1
|
Huge BJ, Young K, Kerr C, Champion MM, Dovichi NJ. 3-D printed injection system for capillary electrophoresis. ANALYTICAL METHODS : ADVANCING METHODS AND APPLICATIONS 2022; 14:1163-1168. [PMID: 35254370 PMCID: PMC8934206 DOI: 10.1039/d2ay00075j] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Commercial systems for capillary electrophoresis are designed for the unattended analysis of several samples, and are usually large, complex, and expensive. We report a compact system for manual injection of a single sample in capillary electrophoresis, which is ideal for method development and for student training. The injector consists of two parts that are manufactured by three-dimensional printing (STL and STEP files are included as ESI). One part is immobile and holds an electrode for powering electrophoresis and a gas line for pressurized injection and pumping fluids through the capillary. The second part is removable and is used to hold washing solutions, separation electrolyte, or sample. Conventional machining is used to tap holes to hold the electrode, separation capillary, gas line, and safety interlock. The system is used for either pressure or electrokinetic sample injection, and can be used to pump fluids through the capillary for changing background electrolytes and reconditioning the capillary between runs. We coupled the injection system to our high-dynamic range laser-induced fluorescence detector and evaluated the system by performing capillary zone electrophoresis on solutions of fluorescein. Electrokinetic injection produced a linear response across five orders of magnitude dynamic range (slope of the log-log calibration curve was 1.02), concentration detection limits of 5 pM, and mass detection limits of 1 zmol. Pressure injection produced a linear response across at least four orders of magnitude (slope of the log-log calibration curve was 0.92), concentration detection limits of 2 pM, and mass detection limits of 10 zmol.
Collapse
Affiliation(s)
- Bonnie Jaskowski Huge
- Department of Chemistry and Biochemistry, University of Notre Dame, Notre Dame, IN 46556, USA.
| | - Kevin Young
- Department of Chemistry and Biochemistry, University of Notre Dame, Notre Dame, IN 46556, USA.
| | - Caitlin Kerr
- Department of Chemistry and Biochemistry, University of Notre Dame, Notre Dame, IN 46556, USA.
| | - Matthew M Champion
- Department of Chemistry and Biochemistry, University of Notre Dame, Notre Dame, IN 46556, USA.
- Berthiaume Institute for Precision Health, University of Notre Dame, Notre Dame, IN 46556, USA
| | - Norman J Dovichi
- Department of Chemistry and Biochemistry, University of Notre Dame, Notre Dame, IN 46556, USA.
- Berthiaume Institute for Precision Health, University of Notre Dame, Notre Dame, IN 46556, USA
| |
Collapse
|
2
|
Native fluorescence detection with a laser driven light source for protein analysis in capillary electrophoresis. Anal Chim Acta 2021; 1183:338936. [PMID: 34627519 DOI: 10.1016/j.aca.2021.338936] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2021] [Revised: 07/19/2021] [Accepted: 08/09/2021] [Indexed: 02/05/2023]
Abstract
While ultraviolet light (UV) absorbance detection is the most widely used detection mode in capillary electrophoresis (CE), it can yield poor concentration sensitivity and has tendencies to exhibit baseline fluctuations. In order to overcome these challenges, alternative detection strategies, including the use of dedicated wavelength lasers, have been applied, resulting in enhancements of concentration sensitivity as well as decreased baseline disturbance. In this work, using a laser driven light source for excitation, we reported a native fluorescence detection (NFD) scheme for use in a commercial CE platform, PA 800 Plus Pharmaceutical Analysis System, for protein analysis. The CE-NFD system was characterized using tryptophan and a reduced IgG. We compared NFD with UV absorbance detection as applied to sodium dodecyl sulfate-capillary gel electrophoresis (SDS-CGE) and capillary isoelectric focusing (cIEF). In SDS-CGE, with the reported NFD a non-reduced IgG standard sample yielded a signal-to-noise ratio which was 14.6 times higher than with UV absorbance detection at 214 nm. In cIEF analysis of NISTmAb, Humanized IgG1k, with NFD ∼170 times less sample mass was needed to obtain similar profile quality to that with UV absorbance detection at 280 nm. NFD also eliminated baseline anomalies observed with UV absorbance detection and showed less interference by other absorbing species. These results suggest that CE-NFD is a practical and powerful tool for protein characterization in the biopharmaceutical industry.
Collapse
|
3
|
Wolfbeis OS. Fluorescent chameleon labels for bioconjugation and imaging of proteins, nucleic acids, biogenic amines and surface amino groups. a review. Methods Appl Fluoresc 2021; 9. [PMID: 34340216 DOI: 10.1088/2050-6120/ac1a0a] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2021] [Accepted: 08/02/2021] [Indexed: 12/14/2022]
Abstract
Chameleon labels (ChLs) possess the unique property of changing (visible) color and fluorescence on binding to amino groups of biomolecules. MostChLs react with primary aliphatic amino groups such as those in lysine or with amino groups artificially introduced into polynucleic acids or saccharides, but someothers also react with secondary amino groups. Under controlled circumstances, the reactions are fairly specific. The review is subdivided into the following sections: (1) An introduction and classification of fluorescent labels; (2) pyrylium labels that undergo shortwave color changes upon labelling, typically from blue to red; (3) polymethine type of labels (that also undergo shortwave color changes, typically from green to blue; (4) various other (less common) chromogenic and fluorogenic systems; (5) hemicyanine labels that undergolongwavecolor changes, typically from yellow to purple; (6) the application of ChLs to labeling of proteins and oligonucleotides; (7) applications to fluorometric assays and sensing; (8) applications to fluorescence imaging of biomolecules; (9) applications in studies on affinity interactions (receptor-ligand binding); (10) applications in surface and interface chemistry; and (11) applications in chromatography, electrophoresis and isotachophoresis of biomolecules.
Collapse
Affiliation(s)
- Otto S Wolfbeis
- University of Regensburg, Institute of Analytical Chemistry, Chemo- and Biosensors, 94040 Regensburg, Germany
| |
Collapse
|
4
|
Li G, Wang S, Zhu Z, Chen A, Liu S. Cam-based vibration-counter-balanced laser-induced fluorescence scanner for multiplexed capillary detection. Talanta 2019; 198:398-403. [PMID: 30876578 DOI: 10.1016/j.talanta.2019.01.128] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2018] [Revised: 01/22/2019] [Accepted: 01/22/2019] [Indexed: 11/15/2022]
Abstract
Laser-induced fluorescence (LIF) rotary scanners have been successfully used for multiplexed capillary detection. However, these scanners have a limitation that the capillaries have to be assembled in a circular format, which can be inconvenient for certain applications. A linear LIF scanner works well for flat parallel capillary arrays, but motor accelerations/decelerations (for direction changes) and scanning head vibrations introduce high instrumental noises. The number of capillaries that can be scanned by a linear scanner is limited because of the above constraints. We have constructed a cam-based scanner in an attempt to address these issues. A cam-based scanner eliminates the motor accelerations/decelerations but not the scanning head vibrations. In this work, we attach a second scanning head to the cam on the opposite side of the first scanning head to counter-balance the mechanical vibrations. With this modification, we improve the limit of detection by more than 3 times (from 69 pM to 20 pM fluorescein). We also increase the capillary number capacity by more than 6 times; the total number of capillaries that can be scanned is 426 if 150-μm-o.d. capillaries are used or 320 if 200-μm-o.d. capillaries are used. To demonstrate the utility of this instrument, we assemble a 99-capillary array on one capillary holder and perform capillary electrophoresis of two fluorescent dyes; separations in all capillaries are successfully monitored simultaneously. We also apply it for detecting fluorescently labeled proteins resolved by 24 s-dimension capillaries in a chip-capillary hybrid device; two-dimensional separation results are nicely produced.
Collapse
Affiliation(s)
- Guanbin Li
- Department of Chemistry and Biochemistry, University of Oklahoma, 101 Stephenson Parkway, Norman, OK 73019, USA; School of Petrochemical Engineering, Lanzhou University of Technology, Lanzhou 730050, PR China
| | - Shili Wang
- Department of Chemistry and Biochemistry, University of Oklahoma, 101 Stephenson Parkway, Norman, OK 73019, USA; PURSPEC Technologies Inc., 1 E. Zhongguancun Road, Beijing 100084, PR China
| | - Zaifang Zhu
- Department of Chemistry and Biochemistry, University of Oklahoma, 101 Stephenson Parkway, Norman, OK 73019, USA; AB Sciex LLC, Brea, CA 92821, USA
| | - Apeng Chen
- Department of Chemistry and Biochemistry, University of Oklahoma, 101 Stephenson Parkway, Norman, OK 73019, USA; Department of Neurological Surgery, University of Pittsburgh, Pittsburgh, PA 15213, USA.
| | - Shaorong Liu
- Department of Chemistry and Biochemistry, University of Oklahoma, 101 Stephenson Parkway, Norman, OK 73019, USA.
| |
Collapse
|
5
|
Liu R, Pan H, Zheng Y, Hu J, Cheddah S, Wang W, Wang Y, Yan C. Preparation of a capillary isoelectric focusing column with monolithic immobilized pH gradient and its application on protein separation based on an online capillary isoelectric focusing platform. Electrophoresis 2019; 40:1722-1730. [DOI: 10.1002/elps.201900125] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2019] [Revised: 03/27/2019] [Accepted: 04/06/2019] [Indexed: 11/12/2022]
Affiliation(s)
- Rangdong Liu
- School of PharmacyShanghai Jiao Tong University Shanghai P. R. China
| | - Hong Pan
- School of PharmacyShanghai Jiao Tong University Shanghai P. R. China
| | - Yiting Zheng
- School of PharmacyShanghai Jiao Tong University Shanghai P. R. China
| | - Jing Hu
- School of PharmacyShanghai Jiao Tong University Shanghai P. R. China
| | - Soumia Cheddah
- School of PharmacyShanghai Jiao Tong University Shanghai P. R. China
| | - Weiwei Wang
- School of PharmacyShanghai Jiao Tong University Shanghai P. R. China
| | - Yan Wang
- School of PharmacyShanghai Jiao Tong University Shanghai P. R. China
| | - Chao Yan
- School of PharmacyShanghai Jiao Tong University Shanghai P. R. China
| |
Collapse
|
6
|
Zhu G, Sun L, Dovichi NJ. Simplified capillary isoelectric focusing with chemical mobilization for intact protein analysis. J Sep Sci 2016; 40:948-953. [PMID: 27935257 DOI: 10.1002/jssc.201601051] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2016] [Revised: 11/27/2016] [Accepted: 11/28/2016] [Indexed: 11/05/2022]
Abstract
We report a capillary isoelectric focusing system based on a sequential injection method for simplified chemical mobilization. This system was coupled to an ion trap mass spectrometer with an electrokinetically pumped nanoelectrospray interface. The nanoelectrospray emitter employed an acidic sheath electrolyte. To simplify focusing and mobilization, a plug of ammonium hydroxide was first injected into the capillary, followed by a section of mixed sample and ampholyte. During focusing, the NH3 H2 O section worked as catholyte. As focusing progressed, the NH3 H2 O section was titrated to lower pH by the acidic sheath electrolyte. Chemical mobilization started automatically once the ammonium hydroxide was consumed by the acidic sheath flow electrolyte, which then acted as the mobilization solution. In this report, the lengths of the NH3 H2 O section and sample were optimized. With a 1 m long capillary, a relative short plug of the NH3 H2 O section (3 cm) produced both fast migration and reasonable separation resolution. The simplified capillary isoelectric focusing mass spectrometry system produced base peak intensity relative standard deviation of 8.5% and migration time relative standard deviation ≤0.6% for myoglobin and cytochrome C in triplicate runs.
Collapse
Affiliation(s)
- Guijie Zhu
- Department of Chemistry and Biochemistry, University of Notre Dame, Notre Dame, IN, USA
| | - Liangliang Sun
- Department of Chemistry and Biochemistry, University of Notre Dame, Notre Dame, IN, USA.,Department of Chemistry, Michigan State University, East Lansing, MI, USA
| | - Norman J Dovichi
- Department of Chemistry and Biochemistry, University of Notre Dame, Notre Dame, IN, USA
| |
Collapse
|
7
|
Creamer JS, Oborny NJ, Lunte SM. Recent advances in the analysis of therapeutic proteins by capillary and microchip electrophoresis. ANALYTICAL METHODS : ADVANCING METHODS AND APPLICATIONS 2014; 6:5427-5449. [PMID: 25126117 PMCID: PMC4128283 DOI: 10.1039/c4ay00447g] [Citation(s) in RCA: 58] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/04/2023]
Abstract
The development of therapeutic proteins and peptides is an expensive and time-intensive process. Biologics, which have become a multi-billion dollar industry, are chemically complex products that require constant observation during each stage of development and production. Post-translational modifications along with chemical and physical degradation from oxidation, deamidation, and aggregation, lead to high levels of heterogeneity that affect drug quality and efficacy. The various separation modes of capillary electrophoresis (CE) are commonly utilized to perform quality control and assess protein heterogeneity. This review attempts to highlight the most recent developments and applications of CE separation techniques for the characterization of protein and peptide therapeutics by focusing on papers accepted for publication in the in the two-year period between January 2012 and December 2013. The separation principles and technological advances of CE, capillary gel electrophoresis, capillary isoelectric focusing, capillary electrochromatography and CE-mass spectrometry are discussed, along with exciting new applications of these techniques to relevant pharmaceutical issues. Also included is a small selection of papers on microchip electrophoresis to show the direction this field is moving with regards to the development of inexpensive and portable analysis systems for on-site, high-throughput analysis.
Collapse
Affiliation(s)
- Jessica S. Creamer
- Department of Pharmaceutical Chemistry, University of Kansas, Lawrence, KS, USA
- Ralph N. Adams Institute for Bioanalytical Chemistry, University of Kansas, Lawrence, KS, USA
| | - Nathan J. Oborny
- Department of Bioengineering, University of Kansas, Lawrence, KS, USA
- Ralph N. Adams Institute for Bioanalytical Chemistry, University of Kansas, Lawrence, KS, USA
| | - Susan M. Lunte
- Department of Pharmaceutical Chemistry, University of Kansas, Lawrence, KS, USA
- Department of Bioengineering, University of Kansas, Lawrence, KS, USA
- Ralph N. Adams Institute for Bioanalytical Chemistry, University of Kansas, Lawrence, KS, USA
| |
Collapse
|
8
|
Yang Z, Sweedler JV. Application of capillary electrophoresis for the early diagnosis of cancer. Anal Bioanal Chem 2014; 406:4013-31. [DOI: 10.1007/s00216-014-7722-y] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2013] [Revised: 02/18/2014] [Accepted: 02/21/2014] [Indexed: 02/07/2023]
|
9
|
Zhao Y, Pereira F, deMello AJ, Morgan H, Niu X. Droplet-based in situ compartmentalization of chemically separated components after isoelectric focusing in a Slipchip. LAB ON A CHIP 2014; 14:555-561. [PMID: 24292781 DOI: 10.1039/c3lc51067k] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/28/2023]
Abstract
Isoelectric focusing (IEF) is a powerful and widely used technique for protein separation and purification. There are many embodiments of microscale IEF that use capillary or microfluidic chips for the analysis of small sample volumes. Nevertheless, collecting the separated sample volumes without causing remixing remains a challenge. Herein, we describe a microfluidic Slipchip device that is able to efficiently compartmentalize focused analyte bands in situ into microdroplets. The device contains a microfluidic "zig-zag" separation channel that is composed of a sequence of wells formed in the two halves of the Slipchip. The analytes are focused in the channel and then compartmentalised into droplets by slipping the chip. Importantly, sample droplets can be analysed on chip or collected for subsequent analysis using electrophoresis or mass spectrometry for example. To demonstrate this approach, we perform IEF separation using standard markers and protein samples, with on-chip post-processing. Compared to alternative approaches for sample collection, the method avoids remixing, is scalable and is easily hyphenated with the other analytical methods.
Collapse
Affiliation(s)
- Yan Zhao
- Faculty of Physical Sciences and Engineering, and Institute for Life Sciences, University of Southampton, Highfield, Southampton, SO17 1BJ, UK.
| | | | | | | | | |
Collapse
|
10
|
Zhu G, Sun L, Keithley RB, Dovichi NJ. Capillary isoelectric focusing-tandem mass spectrometry and reversed-phase liquid chromatography-tandem mass spectrometry for quantitative proteomic analysis of differentiating PC12 cells by eight-plex isobaric tags for relative and absolute quantification. Anal Chem 2013; 85:7221-9. [PMID: 23822771 DOI: 10.1021/ac4009868] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
We report the application of capillary isoelectric focusing for quantitative analysis of a complex proteome. Biological duplicates were generated from PC12 cells at days 0, 3, 7, and 12 following treatment with nerve growth factor. These biological duplicates were digested with trypsin, labeled using eight-plex isobaric tags for relative and absolute quantification (iTRAQ) chemistry, and pooled. The pooled peptides were separated into 25 fractions using reversed-phase liquid chromatography (RPLC). Technical duplicates of each fraction were separated by capillary isoelectric focusing (cIEF) using a set of amino acids as ampholytes. The cIEF column was interfaced to an Orbitrap Velos mass spectrometer with an electrokinetically pumped sheath-flow nanospray interface. This HPLC-cIEF-electrospray-tandem mass spectrometry (ESI-MS/MS) approach identified 835 protein groups and produced 2,329 unique peptides IDs. The biological duplicates were analyzed in parallel using conventional strong-cation exchange (SCX)-RPLC-ESI-MS/MS. The iTRAQ peptides were first separated into eight fractions using SCX. Each fraction was then analyzed by RPLC-ESI-MS/MS. The SCX-RPLC approach generated 1,369 protein groups and 3,494 unique peptide IDs. For protein quantitation, 96 and 198 differentially expressed proteins were obtained with RPLC-cIEF and SCX-RPLC, respectively. The combined set identified 231 proteins. Protein expression changes measured by RPLC-cEIF and SCX-RPLC were highly correlated.
Collapse
Affiliation(s)
- Guijie Zhu
- Department of Chemistry and Biochemistry, University of Notre Dame, Notre Dame, Indiana 46556, United States
| | | | | | | |
Collapse
|
11
|
Garrido-Medina R, Diez-Masa JC, de Frutos M. On-capillary fluorescent labeling and capillary electrophoresis laser-induced fluorescence analysis of glycoforms of intact prostate-specific antigen. Electrophoresis 2013; 34:2295-302. [DOI: 10.1002/elps.201200651] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2012] [Revised: 12/21/2012] [Accepted: 01/24/2013] [Indexed: 11/07/2022]
|
12
|
Liu F, Zhang L, Qian J, Ren J, Gao F, Zhang W. A novel, post-column micro-membrane reactor for fluorescent analysis of protein in capillary electrophoresis. Analyst 2013; 138:6429-36. [DOI: 10.1039/c3an00953j] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
13
|
Nge PN, Pagaduan JV, Yu M, Woolley AT. Microfluidic chips with reversed-phase monoliths for solid phase extraction and on-chip labeling. J Chromatogr A 2012; 1261:129-35. [PMID: 22995197 PMCID: PMC3463737 DOI: 10.1016/j.chroma.2012.08.095] [Citation(s) in RCA: 46] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2012] [Revised: 08/28/2012] [Accepted: 08/29/2012] [Indexed: 01/13/2023]
Abstract
The integration of sample preparation methods into microfluidic devices provides automation necessary for achieving complete micro total analysis systems. We have developed a technique that combines on-chip sample enrichment with fluorescence labeling and purification. Polymer monoliths made from butyl methacrylate were fabricated in cyclic olefin copolymer microdevices and used for solid phase extraction. We studied the retention of fluorophores, amino acids and proteins on these columns. The retained samples were subsequently labeled with both Alexa Fluor 488 and Chromeo P503, and unreacted dye was rinsed off the column before sample elution. Additional purification was obtained from the differential retention of proteins and fluorescent labels. A linear relation between the eluted peak areas and concentrations of on-chip labeled heat shock protein 90 samples demonstrated the utility of this method for on-chip quantitation. Our fast and simple method of simultaneously concentrating and labeling samples on-chip is compatible with miniaturization and desirable for automated analysis.
Collapse
Affiliation(s)
- Pamela N. Nge
- Department of Chemistry and Biochemistry, Brigham Young University, Provo, Utah 84602
| | - Jayson V. Pagaduan
- Department of Chemistry and Biochemistry, Brigham Young University, Provo, Utah 84602
| | - Ming Yu
- Department of Chemistry and Biochemistry, Brigham Young University, Provo, Utah 84602
| | - Adam T. Woolley
- Department of Chemistry and Biochemistry, Brigham Young University, Provo, Utah 84602
| |
Collapse
|
14
|
Koshel BM, Wirth MJ. Trajectory of isoelectric focusing from gels to capillaries to immobilized gradients in capillaries. Proteomics 2012; 12:2918-26. [PMID: 22930445 PMCID: PMC3799802 DOI: 10.1002/pmic.201200213] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2012] [Revised: 08/15/2012] [Accepted: 08/20/2012] [Indexed: 12/29/2022]
Abstract
This review presents the need for replacing gels in 2D separations for proteomics, where speed, high-throughput, and the ability to characterize trace level proteins or small samples are the current desires. The theme of the review is isoelectric focusing, which is a valuable tool because it pre-concentrates proteins in addition to separating with high peak capacity. The review traces the technological progress from gel IEF to CIEF to packed capillaries with immobilized gradients for CIEF. Multiple capillary techniques are progressing toward meeting the current desires, providing extremely high sensitivity with regard to concentration and to small samples, integrated automation, and high peak capacity from multiple dimensions of separation. Capillaries with immobilized pH gradients for CIEF are emerging, which will alleviate interference from ampholytes and improve reproducibility in separation times when this valuable technique can be used as one of the dimensions.
Collapse
Affiliation(s)
- Brooke M. Koshel
- Department of Chemistry, Purdue University, 560 Oval Drive, West Lafayette, IN 47907
| | - Mary J. Wirth
- Department of Chemistry, Purdue University, 560 Oval Drive, West Lafayette, IN 47907
| |
Collapse
|
15
|
Cianciulli C, Hahne T, Wätzig H. Capillary gel electrophoresis for precise protein quantitation. Electrophoresis 2012; 33:3276-80. [DOI: 10.1002/elps.201200177] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2012] [Revised: 05/31/2012] [Accepted: 07/09/2012] [Indexed: 11/10/2022]
|
16
|
Lu JJ, Wang S, Li G, Wang W, Pu Q, Liu S. Chip-capillary hybrid device for automated transfer of sample preseparated by capillary isoelectric focusing to parallel capillary gel electrophoresis for two-dimensional protein separation. Anal Chem 2012; 84:7001-7. [PMID: 22830584 PMCID: PMC3437655 DOI: 10.1021/ac3017168] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
In this article, we introduce a chip-capillary hybrid device to integrate capillary isoelectric focusing (CIEF) with parallel capillary sodium dodecyl sulfate- polyacrylamide gel electrophoresis (SDS-PAGE) or capillary gel electrophoresis (CGE) toward automating two-dimensional (2D) protein separations. The hybrid device consists of three chips that are butted together. The middle chip can be moved between two positions to reroute the fluidic paths, which enables the performance of CIEF and injection of proteins partially resolved by CIEF to CGE capillaries for parallel CGE separations in a continuous and automated fashion. Capillaries are attached to the other two chips to facilitate CIEF and CGE separations and to extend the effective lengths of CGE columns. Specifically, we illustrate the working principle of the hybrid device, develop protocols for producing and preparing the hybrid device, and demonstrate the feasibility of using this hybrid device for automated injection of CIEF-separated sample to parallel CGE for 2D protein separations. Potentials and problems associated with the hybrid device are also discussed.
Collapse
Affiliation(s)
- Joann J. Lu
- Department of Chemistry and Biochemistry, University of Oklahoma, Norman, OK 73019, USA
| | - Shili Wang
- Department of Chemistry and Biochemistry, University of Oklahoma, Norman, OK 73019, USA
| | - Guanbin Li
- School of Petrochemical Engineering, Lanzhou University of Technology, Lanzhou, Gansu, 730050, P.R. China
| | - Wei Wang
- Department of Chemistry and Biochemistry, University of Oklahoma, Norman, OK 73019, USA
| | - Qiaosheng Pu
- Department of Chemistry, Lanzhou University, Lanzhou, Gansu, 730000, P.R. China
| | - Shaorong Liu
- Department of Chemistry and Biochemistry, University of Oklahoma, Norman, OK 73019, USA
| |
Collapse
|
17
|
de Jong S, Epelbaum N, Liyanage R, Krylov SN. A semipermanent coating for preventing protein adsorption at physiological pH in kinetic capillary electrophoresis. Electrophoresis 2012; 33:2584-90. [DOI: 10.1002/elps.201200153] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
|
18
|
Zhu G, Sun L, Wojcik R, Kernaghan D, McGivney JB, Dovichi NJ. A rapid cIEF–ESI–MS/MS method for host cell protein analysis of a recombinant human monoclonal antibody. Talanta 2012; 98:253-6. [DOI: 10.1016/j.talanta.2012.07.017] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2012] [Revised: 07/05/2012] [Accepted: 07/06/2012] [Indexed: 02/07/2023]
|
19
|
Michels DA, Tu AW, McElroy W, Voehringer D, Salas-Solano O. Charge Heterogeneity of Monoclonal Antibodies by Multiplexed Imaged Capillary Isoelectric Focusing Immunoassay with Chemiluminescence Detection. Anal Chem 2012; 84:5380-6. [DOI: 10.1021/ac3008847] [Citation(s) in RCA: 41] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- David A. Michels
- Department of Protein
Analytical
Chemistry, Genentech, a Member of the Roche
Group, 1 DNA Way, South San Francisco, California 94080, United States
| | - Andrea W. Tu
- ProteinSimple, 3040 Oakmead Village Drive, Santa Clara, California 95051, United
States
| | - Will McElroy
- Department of Protein
Analytical
Chemistry, Genentech, a Member of the Roche
Group, 1 DNA Way, South San Francisco, California 94080, United States
| | - David Voehringer
- ProteinSimple, 3040 Oakmead Village Drive, Santa Clara, California 95051, United
States
| | - Oscar Salas-Solano
- Department of Analytical
Biochemistry, Seattle Genetics, Inc., 21823
30th Drive SE, Bothell,
Washington 98021, United States
| |
Collapse
|
20
|
Johannesen SA, Beeren SR, Blank D, Yang BY, Geyer R, Hindsgaul O. Glycan analysis via derivatization with a fluorogenic pyrylium dye. Carbohydr Res 2012; 352:94-100. [DOI: 10.1016/j.carres.2012.02.016] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2011] [Revised: 02/13/2012] [Accepted: 02/15/2012] [Indexed: 10/28/2022]
|
21
|
Essaka DC, Prendergast J, Keithley RB, Hindsgaul O, Palcic MM, Schnaar RL, Dovichi NJ. Single cell ganglioside catabolism in primary cerebellar neurons and glia. Neurochem Res 2012; 37:1308-14. [PMID: 22407243 DOI: 10.1007/s11064-012-0733-1] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2011] [Revised: 12/21/2011] [Accepted: 12/28/2011] [Indexed: 12/14/2022]
Abstract
Cell-to-cell heterogeneity in ganglioside catabolism was determined by profiling fluorescent tetramethylrhodamine-labeled GM1 (TMR-GM1) breakdown in individual primary neurons and glia from the rat cerebellum. Cells isolated from 5 to 6 day old rat cerebella were cultured for 7 days, and then incubated for 14 h with TMR-GM1. Intact cells were recovered from cultures by mild proteolysis, paraformaldehyde fixed, and subjected to single cell analysis. Individual cells were captured in a capillary, lysed, and the released single-cell contents analyzed by capillary electrophoresis with quantitative laser-induced fluorescent detection of metabolites. Non-neuronal cells on average took up much more exogenous TMR-GM1 than neuronal cells, and catabolized it more extensively. After 14 h of incubation, non-neuronal cells retained only 14% of the TMR products as GM1 and GM2, compared to >50% for neurons. On average, non-neuronal cells contained 74% of TMR-labeled product as TMR-ceramide, compared to only 42% for neurons. Non-neuronal cells retained seven times as much TMR-GM3 (7%) compared to neuronal cells (1%). To confirm the observed single cell metabolomics, we lysed and compared TMR-GM1 catabolic profiles from mixed neuron/glial cell cultures and from cultures depleted of non-neuronal cells by treatment with the antimitotic agent cytosine arabinoside. The lysed culture catabolic profiles were consistent with the average profiles of single neurons and glia. We conclude that the ultrasensitive analytic methods described accurately reflect single cell ganglioside catabolism in different cell populations from the brain.
Collapse
Affiliation(s)
- David C Essaka
- Department of Chemistry and Biochemistry, University of Notre Dame, Notre Dame, IN 46556, USA
| | | | | | | | | | | | | |
Collapse
|
22
|
Zhu Z, Lu JJ, Liu S. Protein separation by capillary gel electrophoresis: a review. Anal Chim Acta 2012; 709:21-31. [PMID: 22122927 PMCID: PMC3227876 DOI: 10.1016/j.aca.2011.10.022] [Citation(s) in RCA: 132] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2011] [Revised: 10/02/2011] [Accepted: 10/07/2011] [Indexed: 12/13/2022]
Abstract
Capillary gel electrophoresis (CGE) has been used for protein separation for more than two decades. Due to the technology advancement, current CGE methods are becoming more and more robust and reliable for protein analysis, and some of the methods have been routinely used for the analysis of protein-based pharmaceuticals and quality controls. In light of this progress, we survey 147 papers related to CGE separations of proteins and present an overview of this technology. We first introduce briefly the early development of CGE. We then review the methodology, in which we specifically describe the matrices, coatings, and detection strategies used in CGE. CGE using microfabricated channels and incorporation of CGE with two-dimensional protein separations are also discussed in this section. We finally present a few representative applications of CGE for separating proteins in real-world samples.
Collapse
Affiliation(s)
- Zaifang Zhu
- Department of Chemistry and Biochemistry, University of Oklahoma, Norman, OK 73019
| | - Joann J. Lu
- Department of Chemistry and Biochemistry, University of Oklahoma, Norman, OK 73019
| | - Shaorong Liu
- Department of Chemistry and Biochemistry, University of Oklahoma, Norman, OK 73019
| |
Collapse
|
23
|
de Jong S, Krylov SN. Pressure-based approach for the analysis of protein adsorption in capillary electrophoresis. Anal Chem 2011; 84:453-8. [PMID: 22107082 DOI: 10.1021/ac2030333] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Protein adsorption to inner capillary walls creates a major obstacle in all applications of capillary electrophoresis involving protein samples. The problem is especially severe in kinetic capillary electrophoresis (KCE) techniques, which are used to study protein-ligand interactions at physiological conditions and, thus, cannot utilize extreme pH. A variety of coatings exist to reduce protein adsorption in CE, each expressing a unique surface chemistry that interacts with individual proteins differently. Here we introduce a simple pressure-based method for the qualitative assessment of protein adsorption that can facilitate the direct antiadhesive ranking of several coatings toward a protein of interest. In this approach, a short plug of the protein is injected into a capillary and propagated through with a pressure low enough to ensure adequate Taylor dispersion. The experiment is performed with a nonmodified commercial instrument in a pseudo-two-detector approach. The two detectors are mimicked by using two different distances from the capillary inlet to a single detector. If the peak area and shape do not change with changing distance, the protein does not adsorb appreciably, while a decreasing peak area with increasing distance infers inner surface adsorption. The magnitude change of the peak area between the two distances along with the overall peak shape is used to gauge the extent of protein adsorption. By using this method, we ranked antiadhesive properties of different wall chemistries for a series of proteins. The described method will be useful for optimizing protein analysis by CE and, in particular, for KCE experiments that investigate how proteins interact with their respective ligands.
Collapse
Affiliation(s)
- Stephanie de Jong
- Department of Chemistry and Centre for Research on Biomolecular Interactions, York University, Toronto, Ontario M3J 1P3, Canada
| | | |
Collapse
|
24
|
[Application of capillary electrophoresis in analysis of disease specific proteins]. Se Pu 2011; 29:298-302. [PMID: 21770237 DOI: 10.3724/sp.j.1123.2011.00298] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022] Open
Abstract
One of the most urgent things in life science is to find out special proteins related to human diseases. Capillary electrophoresis (CE) shows many advantages in protein analysis, such as high separation efficiency, high speed, low cost, etc. Furthermore, there are many different separation modes and multifarious detectors can be chosen in CE for the analysis of different samples. In this paper, the applications of CE in the analysis of specific proteins, which might associate with some serious diseases, such as tumor, neurodegenerative disease and transfusion transmitted infections, are summarized.
Collapse
|
25
|
de Jong S, Krylov SN. Protein labeling enhances aptamer selection by methods of kinetic capillary electrophoresis. Anal Chem 2011; 83:6330-5. [PMID: 21728308 DOI: 10.1021/ac201242r] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
Methods of kinetic capillary electrophoresis (KCE) facilitate highly efficient selection of DNA aptamers for protein targets. The inability to detect native proteins at low concentrations in capillary electrophoresis creates, however, a significant obstacle for many important protein targets. Here we suggest that protein labeling with new Chromeo dyes can help to overcome this obstacle. By labeling a number of proteins with Chromeo P503, we show that the labeling procedure enables accurate detection of proteins in CE without significantly affecting their electrophoretic mobility or their ability to bind DNA. Moreover, Chromeo P503 does not appear to label the amino-groups of buffer components to a significant extent, making the labeling procedure compatible with a large number of selection and run buffers. Fluorescent labeling of protein targets with Chromeo dyes empowers selection of aptamers by KCE methods and promises to increase the rate at which aptamers for new targets are being developed and introduced in various applications.
Collapse
|
26
|
Garrido-Medina R, Díez-Masa JC, de Frutos M. CE methods for analysis of isoforms of prostate-specific antigen compatible with online derivatization for LIF detection. Electrophoresis 2011; 32:2036-43. [DOI: 10.1002/elps.201000524] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2010] [Revised: 01/28/2011] [Accepted: 01/29/2011] [Indexed: 11/08/2022]
|
27
|
Affiliation(s)
- Yuqing Lin
- Department of Chemistry, University of Gothenburg, S-41296, Gothenburg, Sweden
| | | | | | | |
Collapse
|
28
|
Ramsay LM, Cermak N, Dada OO, Dovichi NJ. Capillary isoelectric focusing with pH 9.7 cathode for the analysis of gastric biopsies. Anal Bioanal Chem 2011; 400:2025-30. [PMID: 21461616 PMCID: PMC4429874 DOI: 10.1007/s00216-011-4926-2] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2010] [Revised: 03/11/2011] [Accepted: 03/16/2011] [Indexed: 10/18/2022]
Abstract
Capillary isoelectric focusing tends to suffer from poor reproducibility, particularly for the analysis of complex protein samples from cellular or tissue homogenates. This poor reproducibility appears to be associated with erratic variations in electroosmotic flow. One cause of electroosmotic flow variation is degradation of the capillary coating caused by the extremely basic solution commonly used during mobilization and focusing; this degradation of the capillary coating can be reduced by employing a CAPS mobilization buffer at pH 9. Another cause of variation is protein adsorption to the capillary wall, which causes an increase in electroosmotic flow. The effects of protein adsorption can be reduced by use of surfactants in the buffer and by employing an extremely low sample loading. We report the use of CAPS mobilization buffer in combination with an ultrasensitive laser-induced fluorescence detector for the reproducible analysis of ∼2 ng of protein from a Barrett's esophagus biopsy.
Collapse
Affiliation(s)
- Lauren M. Ramsay
- Department of Chemistry, University of Washington, Seattle WA 98195 USA
| | - Nathan Cermak
- Program in Computational and Systems Biology, Massachusetts Institute of Technology, Cambridge MA 02139 USA
| | - Oluwatosin O. Dada
- Department of Chemistry and Biochemistry, University of Notre Dame, Notre Dame IN 46617, USA
| | - Norman J. Dovichi
- Department of Chemistry and Biochemistry, University of Notre Dame, Notre Dame IN 46617, USA
| |
Collapse
|
29
|
Chang PL, Chiu TC, Wang TE, Hu KC, Tsai YH, Hu CC, Bair MJ, Chang HT. Quantitation of branched-chain amino acids in ascites by capillary electrophoresis with light-emitting diode-induced fluorescence detection. Electrophoresis 2011; 32:1080-3. [DOI: 10.1002/elps.201000445] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2010] [Revised: 11/20/2010] [Accepted: 11/22/2010] [Indexed: 02/06/2023]
|
30
|
Dickerson JA, Ramsay LM, Dada OO, Cermak N, Dovichi NJ. Two-dimensional capillary electrophoresis: capillary isoelectric focusing and capillary zone electrophoresis with laser-induced fluorescence detection. Electrophoresis 2010; 31:2650-4. [PMID: 20603830 DOI: 10.1002/elps.201000151] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
CIEF and CZE are coupled with LIF detection to create an ultrasensitive 2-D separation method for proteins. In this method, two capillaries are joined through a buffer-filled interface. Separate power supplies control the potential at the injection end of the first capillary and at the interface; the detector is held at ground potential. Proteins are labeled with the fluorogenic reagent Chromeo P503, which preserves the isoelectric point of the labeled protein. The labeled proteins were mixed with ampholytes and injected into the first-dimension capillary. A focusing step was performed with the injection end of the capillary at high pH and the interface at low pH. To mobilize components, the interface was filled with a high pH buffer, which was compatible with the second-dimension separation. A fraction was transferred to the second-dimension capillary for separation. The process of fraction transfer and second dimension separation was repeated two dozen times. The separation produced a spot capacity of 125.
Collapse
Affiliation(s)
- Jane A Dickerson
- Department of Chemistry, University of Washington, Seattle WA, USA
| | | | | | | | | |
Collapse
|
31
|
Affiliation(s)
- Zak K. Shihabi
- a Department of Pathology , Wake Forest University School Medicine , Winston-Salem, North Carolina, USA
| |
Collapse
|
32
|
Powe AM, Das S, Lowry M, El-Zahab B, Fakayode SO, Geng ML, Baker GA, Wang L, McCarroll ME, Patonay G, Li M, Aljarrah M, Neal S, Warner IM. Molecular Fluorescence, Phosphorescence, and Chemiluminescence Spectrometry. Anal Chem 2010; 82:4865-94. [DOI: 10.1021/ac101131p] [Citation(s) in RCA: 44] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Affiliation(s)
- Aleeta M. Powe
- Department of Chemistry, University of Louisville, Louisville, Kentucky 40208, Department of Chemistry, Louisiana State University, Baton Rouge, Louisiana 70803, Department of Chemistry, Winston-Salem State University, Winston-Salem, North Carolina 27110, Department of Chemistry, Nanoscience and Nanotechnology Institute and the Optical Science and Technology Center, University of Iowa, Iowa City, Iowa 52242, Chemical Sciences Division, Oak Ridge National Laboratory, Oak Ridge, Tennessee 37831, Department
| | - Susmita Das
- Department of Chemistry, University of Louisville, Louisville, Kentucky 40208, Department of Chemistry, Louisiana State University, Baton Rouge, Louisiana 70803, Department of Chemistry, Winston-Salem State University, Winston-Salem, North Carolina 27110, Department of Chemistry, Nanoscience and Nanotechnology Institute and the Optical Science and Technology Center, University of Iowa, Iowa City, Iowa 52242, Chemical Sciences Division, Oak Ridge National Laboratory, Oak Ridge, Tennessee 37831, Department
| | - Mark Lowry
- Department of Chemistry, University of Louisville, Louisville, Kentucky 40208, Department of Chemistry, Louisiana State University, Baton Rouge, Louisiana 70803, Department of Chemistry, Winston-Salem State University, Winston-Salem, North Carolina 27110, Department of Chemistry, Nanoscience and Nanotechnology Institute and the Optical Science and Technology Center, University of Iowa, Iowa City, Iowa 52242, Chemical Sciences Division, Oak Ridge National Laboratory, Oak Ridge, Tennessee 37831, Department
| | - Bilal El-Zahab
- Department of Chemistry, University of Louisville, Louisville, Kentucky 40208, Department of Chemistry, Louisiana State University, Baton Rouge, Louisiana 70803, Department of Chemistry, Winston-Salem State University, Winston-Salem, North Carolina 27110, Department of Chemistry, Nanoscience and Nanotechnology Institute and the Optical Science and Technology Center, University of Iowa, Iowa City, Iowa 52242, Chemical Sciences Division, Oak Ridge National Laboratory, Oak Ridge, Tennessee 37831, Department
| | - Sayo O. Fakayode
- Department of Chemistry, University of Louisville, Louisville, Kentucky 40208, Department of Chemistry, Louisiana State University, Baton Rouge, Louisiana 70803, Department of Chemistry, Winston-Salem State University, Winston-Salem, North Carolina 27110, Department of Chemistry, Nanoscience and Nanotechnology Institute and the Optical Science and Technology Center, University of Iowa, Iowa City, Iowa 52242, Chemical Sciences Division, Oak Ridge National Laboratory, Oak Ridge, Tennessee 37831, Department
| | - Maxwell L. Geng
- Department of Chemistry, University of Louisville, Louisville, Kentucky 40208, Department of Chemistry, Louisiana State University, Baton Rouge, Louisiana 70803, Department of Chemistry, Winston-Salem State University, Winston-Salem, North Carolina 27110, Department of Chemistry, Nanoscience and Nanotechnology Institute and the Optical Science and Technology Center, University of Iowa, Iowa City, Iowa 52242, Chemical Sciences Division, Oak Ridge National Laboratory, Oak Ridge, Tennessee 37831, Department
| | - Gary A. Baker
- Department of Chemistry, University of Louisville, Louisville, Kentucky 40208, Department of Chemistry, Louisiana State University, Baton Rouge, Louisiana 70803, Department of Chemistry, Winston-Salem State University, Winston-Salem, North Carolina 27110, Department of Chemistry, Nanoscience and Nanotechnology Institute and the Optical Science and Technology Center, University of Iowa, Iowa City, Iowa 52242, Chemical Sciences Division, Oak Ridge National Laboratory, Oak Ridge, Tennessee 37831, Department
| | - Lin Wang
- Department of Chemistry, University of Louisville, Louisville, Kentucky 40208, Department of Chemistry, Louisiana State University, Baton Rouge, Louisiana 70803, Department of Chemistry, Winston-Salem State University, Winston-Salem, North Carolina 27110, Department of Chemistry, Nanoscience and Nanotechnology Institute and the Optical Science and Technology Center, University of Iowa, Iowa City, Iowa 52242, Chemical Sciences Division, Oak Ridge National Laboratory, Oak Ridge, Tennessee 37831, Department
| | - Matthew E. McCarroll
- Department of Chemistry, University of Louisville, Louisville, Kentucky 40208, Department of Chemistry, Louisiana State University, Baton Rouge, Louisiana 70803, Department of Chemistry, Winston-Salem State University, Winston-Salem, North Carolina 27110, Department of Chemistry, Nanoscience and Nanotechnology Institute and the Optical Science and Technology Center, University of Iowa, Iowa City, Iowa 52242, Chemical Sciences Division, Oak Ridge National Laboratory, Oak Ridge, Tennessee 37831, Department
| | - Gabor Patonay
- Department of Chemistry, University of Louisville, Louisville, Kentucky 40208, Department of Chemistry, Louisiana State University, Baton Rouge, Louisiana 70803, Department of Chemistry, Winston-Salem State University, Winston-Salem, North Carolina 27110, Department of Chemistry, Nanoscience and Nanotechnology Institute and the Optical Science and Technology Center, University of Iowa, Iowa City, Iowa 52242, Chemical Sciences Division, Oak Ridge National Laboratory, Oak Ridge, Tennessee 37831, Department
| | - Min Li
- Department of Chemistry, University of Louisville, Louisville, Kentucky 40208, Department of Chemistry, Louisiana State University, Baton Rouge, Louisiana 70803, Department of Chemistry, Winston-Salem State University, Winston-Salem, North Carolina 27110, Department of Chemistry, Nanoscience and Nanotechnology Institute and the Optical Science and Technology Center, University of Iowa, Iowa City, Iowa 52242, Chemical Sciences Division, Oak Ridge National Laboratory, Oak Ridge, Tennessee 37831, Department
| | - Mohannad Aljarrah
- Department of Chemistry, University of Louisville, Louisville, Kentucky 40208, Department of Chemistry, Louisiana State University, Baton Rouge, Louisiana 70803, Department of Chemistry, Winston-Salem State University, Winston-Salem, North Carolina 27110, Department of Chemistry, Nanoscience and Nanotechnology Institute and the Optical Science and Technology Center, University of Iowa, Iowa City, Iowa 52242, Chemical Sciences Division, Oak Ridge National Laboratory, Oak Ridge, Tennessee 37831, Department
| | - Sharon Neal
- Department of Chemistry, University of Louisville, Louisville, Kentucky 40208, Department of Chemistry, Louisiana State University, Baton Rouge, Louisiana 70803, Department of Chemistry, Winston-Salem State University, Winston-Salem, North Carolina 27110, Department of Chemistry, Nanoscience and Nanotechnology Institute and the Optical Science and Technology Center, University of Iowa, Iowa City, Iowa 52242, Chemical Sciences Division, Oak Ridge National Laboratory, Oak Ridge, Tennessee 37831, Department
| | - Isiah M. Warner
- Department of Chemistry, University of Louisville, Louisville, Kentucky 40208, Department of Chemistry, Louisiana State University, Baton Rouge, Louisiana 70803, Department of Chemistry, Winston-Salem State University, Winston-Salem, North Carolina 27110, Department of Chemistry, Nanoscience and Nanotechnology Institute and the Optical Science and Technology Center, University of Iowa, Iowa City, Iowa 52242, Chemical Sciences Division, Oak Ridge National Laboratory, Oak Ridge, Tennessee 37831, Department
| |
Collapse
|
33
|
Capillary array isoelectric focusing with laser-induced fluorescence detection: milli-pH unit resolution and yoctomole mass detection limits in a 32-channel system. Anal Bioanal Chem 2010; 397:3305-10. [PMID: 20336452 DOI: 10.1007/s00216-010-3595-x] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2010] [Revised: 02/16/2010] [Accepted: 02/17/2010] [Indexed: 10/19/2022]
Abstract
We report a multiplexed capillary electrophoresis system employing an array of 32 capillaries with a micromachined sheath-flow cuvette as the detection chamber. The sample streams were simultaneously excited with a 473-nm laser beam, and the fluorescence emission was imaged on a CCD camera with a pair of doublet achromat lens. The instrument produced mass detection limits of 380 +/- 120 yoctomoles for fluorescein in zone electrophoresis. Capillary isoelectric focusing of fluorescent standards produced peaks with an average width of 0.0029 +/- 0.0008 pH. Capillary coating stability limits the reproducibility of the analysis.
Collapse
|
34
|
Yu M, Wang HY, Woolley AT. Polymer microchip CE of proteins either off- or on-chip labeled with chameleon dye for simplified analysis. Electrophoresis 2010; 30:4230-6. [PMID: 19924700 DOI: 10.1002/elps.200900349] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Microchip CE of proteins labeled either off- or on-chip with the "chameleon" CE dye 503 using poly(methyl methacrylate) microchips is presented. A simple dynamic coating using the cationic surfactant CTAB prevented nonspecific adsorption of protein and dye to the channel walls. The labeling reactions for both off- and on-chip labeling proceeded at room temperature without requiring heating steps. In off-chip labeling, a 9 ng/mL concentration detection limit for BSA, corresponding to a approximately 7 fg (100 zmol) mass detection limit, was obtained. In on-chip tagging, the free dye and protein were placed in different reservoirs of the microchip, and an extra incubation step was not needed. A 1 microg/mL concentration detection limit for BSA, corresponding to a approximately 700 fg (10 amol) mass detection limit, was obtained from this protocol. The earlier elution time of the BSA peak in on-chip labeling resulted from fewer total labels on each protein molecule. Our on-chip labeling method is an important part of automation in miniaturized devices.
Collapse
Affiliation(s)
- Ming Yu
- Department of Chemistry and Biochemistry, Brigham Young University, Provo, UT, USA
| | | | | |
Collapse
|
35
|
Liang Y, Cong Y, Liang Z, Zhang L, Zhang Y. Microchip isoelectric focusing with monolithic immobilized pH gradient materials for proteins separation. Electrophoresis 2010; 30:4034-9. [PMID: 19960463 DOI: 10.1002/elps.200900209] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Monolithic immobilized pH gradient (M-IPG) materials were prepared in microchannles by photoinitiated polymerization of acrylamide, glycidylmethacrylate and Bis, followed by the attachment of focused Ampholine onto the surface of porous monoliths via epoxide groups. With M-IPG materials as matrix, FITC-labeled ribonuclease B, myoglobin and alpha-casein were well separated by microchip isoelectric focusing (muCIEF) without carrier amphocytes (CAs) added in the buffer. Both chemical and pressure mobilization were applied to drive focused zones for LIF detection. Our experimental results showed that pressure mobilization was preferable with neglectable band broadening, and good peak shape and high detection sensitivity were obtained. All these results demonstrate that muCIEF with M-IPG materials is not only an efficient mode for protein enrichment and separation but also attractive to couple with other CE modes to achieve multi-dimensional separation or MS for further identification, without the interference of mobile CAs.
Collapse
Affiliation(s)
- Yu Liang
- National Chromatographic R. & A. Center, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, 116023 Dalian, PR China
| | | | | | | | | |
Collapse
|