435 and 6993 for IPC×CGE and IEC×CGE, respectively, were obtained within a few hours analysis time.
Collapse
|
7
|
Bittová M, Havliš J, Fuksová H, Vrbková B, Trnková L. Toward reading the sequence of short oligonucleotides from their retention factors obtained by means of hydrophilic interaction chromatography and ion-interaction reversed-phase liquid chromatography. J Sep Sci 2013; 35:3227-34. [PMID: 23175142 DOI: 10.1002/jssc.201200482] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2012] [Revised: 08/17/2012] [Accepted: 08/17/2012] [Indexed: 11/08/2022]
Abstract
Retention characteristics of selected synthetic 5'-terminal phosphate absent penta-nucleotides containing adenine, guanine, and thymine were studied in relation to their sequence by hydrophilic interaction chromatography and ion-interaction reversed-phase liquid chromatography. The organic solvent content, pH, and buffer concentration in mobile phases were evaluated as influential separation conditions. Data demonstrate that both compared chromatographic modes can be used to separate synthetic penta-nucleotides according to their nucleotide composition. Moreover, reversed-phase liquid chromatography allows separation according to their sequence. We have found a simple linear additive model to describe the retention order in both separation modes in regard to their sequence. In hydrophilic interaction chromatography, the retention behavior is controlled primarily by the hydrophilicity of involved nucleotides and minimally by their sequence position. For reversed-phase liquid chromatography, the nucleotide hydrophobicity plays an important role in their retention properties and the influence of their location in sequence on the retention increases toward the center and decreases toward the termini. Our results show that the penta-nucleotide sequence, and thus its spatial arrangement induced by the surrounding environment, is highly related to the retention properties, so it may be hypothetically used to read the sequence from the retention properties acquired under particular separation conditions.
Collapse
Affiliation(s)
- Miroslava Bittová
- Faculty of Science, Department of Chemistry, Masaryk University, Brno, Czech Republic
| | | | | | | | | |
Collapse
|
8
|
Capaldi D, Ackley K, Brooks D, Carmody J, Draper K, Kambhampati R, Kretschmer M, Levin D, McArdle J, Noll B, Raghavachari R, Roymoulik I, Sharma BP(B, Thürmer R, Wincott F. Quality Aspects of Oligonucleotide Drug Development: Specifications for Active Pharmaceutical Ingredients. ACTA ACUST UNITED AC 2012. [DOI: 10.1177/0092861512445311] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|
9
|
Allan KE, Lenehan CE, Khodakov DA, Kobus HJ, Ellis AV. High-performance capillary electrophoretic separation of double-stranded oligonucleotides using a poly-(ethylpyrrolidine methacrylate-co-methylmethacrylate)-coated capillary. Electrophoresis 2012; 33:1205-14. [PMID: 22539324 DOI: 10.1002/elps.201100514] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
Here we describe a capillary electrophoretic method for the separation of double-stranded oligonucleotides (ds-ODNs) ranging from 16-20 bp with 2 bp resolution using a low concentration of poly(ethylpyrrolidine methacrylate-co-methyl methacrylate) (PEPyM-co-PMMA) copolymer physically adsorbed to a capillary surface. Contrary to traditional DNA separations, we show that the ds-ODN with the highest molecular size eluted first and propose that this phenomena is due to a screening effect by the PEPyM-co-PMMA coating on the smaller ds-ODNs negative charge during elution. Key to the performance of this separation was a sample preparation time of less than 1 h and analysis time of 40 min. Repeatability of intraday migration time for the mixtures was typically < 1% relative standard deviation (n = 3). In addition, we demonstrate that the coating has an acceptable capillary lifetime of over 70 injections.
Collapse
Affiliation(s)
- Kerrilee E Allan
- Flinders Centre for NanoScale Science and Technology, Flinders University, Adelaide, SA, Australia
| | | | | | | | | |
Collapse
|
10
|
Altria KD, Barker NR, Hayworth M, Henderson AD. Use of a Single Capillary Electrophoresis Method as a Routine Identity Test for Batch Release of a Range of Pharmaceutical Products. Chromatographia 2011. [DOI: 10.1007/s10337-011-2149-5] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
|
11
|
Chen B, Bartlett MG. Determination of therapeutic oligonucleotides using capillary gel electrophoresis. Biomed Chromatogr 2011; 26:409-18. [PMID: 21898474 DOI: 10.1002/bmc.1696] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2011] [Revised: 07/05/2011] [Accepted: 07/06/2011] [Indexed: 12/12/2022]
Abstract
Oligonucleotides have developed into highly versatile and selective therapeutics over the past 20 years. More than five discrete mechanisms of action have been reported and more than 10 different chemical modifications have been used to extend their in vivo half-life and reduce their toxicity. Capillary gel electrophoresis (CGE) has been used extensively for the quantitative analysis of oligonucleotide therapeutics in both preclinical and clinical studies since the 1990s. The success of CGE is based on its extraordinary resolving power, which allows for the simultaneous determination of the parent drug and its metabolites. More recently, capillary gel electrophoresis has seen renewed interest with the emergence of replaceable gels with single-base resolving power and new capillary electrophoresis-mass spectrometry interfaces. This review discusses the bioanalysis of therapeutic oligonucleotides showing the evolution of the field over the past two decades leading to the current new approaches. Included in this review are topics such as different gel types, sample introduction modes, sample extraction procedures, separation conditions and detection methods used in CGE, along with discussions of the successes and limitations associated with each.
Collapse
Affiliation(s)
- Buyun Chen
- Department of Pharmaceutical and Biomedical Sciences, College of Pharmacy, University of Georgia, Athens, GA 30602-2352, USA
| | | |
Collapse
|
12
|
Seiffert S, Debelak H, Hadwiger P, Jahn-Hofmann K, Roehl I, Vornlocher HP, Noll B. Characterization of side reactions during the annealing of small interfering RNAs. Anal Biochem 2011; 414:47-57. [PMID: 21376008 DOI: 10.1016/j.ab.2011.02.040] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2010] [Revised: 02/25/2011] [Accepted: 02/25/2011] [Indexed: 10/18/2022]
Abstract
Small interfering RNAs (siRNAs) are emerging as a novel therapeutic modality for the specific inhibition of target gene expression. The development of siRNA-based therapeutics requires in-depth knowledge of the manufacturing process as well as adequate analytical methods to characterize this class of molecules. Here the impurity formation during the annealing of siRNA was investigated. Two siRNAs containing common chemical RNA modifications (2'-O-methyl, 2'-deoxy-2'-fluoro, 2'-deoxy-ribose, and phosphorothioate linkages) were used to determine major side reactions-such as 2',3'-isomerization, strand scission, and HF elimination-depending on annealing parameters such as RNA concentration, presence of cations, temperature, and time. Individual impurities were characterized using analytical size exclusion chromatography, denaturing and nondenaturing ion-pair reversed-phase high-performance liquid chromatography, differential scanning calorimetry, and ultraviolet spectrometry. The degradation pathways described in this work can lead to significantly reduced product quality and compromised drug activity. The data reported here provide background to successfully address challenges associated with the manufacture of siRNAs and other nucleic acid therapeutics such as aptamers, spiegelmers, and decoy and antisense oligonucleotides.
Collapse
|