1
|
Boelens D, Fogliatto Mariot R, Ghemrawi M, Kloosterman AD, McCord BR. The development of miniSTRs as a method for high-speed direct PCR. Electrophoresis 2021; 42:1352-1361. [PMID: 33811666 DOI: 10.1002/elps.202100066] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2020] [Revised: 03/18/2021] [Accepted: 03/20/2021] [Indexed: 12/17/2022]
Abstract
There are situations in which it would be very valuable to have a DNA profile within a short time; for example, in mass disasters or airport security. In previous work, we have promoted reduced size STR amplicons for the analysis of degraded DNA. We also noticed that shorter amplicons are more robust during amplification, making them inhibition resistant, and potentially applicable to high-speed direct PCR. Here, we describe a set of miniSTRs capable of rapid direct PCR amplification. The selected markers are a subset of the Combined DNA Index System (CODIS) loci modified to permit high-speed amplification. Using the proposed protocol, the amplification of eight loci plus amelogenin directly from a saliva sample can be completed in 7 min and 38 s using a two-step PCR with 30 cycles of 98°C for 2 s and 62°C for 7 s on a Streck Philisa thermocycler. Selection of DNA polymerase, optimization of the two-step PCR cycling conditions, the primer concentrations, and the dilution of saliva is described. This method shows great potential as a quick screening method to obtain a presumptive DNA profile when time is limited, particularly when combined with high-speed separation and detection methods.
Collapse
Affiliation(s)
- Dide Boelens
- Department of Chemistry, Florida International University (FIU), Miami, Florida, USA
| | | | - Mirna Ghemrawi
- Department of Chemistry, Florida International University (FIU), Miami, Florida, USA
| | - Ate D Kloosterman
- CLHC, Amsterdam Center for Forensic Science and Medicine, University of Amsterdam, Amsterdam, The Netherlands
| | - Bruce R McCord
- Department of Chemistry, Florida International University (FIU), Miami, Florida, USA
| |
Collapse
|
2
|
Wang W, Cai X, Lin P, Bai R. Separation and determination of microRNAs by high-speed capillary sieving electrophoresis. J Sep Sci 2018; 41:3925-3931. [PMID: 30136382 DOI: 10.1002/jssc.201800635] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2018] [Revised: 08/10/2018] [Accepted: 08/10/2018] [Indexed: 12/12/2022]
Abstract
In this work, high-speed capillary sieving electrophoresis with laser-induced fluorescence detection was applied to simultaneously determine three microRNAs. A developed manual sample introduction device for the high-speed capillary electrophoresis system was applied to perform sample injection. Strategies, including field-amplified sample injection and electrokinetic injection, were studied to improve the detection sensitivity. Under the optimal conditions, the limit of detection for DNA-159 could be lowered to 5.10 × 10-12 mol/L. In order to achieve enough separation resolution, two DNA probes were designed to have extra sequences that acted as the drag tails. Under the optimized conditions, the three DNA probes and the complexes of microRNA-156, microRNA-159, and microRNA-166 could be completely separated within 3.2 min in background electrolyte (pH 8.7) containing 2.0% m/m polyvinyl pyrrolidone and 0.4% m/m hydroxyethyl cellulose. The limits of detection for the three microRNAs were 0.051, 0.11, and 0.25 nmol/L, respectively. Then the method was applied to analyze the microRNAs spiked in the samples extracted from banana leaves. The recoveries ranged from 114.3 to 121.1% (n = 3). The results showed that the method developed in this work was an effective means for microRNA assay.
Collapse
Affiliation(s)
- Wei Wang
- Ministry of Education Key Laboratory for Analytical Science of Food Safety and Biology, School of Chemistry, Fuzhou University, Fuzhou, Fujian, P. R. China
| | - Xiaoyu Cai
- Ministry of Education Key Laboratory for Analytical Science of Food Safety and Biology, School of Chemistry, Fuzhou University, Fuzhou, Fujian, P. R. China
| | - Ping Lin
- Ministry of Education Key Laboratory for Analytical Science of Food Safety and Biology, School of Chemistry, Fuzhou University, Fuzhou, Fujian, P. R. China
| | - Ruiguang Bai
- Ministry of Education Key Laboratory for Analytical Science of Food Safety and Biology, School of Chemistry, Fuzhou University, Fuzhou, Fujian, P. R. China
| |
Collapse
|
3
|
De Scheerder L, Sparén A, Nilsson GA, Norrby PO, Örnskov E. Designing flexible low-viscous sieving media for capillary electrophoresis analysis of ribonucleic acids. J Chromatogr A 2018; 1562:108-114. [DOI: 10.1016/j.chroma.2018.05.048] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2018] [Revised: 05/09/2018] [Accepted: 05/24/2018] [Indexed: 10/16/2022]
|
4
|
Kim YT, Heo HY, Oh SH, Lee SH, Kim DH, Seo TS. Microchip-based forensic short tandem repeat genotyping. Electrophoresis 2015; 36:1728-37. [DOI: 10.1002/elps.201400477] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2014] [Revised: 03/06/2015] [Accepted: 04/20/2015] [Indexed: 11/10/2022]
Affiliation(s)
- Yong Tae Kim
- Department of Chemical and Biomolecular Engineering (BK21 plus program), Institute for the BioCentury; Korea Advanced Institute of Science and Technology (KAIST); Daejeon Republic of Korea
| | - Hyun Young Heo
- Department of Chemical and Biomolecular Engineering (BK21 plus program), Institute for the BioCentury; Korea Advanced Institute of Science and Technology (KAIST); Daejeon Republic of Korea
| | - Shin Hye Oh
- DNA Analysis Laboratory, Division of Forensic DNA; Supreme Prosecutors’ Office; Seoul Republic of Korea
| | - Seung Hwan Lee
- DNA Analysis Laboratory, Division of Forensic DNA; Supreme Prosecutors’ Office; Seoul Republic of Korea
| | - Do Hyun Kim
- Department of Chemical and Biomolecular Engineering (BK21 plus program), Institute for the BioCentury; Korea Advanced Institute of Science and Technology (KAIST); Daejeon Republic of Korea
| | - Tae Seok Seo
- Department of Chemical and Biomolecular Engineering (BK21 plus program), Institute for the BioCentury; Korea Advanced Institute of Science and Technology (KAIST); Daejeon Republic of Korea
| |
Collapse
|
5
|
Durney BC, Crihfield CL, Holland LA. Capillary electrophoresis applied to DNA: determining and harnessing sequence and structure to advance bioanalyses (2009-2014). Anal Bioanal Chem 2015; 407:6923-38. [PMID: 25935677 PMCID: PMC4551542 DOI: 10.1007/s00216-015-8703-5] [Citation(s) in RCA: 47] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2015] [Revised: 04/09/2015] [Accepted: 04/13/2015] [Indexed: 12/17/2022]
Abstract
This review of capillary electrophoresis methods for DNA analyses covers critical advances from 2009 to 2014, referencing 184 citations. Separation mechanisms based on free-zone capillary electrophoresis, Ogston sieving, and reptation are described. Two prevalent gel matrices for gel-facilitated sieving, which are linear polyacrylamide and polydimethylacrylamide, are compared in terms of performance, cost, viscosity, and passivation of electroosmotic flow. The role of capillary electrophoresis in the discovery, design, and characterization of DNA aptamers for molecular recognition is discussed. Expanding and emerging techniques in the field are also highlighted.
Collapse
Affiliation(s)
- Brandon C Durney
- C. Eugene Bennett Department of Chemistry, West Virginia University, Morgantown, WV, 26506, USA
| | | | | |
Collapse
|
6
|
Nai YH, Jones RC, Breadmore MC. Sieving polymer synthesis by reversible addition fragmentation chain transfer polymerization. Electrophoresis 2013; 34:3189-97. [PMID: 24105829 DOI: 10.1002/elps.201300288] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2013] [Revised: 08/12/2013] [Accepted: 08/12/2013] [Indexed: 11/07/2022]
Abstract
Replaceable sieving polymers are the fundamental component for high resolution nucleic acids separation in CE. The choice of polymer and its physical properties play significant roles in influencing separation performance. Recently, reversible addition fragmentation chain transfer (RAFT) polymerization has been shown to be a versatile polymerization technique capable of yielding well defined polymers previously unattainable by conventional free radical polymerization. In this study, a high molecular weight PDMA at 765 000 gmol-1 with a PDI of 1.55 was successfully synthesized with the use of chain transfer agent - 2-propionic acidyl butyl trithiocarbonate (PABTC) in a multi-step sequential RAFT polymerization approach. This study represents the first demonstration of RAFT polymerization for synthesizing polymers with the molecular weight range suitable for high resolution DNA separation in sieving electrophoresis. Adjustment of pH in the reaction was found to be crucial for the successful RAFT polymerization of high molecular weight polymer as the buffered condition minimizes the effect of hydrolysis and aminolysis commonly associated with trithiocarbonate chain transfer agents. The separation efficiency of PABTC-PDMA was found to have marginally superior separation performance compared to a commercial PDMA formulation, POP™-CAP, of similar molecular weight range.
Collapse
Affiliation(s)
- Yi Heng Nai
- Australia Centre of Research on Separation Science (ACROSS), School of Chemistry, University of Tasmania, Hobart, Australia
| | | | | |
Collapse
|
7
|
Valdés A, García-Cañas V, Cifuentes A. CGE-laser induced fluorescence of double-stranded DNA fragments using GelGreen dye. Electrophoresis 2013; 34:1555-62. [PMID: 23417332 DOI: 10.1002/elps.201200624] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2012] [Revised: 12/19/2012] [Accepted: 01/03/2013] [Indexed: 12/14/2022]
Abstract
Nowadays, new solutions focused on the replacement of reagents hazardous to human health are highly demanded in laboratories and Green Chemistry. In the present work, GelGreen, a new nonhazardous DNA staining reagent, has been assayed for the first time to analyze double-stranded DNA by CGE with LIF detection. The effect of GelGreen concentration on S/N ratio and migration time of a wide concentration range of standard DNA mixtures was evaluated. Under optimum GelGreen concentration in the sieving buffer efficient and sensitive separations of DNA fragments with sizes from 100-500 base pairs (bp) were obtained. A comparison in terms of resolution, time of analysis, LOD, LOQ, reproducibility, sizing performance, and cost of analysis was established between two optimized CGE-LIF protocols for DNA analysis, one based on the dye YOPRO-1 (typically used for CGE-LIF of DNA fragments) and another one using the new GelGreen. Analyses using YOPRO-1 were faster than those using GelGreen (ca. 31 min versus 34 min for the analysis of 100-500 bp DNA fragments). On the other side, sensitivity using GelGreen was twofold higher than that using YOPRO-1. The cost of analysis was significantly cheaper (ninefold) using GelGreen than with YOPRO-1. The resolution values and sizing performance were not significantly different between the two dyes (e.g. both dyes allowed the separation of fragments differing in only 2 bp in the 100-200 bp range). The usefulness of the separation method using GelGreen is demonstrated by the characterization of different amplicons obtained by PCR.
Collapse
|
8
|
Hurth C, Gu J, Aboud M, Estes MD, Nordquist AR, McCord B, Zenhausern F. Direct loading of polymer matrices in plastic microchips for rapid DNA analysis: a comparative study. Electrophoresis 2012; 33:2604-11. [PMID: 22899270 DOI: 10.1002/elps.201200148] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
We report the design and performance validation of microfluidic separation technologies for human identification using a disposable plastic device suitable for integration into an automated rapid DNA analysis system. A fabrication process for a 15-cm long hot-embossed plastic microfluidic devices with a smooth semielliptical cross section out of cyclic olefin copolymer is presented. We propose a mixed polymer solution of 95% w/v hydroxyethylcellulose and 5% w/v polyvinylpyrrolidone for a final polymer concentration of 2.5 or 3.0% to be used as coating and sieving matrix for DNA separation. This formulation allows preparing the microchip without pretreatment in a single-loading step and provides high-resolution separation (≈1.2 bp for fragments <200 bp), which is superior to existing commercial matrices under the same conditions. The hot-embossed device performance is characterized and compared to injection-molded devices made out of cyclic olefin copolymer based on their respective injector geometry, channel shape, and surface charges. Each device design is assessed by fluorescence videomicroscopy to evaluate the formation of injection plugs, then by comparing electropherograms for the separation of a DNA size standard relevant to human identification.
Collapse
Affiliation(s)
- Cedric Hurth
- Center for Applied Nanobioscience and Medicine, The University of Arizona College of Medicine, Phoenix, AZ 85004, USA.
| | | | | | | | | | | | | |
Collapse
|
9
|
Manage DP, Elliott DG, Backhouse CJ. Millimeter scale separation of DNA with a replaceable polymer matrix. Electrophoresis 2012; 33:3213-21. [PMID: 23027089 DOI: 10.1002/elps.201200188] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2012] [Revised: 07/10/2012] [Accepted: 07/11/2012] [Indexed: 12/16/2022]
Abstract
Electrophoresis is a powerful method that has seen a wide range of applications, often in automated genetic diagnostic instruments that require the use of a replaceable sieving matrix. The power and simplicity of electrophoresis as an analysis technique would be ideal for highly integrated and low-cost analysis systems if the method could be implemented in microfluidics on the scale of several mm. We demonstrate the electrophoretic analysis of DNA with separation lengths as small as 2 mm and with a resolution adequate for the analysis of PCR products, i.e. resolutions of 10-20 base pairs. Such small-scale separations enable analysis systems consisting of microfluidics and microelectronics integrated into a single inexpensive package, thereby overcoming a key challenge facing the development of the lab on chip technologies.
Collapse
Affiliation(s)
- Dammika P Manage
- Department of Electrical and Computer Engineering, University of Alberta, Edmonton, Alberta, Canada
| | | | | |
Collapse
|
10
|
Hopwood AJ, Hurth C, Yang J, Cai Z, Moran N, Lee-Edghill JG, Nordquist A, Lenigk R, Estes MD, Haley JP, McAlister CR, Chen X, Brooks C, Smith S, Elliott K, Koumi P, Zenhausern F, Tully G. Integrated microfluidic system for rapid forensic DNA analysis: sample collection to DNA profile. Anal Chem 2010; 82:6991-9. [PMID: 20704389 DOI: 10.1021/ac101355r] [Citation(s) in RCA: 95] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
We demonstrate a conduit for the delivery of a step change in the DNA analysis process: A fully integrated instrument for the analysis of multiplex short tandem repeat DNA profiles from reference buccal samples is described and is suitable for the processing of such samples within a forensic environment such as a police custody suite or booking office. The instrument is loaded with a DNA processing cartridge which incorporates on-board pumps and valves which direct the delivery of sample and reagents to the various reaction chambers to allow DNA purification, amplification of the DNA by PCR, and collection of the amplified product for delivery to an integral CE chip. The fluorescently labeled product is separated using micro capillary electrophoresis with a resolution of 1.2 base pairs (bp) allowing laser induced fluorescence-based detection of the amplified short tandem repeat fragments and subsequent analysis of data to produce a DNA profile which is compatible with the data format of the UK DNA database. The entire process from taking the sample from a suspect, to database compatible DNA profile production can currently be achieved in less than 4 h. By integrating such an instrument and microfluidic cartridge with the forensic process, we believe it will be possible in the near future to process a DNA sample taken from an individual in police custody and compare the profile with the DNA profiles held on a DNA Database in as little as 3 h.
Collapse
Affiliation(s)
- Andrew J Hopwood
- Research and Development, Forensic Science Service, Trident Court 2960 Solihull Parkway, Birmingham Business Park, Birmingham, UK B37 7YN.
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
11
|
Hurth C, Smith SD, Nordquist AR, Lenigk R, Duane B, Nguyen D, Surve A, Hopwood AJ, Estes MD, Yang J, Cai Z, Chen X, Lee-Edghill JG, Moran N, Elliott K, Tully G, Zenhausern F. An automated instrument for human STR identification: design, characterization, and experimental validation. Electrophoresis 2010; 31:3510-7. [PMID: 20931618 DOI: 10.1002/elps.201000305] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
The microfluidic integration of an entire DNA analysis workflow on a fully integrated miniaturized instrument is reported using lab-on-a-chip automation to perform DNA fingerprinting compatible with CODIS standard relevant to the forensic community. The instrument aims to improve the cost, duration, and ease of use to perform a "sample-to-profile" analysis with no need for human intervention. The present publication describes the operation of the three major components of the system: the electronic control components, the microfluidic cartridge and CE microchip, and the optical excitation/detection module. Experimental details are given to characterize the level of performance, stability, reliability, accuracy, and sensitivity of the prototype system. A typical temperature profile from a PCR amplification process and an electropherogram of a commercial size standard (GeneScan 500™, Applied Biosystems) separation are shown to assess the relevance of the instrument to forensic applications. Finally, we present a profile from an automated integrated run where lysed cells from a buccal swab were introduced in the system and no further human intervention was required to complete the analysis.
Collapse
Affiliation(s)
- Cedric Hurth
- Center for Applied NanoBioscience and Medicine, The University of Arizona College of Medicine, Phoenix, AZ 85004, USA.
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
12
|
Aboud MJ, Gassmann M, McCord BR. The development of mini pentameric STR loci for rapid analysis of forensic DNA samples on a microfluidic system. Electrophoresis 2010; 31:2672-9. [DOI: 10.1002/elps.201000032] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
|
13
|
Salmanowicz BP. Identification and characterization of high-molecular-weight secalins from triticale seeds by capillary zone electrophoresis. Electrophoresis 2010; 31:2226-35. [DOI: 10.1002/elps.200900691] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
|
14
|
Bachmann S, Vallant R, Bakry R, Huck CW, Corradini D, Bonn GK. CE coupled to MALDI with novel covalently coated capillaries. Electrophoresis 2010; 31:618-29. [DOI: 10.1002/elps.200900507] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
|