1
|
Rasel AKMFK, Seyler SL, Hayes MA. A numerical study on microfluidic devices to maintain the concentration and purity of dielectrophoresis-induced separated fractions of analyte. Anal Bioanal Chem 2023; 415:4861-4873. [PMID: 37382654 DOI: 10.1007/s00216-023-04795-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2023] [Revised: 06/05/2023] [Accepted: 06/06/2023] [Indexed: 06/30/2023]
Abstract
Determining the physical and chemical properties of biologically important particles such as cells, organelles, viruses, exosomes, complexes, nucleotides, and proteins is needed to understand their function. These properties are determined with common analytical tools (mass spectrometry, cryo-EM, NMR, various spectroscopies, nucleotide sequencing, etc.) whose function can be improved when samples are pure and concentrated. Separations science plays a central role in conditioning samples, ranging from low-resolution benchtop operations like precipitations or extractions to higher-resolution chromatography and electrophoresis. In the last two decades, gradient insulator-based dielectrophoresis (g-iDEP) has emerged as a high-resolution separation technique capable of highly selective enrichment of cells, viruses, exosomes, and proteins. Specific evidence has been shown that pure homogeneous and concentrated fractions of cells and exosomes can be generated from complex mixtures. However, recovering those fractions for analysis has not been developed, limiting the technique to an analytical rather than a preparative one. Here, a finite element analysis was undertaken to identify geometries and operational parameters to efficiently remove the enriched fraction while retaining maximum concentration and providing total mass transfer. Geometric factors (e.g., side channel width and distance from the gradient-inducing gap) were studied, along with the addition of a second inlet side channel. Two flow-generating mechanisms-electroosmosis and hydrostatic pressure-were evaluated for semi-optimized device designs, including a comparison of the one- and two-inlet designs. Simulations indicate effectively one hundred percent mass transfer and a concentration increase by an order of magnitude for several device configurations and operational parameters.
Collapse
Affiliation(s)
| | - Sean L Seyler
- School of Molecular Sciences, Arizona State University, Tempe, AZ, 85287, USA
| | - Mark A Hayes
- School of Molecular Sciences, Arizona State University, Tempe, AZ, 85287, USA.
| |
Collapse
|
2
|
Waskasi MM, Lazaric A, Heyden M. Solvent-mediated forces in protein dielectrophoresis. Electrophoresis 2021; 42:2060-2069. [PMID: 34302698 DOI: 10.1002/elps.202100087] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2021] [Revised: 07/09/2021] [Accepted: 07/15/2021] [Indexed: 12/23/2022]
Abstract
DEP is an established method to manipulate micrometer-sized particles, but standard continuum theories predict only negligible effects for nanometer-sized proteins despite contrary experimental evidence. A theoretical description of protein DEP needs to consider details on the molecular scale. Previous work toward this goal addressed the role of orientational polarization of static protein dipole moments for dielectrophoretic effects, which successfully predicts the general magnitude of dielectrophoretic forces on proteins but does not readily explain negative DEP forces observed for proteins in some experiments. However, contributions to the protein chemical potential due to protein-water interactions have not yet been considered in this context. Here, we utilize atomistic molecular dynamics simulations to evaluate polarization-induced changes in the protein solvation free energy, which result in a solvent-mediated contribution to dielectrophoretic forces. We quantify solvent-mediated dielectrophoretic forces for two proteins and a small peptide in water, which follow expectations for protein-water dipole-dipole interactions. The magnitude of solvent-mediated dielectrophoretic forces exceeds predictions of nonmolecular continuum theories, but plays a minor role for the total dielectrophoretic force for the simulated proteins due to dominant contributions from the orientational polarization of their static protein dipoles. However, we extrapolate that solvent-mediated contributions to negative protein DEP forces will become increasingly relevant for multidomain proteins, complexes and aggregates with large protein-water interfaces, as well as for high electric field frequencies, which provides a potential mechanism for corresponding experimental observations of negative protein DEP.
Collapse
Affiliation(s)
- Morteza M Waskasi
- School of Molecular Sciences, Arizona State University, Tempe, AZ, USA
| | | | - Matthias Heyden
- School of Molecular Sciences, Arizona State University, Tempe, AZ, USA
| |
Collapse
|
3
|
Quevedo DF, Lentz CJ, Coll de Peña A, Hernandez Y, Habibi N, Miki R, Lahann J, Lapizco-Encinas BH. Electrokinetic characterization of synthetic protein nanoparticles. BEILSTEIN JOURNAL OF NANOTECHNOLOGY 2020; 11:1556-1567. [PMID: 33134000 PMCID: PMC7590587 DOI: 10.3762/bjnano.11.138] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/15/2020] [Accepted: 09/29/2020] [Indexed: 05/11/2023]
Abstract
The application of nanoparticle in medicine is promising for the treatment of a wide variety of diseases. However, the slow progress in the field has resulted in relatively few therapies being translated into the clinic. Anisotropic synthetic protein nanoparticles (ASPNPs) show potential as a next-generation drug-delivery technology, due to their biocompatibility, biodegradability, and functionality. Even though ASPNPs have the potential to be used in a variety of applications, such as in the treatment of glioblastoma, there is currently no high-throughput technology for the processing of these particles. Insulator-based electrokinetics employ microfluidics devices that rely on electrokinetic principles to manipulate micro- and nanoparticles. These miniaturized devices can selectively trap and enrich nanoparticles based on their material characteristics, and subsequently release them, which allows for particle sorting and processing. In this study, we use insulator-based electrokinetic (EK) microdevices to characterize ASPNPs. We found that anisotropy strongly influences electrokinetic particle behavior by comparing compositionally identical anisotropic and non-anisotropic SPNPs. Additionally, we were able to estimate the empirical electrokinetic equilibrium parameter (eE EEC) for all SPNPs. This particle-dependent parameter can allow for the design of various separation and purification processes. These results show how promising the insulator-based EK microdevices are for the analysis and purification of clinically relevant SPNPs.
Collapse
Affiliation(s)
- Daniel F Quevedo
- Biointerfaces Institute, University of Michigan - Ann Arbor, Ann Arbor MI, USA
- Biomedical Engineering, University of Michigan - Ann Arbor, Ann Arbor MI, USA
| | - Cody J Lentz
- Microscale Bioseparations Laboratory and Biomedical Engineering Department, Rochester Institute of Technology, Rochester NY, USA
| | - Adriana Coll de Peña
- Microscale Bioseparations Laboratory and Biomedical Engineering Department, Rochester Institute of Technology, Rochester NY, USA
| | - Yazmin Hernandez
- Biointerfaces Institute, University of Michigan - Ann Arbor, Ann Arbor MI, USA
- Biomedical Engineering, University of Michigan - Ann Arbor, Ann Arbor MI, USA
| | - Nahal Habibi
- Biointerfaces Institute, University of Michigan - Ann Arbor, Ann Arbor MI, USA
- Chemical Engineering, University of Michigan - Ann Arbor, Ann Arbor MI, USA
| | - Rikako Miki
- Biointerfaces Institute, University of Michigan - Ann Arbor, Ann Arbor MI, USA
- Biomedical Engineering, University of Michigan - Ann Arbor, Ann Arbor MI, USA
| | - Joerg Lahann
- Biointerfaces Institute, University of Michigan - Ann Arbor, Ann Arbor MI, USA
- Biomedical Engineering, University of Michigan - Ann Arbor, Ann Arbor MI, USA
- Chemical Engineering, University of Michigan - Ann Arbor, Ann Arbor MI, USA
| | - Blanca H Lapizco-Encinas
- Microscale Bioseparations Laboratory and Biomedical Engineering Department, Rochester Institute of Technology, Rochester NY, USA
| |
Collapse
|
4
|
Nanofabrication Techniques in Large-Area Molecular Electronic Devices. APPLIED SCIENCES-BASEL 2020. [DOI: 10.3390/app10176064] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
The societal impact of the electronics industry is enormous—not to mention how this industry impinges on the global economy. The foreseen limits of the current technology—technical, economic, and sustainability issues—open the door to the search for successor technologies. In this context, molecular electronics has emerged as a promising candidate that, at least in the short-term, will not likely replace our silicon-based electronics, but improve its performance through a nascent hybrid technology. Such technology will take advantage of both the small dimensions of the molecules and new functionalities resulting from the quantum effects that govern the properties at the molecular scale. An optimization of interface engineering and integration of molecules to form densely integrated individually addressable arrays of molecules are two crucial aspects in the molecular electronics field. These challenges should be met to establish the bridge between organic functional materials and hard electronics required for the incorporation of such hybrid technology in the market. In this review, the most advanced methods for fabricating large-area molecular electronic devices are presented, highlighting their advantages and limitations. Special emphasis is focused on bottom-up methodologies for the fabrication of well-ordered and tightly-packed monolayers onto the bottom electrode, followed by a description of the top-contact deposition methods so far used.
Collapse
|
5
|
Davies CD, Crooks RM. Focusing, sorting, and separating microplastics by serial faradaic ion concentration polarization. Chem Sci 2020; 11:5547-5558. [PMID: 32874498 PMCID: PMC7441690 DOI: 10.1039/d0sc01931c] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2020] [Accepted: 05/13/2020] [Indexed: 12/16/2022] Open
Abstract
In this article, we report continuous sorting of two microplastics in a trifurcated microfluidic channel using a new method called serial faradaic ion concentration polarization (fICP). fICP is an electrochemical method for forming ion depletion zones and their corresponding locally elevated electric fields in microchannels. By tuning the interplay between the forces of electromigration and convection during a fICP experiment, it is possible to control the flow of charged objects in microfluidic channels. The key findings of this report are threefold. First, fICP at two bipolar electrodes, configured in series and operated with a single power supply, yields two electric field gradients within a single microfluidic channel (i.e., serial fICP). Second, complex flow variations that adversely impact separations during fICP can be mitigated by minimizing convection by electroosmotic flow in favor of pressure-driven flow. Finally, serial fICP within a trifurcated microchannel is able to continuously and quantitatively focus, sort, and separate microplastics. These findings demonstrate that multiple local electric field gradients can be generated within a single microfluidic channel by simply placing metal wires at strategic locations. This approach opens a vast range of new possibilities for implementing membrane-free separations.
Collapse
Affiliation(s)
- Collin D Davies
- Department of Chemistry and Texas Materials Institute , The University of Texas at Austin , 105 E. 24th St., Stop A5300 , Austin , Texas , 78712-1224 , USA . ; Tel: +1-512-475-8674
| | - Richard M Crooks
- Department of Chemistry and Texas Materials Institute , The University of Texas at Austin , 105 E. 24th St., Stop A5300 , Austin , Texas , 78712-1224 , USA . ; Tel: +1-512-475-8674
| |
Collapse
|
6
|
Characterization of the Dielectrophoretic Response of Different Candida Strains Using 3D Carbon Microelectrodes. MICROMACHINES 2020; 11:mi11030255. [PMID: 32121163 PMCID: PMC7143313 DOI: 10.3390/mi11030255] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/03/2020] [Revised: 02/23/2020] [Accepted: 02/26/2020] [Indexed: 02/08/2023]
Abstract
Bloodstream infection with Candida fungal cells remains one of the most life-threatening complications among hospitalized patients around the world. Although most of the cases are still due to Candida albicans, the rising incidence of infections caused by other Candida strains that may not respond to traditional anti-fungal treatments merits the development of a method for species-specific isolation of Candida. To this end, here we present the characterization of the dielectrophoresis (DEP) response of Candida albicans, Candida tropicalis and Candida parapsilosis. We complement such characterization with a study of the Candida cells morphology. The Candida strains exhibited subtle differences in their morphology and dimensions. All the Candida strains exhibited positive DEP in the range 10-500 kHz, although the strength of the DEP response was different for each Candida strain at different frequencies. Only Candida tropicalis showed positive DEP at 750 kHz. The current results show potential for manipulation and enrichment of a specific Candida strain at specific DEP conditions towards aiding in the rapid identification of Candida strains to enable the effective and timely treatment of Candida infections.
Collapse
|
7
|
Zhu F, Nannenga BL, Hayes MA. Electrophoretic exclusion microscale sample preparation for cryo-EM structural determination of proteins. BIOMICROFLUIDICS 2019; 13:054112. [PMID: 31673302 PMCID: PMC6817354 DOI: 10.1063/1.5124311] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/12/2019] [Accepted: 10/08/2019] [Indexed: 06/10/2023]
Abstract
Transmission electron microscopy (TEM) of biological samples has a long history and has provided many important insights into fundamental processes and diseases. While great strides have been made in EM data collection and data processing, sample preparation is still performed using decades-old techniques. Those sample preparation methods rely on extensive macroscale purification and concentration to achieve homogeneity suitable for high-resolution analyses. Noting that relatively few bioparticles are needed to generate high-quality protein structures, this work uses microfluidics that can accurately and precisely manipulate and deliver bioparticles to grids for imaging. The use of microfluidics enables isolation, purification, and concentration of specific target proteins at these small scales and does so in a relatively short period of time (minutes). These capabilities enable imaging of more dilute solutions and obtaining pure protein images from mixtures. In this system, spatially isolated, purified, and concentrated proteins are transferred directly onto electron microscopy grids for imaging. The processing enables imaging of more dilute solutions, as low as 5 × 10-6 g/ml, with small total amounts of protein (<400 pg, 900 amol). These levels may be achieved with mixtures and, as proof-of-principle, imaging of one protein from a mixture of two proteins is demonstrated.
Collapse
Affiliation(s)
- Fanyi Zhu
- School of Molecular Sciences, Arizona State University, Box 871604, Tempe, Arizona 85287-1604, USA
| | - Brent L. Nannenga
- School of Engineering of Matter, Transport and Energy, Arizona State University, Box 876106, Tempe, Arizona 85287-6106, USA
| | - Mark A. Hayes
- School of Molecular Sciences, Arizona State University, Box 871604, Tempe, Arizona 85287-1604, USA
| |
Collapse
|
8
|
Nerguizian V, Stiharu I, Al-Azzam N, Yassine-Diab B, Alazzam A. The effect of dielectrophoresis on living cells: crossover frequencies and deregulation in gene expression. Analyst 2019; 144:3853-3860. [DOI: 10.1039/c9an00320g] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
This article documents the effect of dielectrophoresis on living cells.
Collapse
Affiliation(s)
- Vahé Nerguizian
- Department of Electrical Engineering
- École de technologie supérieure (ÉTS)
- Montreal
- Canada
| | - Ion Stiharu
- Department of Mechanical and Industrial Engineering
- Concordia University
- Montreal
- Canada
| | - Nosayba Al-Azzam
- Department of Physiology and Biochemistry
- Jordan University of Science and Technology
- Irbid
- Jordan
| | | | - Anas Alazzam
- Department of Mechanical Engineering
- Khalifa University
- Abu Dhabi
- United Arab Emirates
- Department of Electrical Engineering
| |
Collapse
|
9
|
Viefhues M, Eichhorn R. DNA dielectrophoresis: Theory and applications a review. Electrophoresis 2017; 38:1483-1506. [PMID: 28306161 DOI: 10.1002/elps.201600482] [Citation(s) in RCA: 46] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2016] [Revised: 03/07/2017] [Accepted: 03/08/2017] [Indexed: 01/24/2023]
Abstract
Dielectrophoresis is the migration of an electrically polarizable particle in an inhomogeneous electric field. This migration can be exploited for several applications with (bio)molecules or cells. Dielectrophoresis is a noninvasive technique; therefore, it is very convenient for (selective) manipulation of (bio)molecules or cells. In this review, we will focus on DNA dielectrophoresis as this technique offers several advantages in trapping and immobilization, separation and purification, and analysis of DNA molecules. We present and discuss the underlying theory of the most important forces that have to be considered for applications with dielectrophoresis. Moreover, a review of DNA dielectrophoresis applications is provided to present the state-of-the-art and to offer the reader a perspective of the advances and current limitations of DNA dielectrophoresis.
Collapse
Affiliation(s)
- Martina Viefhues
- Experimental Biophysics and Applied Nanoscience, Faculty of Physics, Bielefeld University, Bielefeld, Germany
| | - Ralf Eichhorn
- Nordita, Royal Institute of Technology and Stockholm University, Stockholm, Sweden
| |
Collapse
|
10
|
Abstract
Microfluidics has been undergoing fast development in the past two decades due to its promising applications in biotechnology, medicine, and chemistry. Towards these applications, enhancing concentration sensitivity and detection resolution are indispensable to meet the detection limits because of the dilute sample concentrations, ultra-small sample volumes and short detection lengths in microfluidic devices. A variety of microfluidic techniques for concentrating analytes have been developed. This article presents an overview of analyte concentration techniques in microfluidics. We focus on discussing the physical mechanism of each concentration technique with its representative advancements and applications. Finally, the article is concluded by highlighting and discussing advantages and disadvantages of the reviewed techniques.
Collapse
Affiliation(s)
- Cunlu Zhao
- Key Laboratory of Thermo-Fluid Science and Engineering of MOE, School of Energy and Power Engineering, Xi’an Jiaotong University, Xi’an 710049, China
- Correspondence: (C.Z.); (C.Y.); Tel.: +86-29-8266-3222 (C.Z.); +65-6790-4883 (C.Y.)
| | - Zhengwei Ge
- School of Mechanical and Aerospace Engineering, Nanyang Technological University, 50 Nanyang Avenue, Singapore 639798, Singapore;
| | - Chun Yang
- School of Mechanical and Aerospace Engineering, Nanyang Technological University, 50 Nanyang Avenue, Singapore 639798, Singapore;
- Correspondence: (C.Z.); (C.Y.); Tel.: +86-29-8266-3222 (C.Z.); +65-6790-4883 (C.Y.)
| |
Collapse
|
11
|
Breadmore MC, Wuethrich A, Li F, Phung SC, Kalsoom U, Cabot JM, Tehranirokh M, Shallan AI, Abdul Keyon AS, See HH, Dawod M, Quirino JP. Recent advances in enhancing the sensitivity of electrophoresis and electrochromatography in capillaries and microchips (2014–2016). Electrophoresis 2016; 38:33-59. [DOI: 10.1002/elps.201600331] [Citation(s) in RCA: 79] [Impact Index Per Article: 9.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2016] [Revised: 08/09/2016] [Accepted: 08/10/2016] [Indexed: 01/02/2023]
Affiliation(s)
- Michael C. Breadmore
- Australian Centre of Research on Separation Science, School of Physical Science University of Tasmania Hobart Tasmania Australia
- ARC Centre of Excellence for Electromaterials Science, School of Physical Science University of Tasmania Hobart Tasmania Australia
- ASTech, ARC Training Centre for Portable Analytical Separation Technologies, School of Physical Science University of Tasmania Hobart Tasmania Australia
| | - Alain Wuethrich
- Australian Centre of Research on Separation Science, School of Physical Science University of Tasmania Hobart Tasmania Australia
| | - Feng Li
- Australian Centre of Research on Separation Science, School of Physical Science University of Tasmania Hobart Tasmania Australia
| | - Sui Ching Phung
- Australian Centre of Research on Separation Science, School of Physical Science University of Tasmania Hobart Tasmania Australia
| | - Umme Kalsoom
- Australian Centre of Research on Separation Science, School of Physical Science University of Tasmania Hobart Tasmania Australia
| | - Joan M. Cabot
- Australian Centre of Research on Separation Science, School of Physical Science University of Tasmania Hobart Tasmania Australia
- ARC Centre of Excellence for Electromaterials Science, School of Physical Science University of Tasmania Hobart Tasmania Australia
| | - Masoomeh Tehranirokh
- ASTech, ARC Training Centre for Portable Analytical Separation Technologies, School of Physical Science University of Tasmania Hobart Tasmania Australia
| | - Aliaa I. Shallan
- Department of Analytical Chemistry, Faculty of Pharmacy Helwan University Cairo Egypt
| | - Aemi S. Abdul Keyon
- Department of Chemistry, Faculty of Science Universiti Teknologi Malaysia Johor Bahru Johor Malaysia
| | - Hong Heng See
- Department of Chemistry, Faculty of Science Universiti Teknologi Malaysia Johor Bahru Johor Malaysia
- Centre for Sustainable Nanomaterials, Ibnu Sina Institute for Scientific and industrial Research Universiti Teknologi Malaysia Johor Bahru Johor Malaysia
| | - Mohamed Dawod
- Department of Chemistry University of Michigan Ann Arbor MI USA
| | - Joselito P. Quirino
- Australian Centre of Research on Separation Science, School of Physical Science University of Tasmania Hobart Tasmania Australia
| |
Collapse
|
12
|
Exploring Gradients in Electrophoretic Separation and Preconcentration on Miniaturized Devices. SEPARATIONS 2016. [DOI: 10.3390/separations3020012] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
|
13
|
LaLonde A, Romero-Creel MF, Saucedo-Espinosa MA, Lapizco-Encinas BH. Isolation and enrichment of low abundant particles with insulator-based dielectrophoresis. BIOMICROFLUIDICS 2015; 9:064113. [PMID: 26674134 PMCID: PMC4676780 DOI: 10.1063/1.4936371] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/03/2015] [Accepted: 11/12/2015] [Indexed: 05/12/2023]
Abstract
Isolation and enrichment of low-abundant particles are essential steps in many bio-analytical and clinical applications. In this work, the capability of an insulator-based dielectrophoresis (iDEP) device for the detection and stable capture of low abundant polystyrene particles and yeast cells was evaluated. Binary and tertiary mixtures of particles and cells were tested, where the low-abundant particles had concentration ratios on the order of 1:10 000 000 compared to the other particles present in the mixture. The results demonstrated successful and stable capture and enrichment of rare particles and cells (trapping efficiencies over 99%), where particles remained trapped in a stable manner for up to 4 min. A device with four reservoirs was employed for the separation and enrichment of rare particles, where the particles of interest were first selectively concentrated and then effectively directed to a side port for future collection and analysis. The present study demonstrates that simple iDEP devices have appropriate screening capacity and can be used for handling samples containing rare particles; achieving both enrichment and isolation of low-abundant particles and cells.
Collapse
Affiliation(s)
- Alexandra LaLonde
- Microscale Bioseparations Laboratory and Biomedical Engineering Department, Rochester Institute of Technology , Rochester, New York 14623, USA
| | - Maria F Romero-Creel
- Microscale Bioseparations Laboratory and Biomedical Engineering Department, Rochester Institute of Technology , Rochester, New York 14623, USA
| | - Mario A Saucedo-Espinosa
- Microscale Bioseparations Laboratory and Biomedical Engineering Department, Rochester Institute of Technology , Rochester, New York 14623, USA
| | - Blanca H Lapizco-Encinas
- Microscale Bioseparations Laboratory and Biomedical Engineering Department, Rochester Institute of Technology , Rochester, New York 14623, USA
| |
Collapse
|
14
|
Miyazako H, Mabuchi K, Hoshino T. Spatiotemporal Control of Electrokinetic Transport in Nanofluidics Using an Inverted Electron-Beam Lithography System. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2015; 31:6595-6603. [PMID: 25996098 DOI: 10.1021/acs.langmuir.5b00806] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/04/2023]
Abstract
Manipulation techniques of biomolecules have been proposed for biochemical analysis which combine electrokinetic dynamics, such as electrophoresis or electroosmotic flow, with optical manipulation to provide high throughput and high spatial degrees of freedom. However, there are still challenging problems in nanoscale manipulation due to the diffraction limit of optics. We propose here a new manipulation technique for spatiotemporal control of chemical transport in nanofluids using an inverted electron-beam (EB) lithography system for liquid samples. By irradiating a 2.5 keV EB to a liquid sample through a 100-nm-thick SiN membrane, negative charges can be generated within the SiN membrane, and these negative charges can induce a highly focused electric field in the liquid sample. We showed that the EB-induced negative charges could induce fluid flow, which was strong enough to manipulate 240 nm nanoparticles in water, and we verified that the main dynamics of this EB-induced fluid flow was electroosmosis caused by changing the zeta potential of the SiN membrane surface. Moreover, we demonstrated manipulation of a single nanoparticle and concentration patterning of nanoparticles by scanning EB. Considering the shortness of the EB wavelength and Debye length in buffer solutions, we expect that our manipulation technique will be applied to nanomanipulation of biomolecules in biochemical analysis and control.
Collapse
Affiliation(s)
- Hiroki Miyazako
- †Department of Information Physics and Computing, Graduate School of Information Science and Technology, and ‡Research Fellow of the Japan Society for the Promotion of Science, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-8656, Japan
| | - Kunihiko Mabuchi
- †Department of Information Physics and Computing, Graduate School of Information Science and Technology, and ‡Research Fellow of the Japan Society for the Promotion of Science, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-8656, Japan
| | - Takayuki Hoshino
- †Department of Information Physics and Computing, Graduate School of Information Science and Technology, and ‡Research Fellow of the Japan Society for the Promotion of Science, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-8656, Japan
| |
Collapse
|
15
|
Dey R, Shaik VA, Chakraborty D, Ghosal S, Chakraborty S. AC Electric Field-Induced Trapping of Microparticles in Pinched Microconfinements. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2015; 31:5952-5961. [PMID: 25954982 DOI: 10.1021/la504795m] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/04/2023]
Abstract
The trapping of charged microparticles under confinement in a converging-diverging microchannel, under a symmetric AC field of tunable frequency, is studied. We show that at low frequencies, the trapping characteristics stem from the competing effects of positive dielectrophoresis and the linear electrokinetic phenomena of electroosmosis and electrophoresis. It is found, somewhat unexpectedly, that electroosmosis and electrophoresis significantly affect the concentration profile of the trapped analyte, even for a symmetric AC field. However, at intermediate frequencies, the microparticle trapping mechanism is predominantly a consequence of positive dielectrophoresis. We substantiate our experimental results for the microparticle concentration distribution, along the converging-diverging microchannel, with a detailed theoretical analysis that takes into account all of the relevant frequency-dependent electrokinetic phenomena. This study should be useful in understanding the response of biological components such as cells to applied AC fields. Moreover, it will have potential applications in the design of efficient point-of-care diagnostic devices for detecting biomarkers and also possibly in some recent strategies in cancer therapy using AC fields.
Collapse
Affiliation(s)
- Ranabir Dey
- †Department of Mechanical Engineering, Indian Institute of Technology Kharagpur, Kharagpur-721302, West Bengal, India
| | - Vaseem Akram Shaik
- †Department of Mechanical Engineering, Indian Institute of Technology Kharagpur, Kharagpur-721302, West Bengal, India
| | - Debapriya Chakraborty
- †Department of Mechanical Engineering, Indian Institute of Technology Kharagpur, Kharagpur-721302, West Bengal, India
| | | | - Suman Chakraborty
- †Department of Mechanical Engineering, Indian Institute of Technology Kharagpur, Kharagpur-721302, West Bengal, India
| |
Collapse
|
16
|
Breadmore MC, Tubaon RM, Shallan AI, Phung SC, Abdul Keyon AS, Gstoettenmayr D, Prapatpong P, Alhusban AA, Ranjbar L, See HH, Dawod M, Quirino JP. Recent advances in enhancing the sensitivity of electrophoresis and electrochromatography in capillaries and microchips (2012-2014). Electrophoresis 2015; 36:36-61. [DOI: 10.1002/elps.201400420] [Citation(s) in RCA: 132] [Impact Index Per Article: 14.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2014] [Revised: 09/25/2014] [Accepted: 09/25/2014] [Indexed: 12/15/2022]
Affiliation(s)
- Michael C. Breadmore
- School of Physical Science; Australian Centre of Research on Separation Science, University of Tasmania; Hobart Tasmania Australia
| | - Ria Marni Tubaon
- School of Physical Science; Australian Centre of Research on Separation Science, University of Tasmania; Hobart Tasmania Australia
| | - Aliaa I. Shallan
- School of Physical Science; Australian Centre of Research on Separation Science, University of Tasmania; Hobart Tasmania Australia
| | - Sui Ching Phung
- School of Physical Science; Australian Centre of Research on Separation Science, University of Tasmania; Hobart Tasmania Australia
| | - Aemi S. Abdul Keyon
- School of Physical Science; Australian Centre of Research on Separation Science, University of Tasmania; Hobart Tasmania Australia
- Faculty of Science; Department of Chemistry, Universiti Teknologi Malaysia; Johor Malaysia
| | - Daniel Gstoettenmayr
- School of Physical Science; Australian Centre of Research on Separation Science, University of Tasmania; Hobart Tasmania Australia
| | - Pornpan Prapatpong
- Faculty of Pharmacy; Department of Pharmaceutical Chemistry, Mahidol University; Rajathevee Bangkok Thailand
| | - Ala A. Alhusban
- Faculty of Health Sciences, School of Pharmacy; Australian Centre of Research on Separation Science, University of Tasmania; Hobart Tasmania Australia
| | - Leila Ranjbar
- School of Physical Science; Australian Centre of Research on Separation Science, University of Tasmania; Hobart Tasmania Australia
| | - Hong Heng See
- School of Physical Science; Australian Centre of Research on Separation Science, University of Tasmania; Hobart Tasmania Australia
- Ibnu Sina Institute for Fundamental Science Studies; Universiti Teknologi Malaysia; Johor Malaysia
| | - Mohamed Dawod
- Department of Chemistry; University of Michigan; Ann Arbor MI USA
- Faculty of Pharmacy; Department of Analytical Chemistry, Al-Azhar University; Cairo Egypt
| | - Joselito P. Quirino
- School of Physical Science; Australian Centre of Research on Separation Science, University of Tasmania; Hobart Tasmania Australia
| |
Collapse
|
17
|
Wang S, LeCroy GE, Yang F, Dong X, Sun YP, Yang L. Carbon nanotube-assisted capturing of bacterial pathogens. RSC Adv 2015. [DOI: 10.1039/c5ra16684e] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Polymer-coated MWNT assisted capture of bacterial cells of filters.
Collapse
Affiliation(s)
- Shengyuan Wang
- Biomanufacturing Research Institute and Technology Enterprises (BRITE)
- Department of Pharmaceutical Sciences
- North Carolina Central University
- Durham
- USA
| | - Gregory E. LeCroy
- Department of Chemistry and Laboratory for Emerging Materials and Technology
- Clemson University
- Clemson
- USA
| | - Fan Yang
- Department of Chemistry and Laboratory for Emerging Materials and Technology
- Clemson University
- Clemson
- USA
| | - Xiuli Dong
- Biomanufacturing Research Institute and Technology Enterprises (BRITE)
- Department of Pharmaceutical Sciences
- North Carolina Central University
- Durham
- USA
| | - Ya-Ping Sun
- Department of Chemistry and Laboratory for Emerging Materials and Technology
- Clemson University
- Clemson
- USA
| | - Liju Yang
- Biomanufacturing Research Institute and Technology Enterprises (BRITE)
- Department of Pharmaceutical Sciences
- North Carolina Central University
- Durham
- USA
| |
Collapse
|
18
|
Schoonen JW, van Duinen V, Oedit A, Vulto P, Hankemeier T, Lindenburg PW. Continuous-flow microelectroextraction for enrichment of low abundant compounds. Anal Chem 2014; 86:8048-56. [PMID: 24892382 DOI: 10.1021/ac500707v] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
We present a continuous-flow microelectroextraction flow cell that allows for electric field enhanced extraction of analytes from a large volume (1 mL) of continuously flowing donor phase into a micro volume of stagnant acceptor phase (13.4 μL). We demonstrate for the first time that the interface between the stagnant acceptor phase and fast-flowing donor phase can be stabilized by a phaseguide. Chip performance was assessed by visual experiments using crystal violet. Then, extraction of a mixture of acylcarnitines was assessed by off-line coupling to reversed phase liquid chromatography coupled to time-of-flight mass spectrometry, resulting in concentration factors of 80.0 ± 9.2 times for hexanoylcarnitine, 73.8 ± 9.1 for octanoylcarnitine, and 34.1 ± 4.7 times for lauroylcarnitine, corresponding to recoveries of 107.8 ± 12.3%, 98.9 ± 12.3%, and 45.7 ± 6.3%, respectively, in a sample of 500 μL delivered at a flow of 50 μL min(-1) under an extraction voltage of 300 V. Finally, the method was applied to the analysis of acylcarnitines spiked to urine, resulting in detection limits as low as 0.3-2 nM. Several putative endogenous acylcarnitines were found. The current flowing-to-stagnant phase microelectroextraction setup allows for the extraction of milliliter range volumes and is, as a consequence, very suited for analysis of low-abundant metabolites.
Collapse
Affiliation(s)
- Jan-Willem Schoonen
- Division of Analytical Biosciences, Leiden Academic Center for Drug Research, Leiden University , Leiden, The Netherlands
| | | | | | | | | | | |
Collapse
|
19
|
Quist J, Vulto P, Hankemeier T. Isotachophoretic Phenomena in Electric Field Gradient Focusing: Perspectives for Sample Preparation and Bioassays. Anal Chem 2014; 86:4078-87. [DOI: 10.1021/ac403764e] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Affiliation(s)
- Jos Quist
- Division of Analytical Biosciences, Leiden
Academic Centre for Drug Research (LACDR), Gorlaeus Laboratories, Einsteinweg 55, Leiden, 2333CC, The Netherlands
- Netherlands Metabolomics
Centre (NMC), Leiden University, Einsteinweg 55, Leiden, South Holland 2333CC, The Netherlands
| | - Paul Vulto
- Division of Analytical Biosciences, Leiden
Academic Centre for Drug Research (LACDR), Gorlaeus Laboratories, Einsteinweg 55, Leiden, 2333CC, The Netherlands
- Netherlands Metabolomics
Centre (NMC), Leiden University, Einsteinweg 55, Leiden, South Holland 2333CC, The Netherlands
| | - Thomas Hankemeier
- Division of Analytical Biosciences, Leiden
Academic Centre for Drug Research (LACDR), Gorlaeus Laboratories, Einsteinweg 55, Leiden, 2333CC, The Netherlands
- Netherlands Metabolomics
Centre (NMC), Leiden University, Einsteinweg 55, Leiden, South Holland 2333CC, The Netherlands
| |
Collapse
|
20
|
Sikorsky AA, Fourkas JT, Ross D. Gradient Elution Moving Boundary Electrophoresis with Field-Amplified Continuous Sample Injection. Anal Chem 2014; 86:3625-32. [DOI: 10.1021/ac500242a] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Alison A. Sikorsky
- Department
of Chemistry and Biochemistry, University of Maryland, College Park, Maryland 20742, United States
- Material
Measurement Laboratory, National Institute of Standards and Technology, Gaithersburg, Maryland 20878, United States
| | - John T. Fourkas
- Department
of Chemistry and Biochemistry, University of Maryland, College Park, Maryland 20742, United States
- Institute for Physical
Science and Technology, Maryland NanoCenter, and Center for Nanophysics
and Advanced Materials, University of Maryland, College Park, Maryland 20742, United States
| | - David Ross
- Material
Measurement Laboratory, National Institute of Standards and Technology, Gaithersburg, Maryland 20878, United States
| |
Collapse
|
21
|
Staton SJR, Kim SY, Hart SJ, Collins GE, Terray A. Pico-Force Optical Exchange (pico-FOX): Utilizing Optical Forces Applied to an Orthogonal Electroosmotic Flow for Particulate Enrichment from Mixed Sample Streams. Anal Chem 2013; 85:8647-53. [DOI: 10.1021/ac401369h] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Sarah J. R. Staton
- National Research Council Post-Doctoral Fellow, Washington, D.C., United States
| | - Soo Y. Kim
- National Research Council Post-Doctoral Fellow, Washington, D.C., United States
| | - Sean J. Hart
- Naval Research Laboratory, Washington,
D.C., United States
| | | | - Alex Terray
- Naval Research Laboratory, Washington,
D.C., United States
| |
Collapse
|
22
|
Nakano A, Ros A. Protein dielectrophoresis: advances, challenges, and applications. Electrophoresis 2013; 34:1085-96. [PMID: 23400789 PMCID: PMC3839426 DOI: 10.1002/elps.201200482] [Citation(s) in RCA: 86] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2012] [Revised: 01/14/2013] [Accepted: 01/14/2013] [Indexed: 11/05/2022]
Abstract
Protein dielectrophoresis (DEP) has the potential to play an important role as a manipulation, fractionation, preconcentration, and separation method in bioanalysis and as manipulation tool for nanotechnological applications. The first demonstrations of protein DEP have been reported almost 20 years ago. Since then various experimental realizations to manipulate proteins by DEP as well as more targeted applications employing protein DEP have been demonstrated. This review summarizes the experimental studies in the field of protein DEP trapping and focusing as well as specific applications in separation, molecular patterning, on bioprobes and biosensors. While a comprehensive theoretical model describing protein DEP is still lacking we also attempt to provide an overview of the factors influencing protein DEP and relate to currently available theoretical models. We further point out the variations in experimental conditions used in the past to study the somewhat 20 proteins as well as the implications of protein molecular structure to the DEP response.
Collapse
Affiliation(s)
- Asuka Nakano
- Department of Chemistry and Biochemistry, Arizona State University, Tempe, AZ 85287, USA
| | | |
Collapse
|
23
|
Staton SJR, Terray A, Collins GE, Hart SJ. Orthogonal optical force separation simulation of particle and molecular species mixtures under direct current electroosmotic driven flow for applications in biological sample preparation. Electrophoresis 2013; 34:1175-81. [DOI: 10.1002/elps.201200553] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2012] [Revised: 11/20/2012] [Accepted: 12/27/2012] [Indexed: 11/08/2022]
|
24
|
Cima I, Wen Yee C, Iliescu FS, Phyo WM, Lim KH, Iliescu C, Tan MH. Label-free isolation of circulating tumor cells in microfluidic devices: Current research and perspectives. BIOMICROFLUIDICS 2013; 7:11810. [PMID: 24403992 PMCID: PMC3568085 DOI: 10.1063/1.4780062] [Citation(s) in RCA: 53] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/25/2012] [Accepted: 12/17/2012] [Indexed: 05/04/2023]
Abstract
This review will cover the recent advances in label-free approaches to isolate and manipulate circulating tumor cells (CTCs). In essence, label-free approaches do not rely on antibodies or biological markers for labeling the cells of interest, but enrich them using the differential physical properties intrinsic to cancer and blood cells. We will discuss technologies that isolate cells based on their biomechanical and electrical properties. Label-free approaches to analyze CTCs have been recently invoked as a valid alternative to "marker-based" techniques, because classical epithelial and tumor markers are lost on some CTC populations and there is no comprehensive phenotypic definition for CTCs. We will highlight the advantages and drawbacks of these technologies and the status on their implementation in the clinics.
Collapse
Affiliation(s)
- Igor Cima
- Institute of Bioengineering and Nanotechnology, 31 Biopolis Way, The Nanos #04-01, Singapore 138669
| | - Chay Wen Yee
- National Cancer Centre Singapore, 11 Hospital Drive, Singapore 169610
| | | | - Wai Min Phyo
- Institute of Bioengineering and Nanotechnology, 31 Biopolis Way, The Nanos #04-01, Singapore 138669
| | - Kiat Hon Lim
- Department of Pathology, Singapore General Hospital, Outram Road, Singapore 169608
| | - Ciprian Iliescu
- Institute of Bioengineering and Nanotechnology, 31 Biopolis Way, The Nanos #04-01, Singapore 138669
| | - Min Han Tan
- Institute of Bioengineering and Nanotechnology, 31 Biopolis Way, The Nanos #04-01, Singapore 138669 ; National Cancer Centre Singapore, 11 Hospital Drive, Singapore 169610
| |
Collapse
|
25
|
Trickett CA, Henderson RD, Guijt RM, Breadmore MC. Electric field gradient focusing using a variable width polyaniline electrode. Electrophoresis 2012; 33:3254-8. [DOI: 10.1002/elps.201200335] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2012] [Revised: 08/01/2012] [Accepted: 08/02/2012] [Indexed: 01/11/2023]
Affiliation(s)
- Christopher A. Trickett
- Australian Centre for Research on Separation Science, School of Chemistry; University of Tasmania; Hobart; Tasmania; Australia
| | - Rowan D. Henderson
- Australian Centre for Research on Separation Science, School of Chemistry; University of Tasmania; Hobart; Tasmania; Australia
| | - Rosanne M. Guijt
- School of Pharmacy; University of Tasmania; Hobart; Tasmania; Australia
| | - Michael C. Breadmore
- Australian Centre for Research on Separation Science, School of Chemistry; University of Tasmania; Hobart; Tasmania; Australia
| |
Collapse
|
26
|
Camacho-Alanis F, Gan L, Ros A. Transitioning Streaming to Trapping in DC Insulator-based Dielectrophoresis for Biomolecules. SENSORS AND ACTUATORS. B, CHEMICAL 2012; 173:668-675. [PMID: 23441049 PMCID: PMC3577371 DOI: 10.1016/j.snb.2012.07.080] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/20/2023]
Abstract
Exploiting dielectrophoresis (DEP) to concentrate and separate biomolecules has recently shown large potential as a microscale bioanalytical tool. Such efforts however require tailored devices and knowledge of all interplaying transport mechanisms competing with dielectrophoresis (DEP). Specifically, a strong DEP contribution to the overall transport mechanism is necessary to exploit DEP of biomolecules for analytical applications such as separation and fractionation. Here, we present improved microfluidic devices combining optical lithography and focused ion beam milling (FIBM) for the manipulation of DNA and proteins using insulator-based dielectrophoresis (iDEP) and direct current (DC) electric fields. Experiments were performed on an elastomer platform forming the iDEP microfluidic device with integrated nanoposts and nanopost arrays. Microscale and nanoscale iDEP was studied for λ-DNA (48.5 kbp) and the protein bovine serum albumin (BSA). Numerical simulations were adapted to the various tested geometries revealing excellent qualitative agreement with experimental observations for streaming and trapping DEP. Both the experimental and simulation results indicate that DC iDEP trapping for λ-DNA occurs with tailored nanoposts fabricated via FIBM. Moreover, streaming iDEP concentration of BSA is improved with integrated nanopost arrays by a factor of 45 compared to microfabricated arrays.
Collapse
|
27
|
Martinez-Duarte R. Microfabrication technologies in dielectrophoresis applications--a review. Electrophoresis 2012; 33:3110-32. [PMID: 22941778 DOI: 10.1002/elps.201200242] [Citation(s) in RCA: 111] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2012] [Revised: 06/10/2012] [Accepted: 06/11/2012] [Indexed: 11/12/2022]
Abstract
DEP is an established technique for particle manipulation. Although first demonstrated in the 1950s, it was not until the development of miniaturization techniques in the 1990s that DEP became a popular research field. The 1990s saw an explosion of DEP publications using microfabricated metal electrode arrays to sort a wide variety of cells. The concurrent development of microfluidics enabled devices for flow management and better understanding of the interaction between hydrodynamic and electrokinetic forces. Starting in the 2000s, alternative techniques have arisen to overcome common problems in metal-electrode DEP, such as electrode fouling, and to increase the throughput of the system. Insulator-based DEP and light-induced DEP are the most significant examples. Most recently, new 3D techniques such as carbon-electrode DEP, contactless DEP, and the use of doped PDMS have further simplified the fabrication process. The constant desire of the community to develop practical solutions has led to devices which are more user friendly, less expensive, and are capable of higher throughput. The state-of-the-art of fabricating DEP devices is critically reviewed in this work. The focus is on how different fabrication techniques can boost the development of practical DEP devices to be used in different settings such as clinical cell sorting and infection diagnosis, industrial food safety, and enrichment of particle populations for drug development.
Collapse
|
28
|
Ling SH, Lam YC, Chian KS. Continuous Cell Separation Using Dielectrophoresis through Asymmetric and Periodic Microelectrode Array. Anal Chem 2012; 84:6463-70. [DOI: 10.1021/ac300079q] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Affiliation(s)
- Siang Hooi Ling
- School of Mechanical and Aerospace Engineering, Nanyang Technological University, Singapore
639798
| | - Yee Cheong Lam
- School of Mechanical and Aerospace Engineering, Nanyang Technological University, Singapore
639798
| | - Kerm Sin Chian
- School of Mechanical and Aerospace Engineering, Nanyang Technological University, Singapore
639798
| |
Collapse
|
29
|
Keebaugh MW, Mahanti P, Hayes MA. Quantitative assessment of flow and electric fields for electrophoretic focusing at a converging channel entrance with interfacial electrode. Electrophoresis 2012; 33:1924-30. [PMID: 22806456 DOI: 10.1002/elps.201200199] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
The electric field and flow field gradients near an electrified converging channel are amenable to separating and focusing specific classes of electrokinetic material, but the detailed local electric field and flow dynamics in this region have not been thoroughly investigated. Finite elemental analysis was used to develop a model of a buffer reservoir connected to a smaller channel to simulate the electrophoretic and flow velocities (which correspond directly to the respective electric and flow fields) at a converging entrance. A detailed PTV (Particle Tracking Velocimetry) study using charged fluorescent microspheres was performed to assess the model validity both in the absence and presence of an applied electric field. The predicted flow velocity gradient from the model agreed with the PTV data when no electric field was present. Once the additional forces that act on the large particles required for tracing (dielectrophoresis) were included, the model accurately described the velocity of the charged particles in electric fields.
Collapse
Affiliation(s)
- Michael W Keebaugh
- Department of Chemistry and Biochemistry, Arizona State University, Tempe, AZ 85287-1604, USA
| | | | | |
Collapse
|
30
|
Kenyon SM, Weiss NG, Hayes MA. Using electrophoretic exclusion to manipulate small molecules and particles on a microdevice. Electrophoresis 2012; 33:1227-35. [PMID: 22589099 DOI: 10.1002/elps.201100622] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
Electrophoretic exclusion, a novel separations technique that differentiates species in bulk solution using the opposing forces of electrophoretic velocity and hydrodynamic flow, has been adapted to a microscale device. Proof-of-principle experiments indicate that the device was able to exclude small particles (1 μm polystyrene microspheres) and fluorescent dye molecules (rhodamine 123) from the entrance of a channel. Additionally, differentiation of the rhodamine 123 and polystyrene spheres was demonstrated. The current studies focus on the direct observation of the electrophoretic exclusion behavior on a microchip.
Collapse
Affiliation(s)
- Stacy M Kenyon
- Department of Chemistry and Biochemistry, Arizona State University, Tempe, AZ 85287, USA
| | | | | |
Collapse
|
31
|
Jen CP, Chen WF. An insulator-based dielectrophoretic microdevice for the simultaneous filtration and focusing of biological cells. BIOMICROFLUIDICS 2011; 5:44105-4410511. [PMID: 22662057 PMCID: PMC3364804 DOI: 10.1063/1.3658644] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/15/2011] [Accepted: 10/17/2011] [Indexed: 05/05/2023]
Abstract
Manipulating and discriminating biological cells of interest using microfluidic and micro total analysis system (μTAS) devices have potential applications in clinical diagnosis and medicine. Cellular focusing in microfluidic devices is a prerequisite for medical applications, such as cell sorting, cell counting, or flow cytometry. In the present study, an insulator-based dielectrophoretic microdevice is designed for the simultaneous filtration and focusing of biological cells. The cells are introduced into the microchannel and hydrodynamically pre-confined by funnel-shaped insulating structures close to the inlet. There are ten sets of X-patterned insulating structures in the microfluidic channel. The main function of the first five sets of insulating structures is to guide the cells by negative dielectrophoretic responses (viable HeLa cells) into the center region of the microchannel. The positive dielectrophoretic cells (dead HeLa cells) are attracted to regions with a high electric-field gradient generated at the edges of the insulating structures. The remaining five sets of insulating structures are mainly used to focus negative dielectrophoretic cells that have escaped from the upstream region. Experiments employing a mixture of dead and viable HeLa cells are conducted to demonstrate the effectiveness of the proposed design. The results indicate that the performance of both filtration and focusing improves with the increasing strength of the applied electric field and a decreasing inlet sample flow rate, which agrees with the trend predicted by the numerical simulations. The filtration efficiency, which is quantitatively investigated, is up to 88% at an applied voltage of 50 V peak-to-peak (1 kHz) and a sample flow rate of 0.5 μl/min. The proposed device can focus viable cells into a single file using a voltage of 35 V peak-to-peak (1 kHz) at a sample flow rate of 1.0 μl/min.
Collapse
Affiliation(s)
- Chun-Ping Jen
- Department of Mechanical Engineering and Advanced Institute of Manufacturing for High-Tech Innovations, National Chung Cheng University, Chia Yi, Taiwan
| | | |
Collapse
|
32
|
Regtmeier J, Eichhorn R, Viefhues M, Bogunovic L, Anselmetti D. Electrodeless dielectrophoresis for bioanalysis: Theory, devices and applications. Electrophoresis 2011; 32:2253-73. [DOI: 10.1002/elps.201100055] [Citation(s) in RCA: 101] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2011] [Revised: 05/31/2011] [Accepted: 06/01/2011] [Indexed: 01/05/2023]
|
33
|
Moncada-Hernandez H, Baylon-Cardiel JL, Pérez-González VH, Lapizco-Encinas BH. Insulator-based dielectrophoresis of microorganisms: Theoretical and experimental results. Electrophoresis 2011; 32:2502-11. [DOI: 10.1002/elps.201100168] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2011] [Revised: 05/14/2011] [Accepted: 05/16/2011] [Indexed: 11/10/2022]
|
34
|
Jones PV, Staton SJR, Hayes MA. Blood cell capture in a sawtooth dielectrophoretic microchannel. Anal Bioanal Chem 2011; 401:2103-11. [PMID: 21830138 DOI: 10.1007/s00216-011-5284-9] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2011] [Revised: 07/18/2011] [Accepted: 07/25/2011] [Indexed: 01/23/2023]
Abstract
Biological fluids can be considered to contain information-rich mixtures of biochemicals and particles that enable clinicians to accurately diagnose a wide range of pathologies. Rapid and inexpensive analysis of blood and other bodily fluids is a topic gaining substantial attention in both science and medicine. One line of development involves microfluidic approaches that provide unique advantages over entrenched technologies, including rapid analysis times, microliter sample and reagent volumes, potentially low cost, and practical portability. The present study focuses on the isolation and concentration of human blood cells from small-volume samples of diluted whole blood. Separation of cells from the matrix of whole blood was accomplished using constant potential insulator-based gradient dielectrophoresis in a converging, sawtooth-patterned microchannel. The channel design enabled the isolation and concentration of specific cell types by exploiting variations in their characteristic physical properties. The technique can operate with isotonic buffers, allowing capture of whole cells, and reproducible capture occurred at specific locales within the channel over a global applied voltage range of 200-700 V.
Collapse
Affiliation(s)
- Paul V Jones
- Department of Chemistry and Biochemistry and Center for Solid State Electronics Research, Arizona State University, PO Box 871604, Tempe, AZ 85287, USA
| | | | | |
Collapse
|
35
|
Kuzyk A. Dielectrophoresis at the nanoscale. Electrophoresis 2011; 32:2307-13. [PMID: 21800329 DOI: 10.1002/elps.201100038] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2011] [Revised: 03/13/2011] [Accepted: 04/08/2011] [Indexed: 11/08/2022]
Abstract
Dielectrophoresis has become a powerful tool for manipulation of various materials, such as metal and semiconducting particles, DNA molecules, nanowires and graphene. This short review is intended to provide the reader with an overview of the recent advances of application of dielectrophoresis at the nanoscale.
Collapse
Affiliation(s)
- Anton Kuzyk
- Lehrstuhl für Bioelektronik, Physik-Department und ZNN/WSI, Technische Universität München, Garching, Germany.
| |
Collapse
|
36
|
Yamamoto S, Watanabe Y, Nishida N, Suzuki S. Simultaneous concentration enrichment and electrophoretic separation of weak acids on a microchip, using in situ
photopolymerized carboxylate-type polyacrylamide gels as the permselective preconcentrator. J Sep Sci 2011; 34:2879-84. [DOI: 10.1002/jssc.201100423] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2011] [Revised: 06/17/2011] [Accepted: 06/21/2011] [Indexed: 12/24/2022]
|
37
|
Čemažar J, Vrtačnik D, Amon S, Kotnik T. Dielectrophoretic Field-Flow Microchamber for Separation of Biological Cells Based on Their Electrical Properties. IEEE Trans Nanobioscience 2011; 10:36-43. [DOI: 10.1109/tnb.2011.2128340] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
|
38
|
Anand RK, Sheridan E, Knust KN, Crooks RM. Bipolar Electrode Focusing: Faradaic Ion Concentration Polarization. Anal Chem 2011; 83:2351-8. [DOI: 10.1021/ac103302j] [Citation(s) in RCA: 75] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Robbyn K. Anand
- Department of Chemistry and Biochemistry, Center for Electrochemistry, and the Center for Nano- and Molecular Science and Technology, The University of Texas at Austin, 1 University Station, A5300, Austin, Texas 78712-0165, United States
| | - Eoin Sheridan
- Department of Chemistry and Biochemistry, Center for Electrochemistry, and the Center for Nano- and Molecular Science and Technology, The University of Texas at Austin, 1 University Station, A5300, Austin, Texas 78712-0165, United States
| | - Kyle N. Knust
- Department of Chemistry and Biochemistry, Center for Electrochemistry, and the Center for Nano- and Molecular Science and Technology, The University of Texas at Austin, 1 University Station, A5300, Austin, Texas 78712-0165, United States
| | - Richard M. Crooks
- Department of Chemistry and Biochemistry, Center for Electrochemistry, and the Center for Nano- and Molecular Science and Technology, The University of Texas at Austin, 1 University Station, A5300, Austin, Texas 78712-0165, United States
| |
Collapse
|
39
|
Anand RK, Sheridan E, Hlushkou D, Tallarek U, Crooks RM. Bipolar electrode focusing: tuning the electric field gradient. LAB ON A CHIP 2011; 11:518-27. [PMID: 21120239 DOI: 10.1039/c0lc00351d] [Citation(s) in RCA: 54] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/25/2023]
Abstract
Bipolar electrode (BPE) focusing is a developing technique for enrichment and separation of charged analytes in a microfluidic channel. The technique employs a bipolar electrode that initiates faradaic processes that subsequently lead to formation of an ion depletion zone. The electric field gradient resulting from this depletion zone focuses ions on the basis of their individual electrophoretic mobilities. The nature of the gradient is of primary importance to the performance of the technique. Here, we report dynamic measurements of the electric field gradient showing that it is stable over time and that its axial position in the microchannel is directly correlated to the location of an enriched tracer band. The position of the gradient can be tuned with pressure-driven flow. We also show that a steeper electric field gradient decreases the breadth of the enriched tracer band and therefore enhances the enrichment process. The slope of the gradient can be tuned by altering the buffer concentration: higher concentrations result in a steeper gradient. Coating the channel with the neutral block co-polymer Pluronic also results in enhanced enrichment.
Collapse
Affiliation(s)
- Robbyn K Anand
- Department of Chemistry and Biochemistry, Center for Electrochemistry, University of Texas at Austin, 1 University Station, A5300, Austin, Texas 78712-0165, USA
| | | | | | | | | |
Collapse
|
40
|
Church C, Zhu J, Xuan X. Negative dielectrophoresis-based particle separation by size in a serpentine microchannel. Electrophoresis 2011; 32:527-31. [DOI: 10.1002/elps.201000396] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2010] [Revised: 10/04/2010] [Accepted: 10/18/2010] [Indexed: 12/23/2022]
|
41
|
Diekmann J, Adams KL, Klunder GL, Evans L, Steele P, Vogt C, Herberg JL. Portable Microcoil NMR Detection Coupled to Capillary Electrophoresis. Anal Chem 2011; 83:1328-35. [DOI: 10.1021/ac102389b] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Joana Diekmann
- Department of Analytical Chemistry, Institute of Inorganic Chemistry, Faculty of Natural Sciences, Leibniz University Hanover, Callinstrasse 1, 30167 Hanover, Germany
| | - Kristl L. Adams
- Lawrence Livermore National Laboratory, 7000 East Avenue, Livermore, California 94550, United States
| | - Gregory L. Klunder
- Lawrence Livermore National Laboratory, 7000 East Avenue, Livermore, California 94550, United States
| | - Lee Evans
- Lawrence Livermore National Laboratory, 7000 East Avenue, Livermore, California 94550, United States
| | - Paul Steele
- Lawrence Livermore National Laboratory, 7000 East Avenue, Livermore, California 94550, United States
| | - Carla Vogt
- Department of Analytical Chemistry, Institute of Inorganic Chemistry, Faculty of Natural Sciences, Leibniz University Hanover, Callinstrasse 1, 30167 Hanover, Germany
| | - Julie L. Herberg
- Lawrence Livermore National Laboratory, 7000 East Avenue, Livermore, California 94550, United States
| |
Collapse
|
42
|
Pompano RR, Liu W, Du W, Ismagilov RF. Microfluidics using spatially defined arrays of droplets in one, two, and three dimensions. ANNUAL REVIEW OF ANALYTICAL CHEMISTRY (PALO ALTO, CALIF.) 2011; 4:59-81. [PMID: 21370983 DOI: 10.1146/annurev.anchem.012809.102303] [Citation(s) in RCA: 70] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/10/2023]
Abstract
Spatially defined arrays of droplets differ from bulk emulsions in that droplets in arrays can be indexed on the basis of one or more spatial variables to enable identification, monitoring, and addressability of individual droplets. Spatial indexing is critical in experiments with hundreds to millions of unique compartmentalized microscale processes--for example, in applications such as digital measurements of rare events in a large sample, high-throughput time-lapse studies of the contents of individual droplets, and controlled droplet-droplet interactions. This review describes approaches for spatially organizing and manipulating droplets in one-, two-, and three-dimensional structured arrays, including aspiration, laminar flow, droplet traps, the SlipChip, self-assembly, and optical or electrical fields. This review also presents techniques to analyze droplets in arrays and applications of spatially defined arrays, including time-lapse studies of chemical, enzymatic, and cellular processes, as well as further opportunities in chemical, biological, and engineering sciences, including perturbation/response experiments and personal and point-of-care diagnostics.
Collapse
Affiliation(s)
- Rebecca R Pompano
- Department of Chemistry and Institute for Biophysical Dynamics, The University of Chicago, Chicago, Illinois 60637, USA
| | | | | | | |
Collapse
|
43
|
Ramón-Azcón J, Yasukawa T, Mizutani F. Sensitive and Spatially Multiplexed Detection System Based on Dielectrophoretic Manipulation of DNA-Encoded Particles Used as Immunoreactions Platform. Anal Chem 2010; 83:1053-60. [DOI: 10.1021/ac102854z] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Javier Ramón-Azcón
- Graduate School of Material Science, University of Hyogo, 3-2-1 Kouto, Kamigori, Ako, Hyogo 678-1297, Japan
| | - Tomoyuki Yasukawa
- Graduate School of Material Science, University of Hyogo, 3-2-1 Kouto, Kamigori, Ako, Hyogo 678-1297, Japan
- Core Research for Evolutional Science and Technology, Japan Science and Technology Agency (JST-CREST), 5, Sanbancho, Chiyoda-ku, Tokyo 102-0075, Japan
| | - Fumio Mizutani
- Graduate School of Material Science, University of Hyogo, 3-2-1 Kouto, Kamigori, Ako, Hyogo 678-1297, Japan
| |
Collapse
|
44
|
Meighan MM, Vasquez J, Dziubcynski L, Hews S, Hayes MA. Investigation of Electrophoretic Exclusion Method for the Concentration and Differentiation of Proteins. Anal Chem 2010; 83:368-73. [DOI: 10.1021/ac1025495] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Michelle M. Meighan
- Department of Chemistry and Biochemistry, Arizona State University, Tempe, Arizona 85287, United States, and Department of Mathematics and Statistics, Swarthmore College, Swarthmore, Pennsylvania 19081, United States
| | - Jared Vasquez
- Department of Chemistry and Biochemistry, Arizona State University, Tempe, Arizona 85287, United States, and Department of Mathematics and Statistics, Swarthmore College, Swarthmore, Pennsylvania 19081, United States
| | - Luke Dziubcynski
- Department of Chemistry and Biochemistry, Arizona State University, Tempe, Arizona 85287, United States, and Department of Mathematics and Statistics, Swarthmore College, Swarthmore, Pennsylvania 19081, United States
| | - Sarah Hews
- Department of Chemistry and Biochemistry, Arizona State University, Tempe, Arizona 85287, United States, and Department of Mathematics and Statistics, Swarthmore College, Swarthmore, Pennsylvania 19081, United States
| | - Mark A. Hayes
- Department of Chemistry and Biochemistry, Arizona State University, Tempe, Arizona 85287, United States, and Department of Mathematics and Statistics, Swarthmore College, Swarthmore, Pennsylvania 19081, United States
| |
Collapse
|
45
|
Breadmore MC, Dawod M, Quirino JP. Recent advances in enhancing the sensitivity of electrophoresis and electrochromatography in capillaries and microchips (2008-2010). Electrophoresis 2010; 32:127-48. [PMID: 21171119 DOI: 10.1002/elps.201000412] [Citation(s) in RCA: 129] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2010] [Revised: 09/15/2010] [Accepted: 09/16/2010] [Indexed: 01/22/2023]
Abstract
Capillary electrophoresis has been alive for over two decades now; yet, its sensitivity is still regarded as being inferior to that of more traditional methods of separation such as HPLC. As such, it is unsurprising that overcoming this issue still generates much scientific interest. This review continues to update this series of reviews, first published in Electrophoresis in 2007, with an update published in 2009 and covers material published through to June 2010. It includes developments in the fields of stacking, covering all methods from field-amplified sample stacking and large volume sample stacking, through to ITP, dynamic pH junction and sweeping. Attention is also given to on-line or in-line extraction methods that have been used for electrophoresis.
Collapse
Affiliation(s)
- Michael C Breadmore
- Australian Centre for Research on Separation Science, School of Chemistry, University of Tasmania, Hobart, TAS, Australia.
| | | | | |
Collapse
|
46
|
Staton SJR, Chen KP, Taylor TJ, Pacheco JR, Hayes MA. Characterization of particle capture in a sawtooth patterned insulating electrokinetic microfluidic device. Electrophoresis 2010; 31:3634-41. [DOI: 10.1002/elps.201000438] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2010] [Accepted: 09/01/2010] [Indexed: 11/07/2022]
|
47
|
Trends in the bioanalytical applications of microfluidic electrocapture. Anal Bioanal Chem 2010; 399:191-5. [DOI: 10.1007/s00216-010-4092-y] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2010] [Revised: 08/02/2010] [Accepted: 08/03/2010] [Indexed: 11/26/2022]
|
48
|
White CM, Holland LA, Famouri P. Application of capillary electrophoresis to predict crossover frequency of polystyrene particles in dielectrophoresis. Electrophoresis 2010; 31:2664-71. [DOI: 10.1002/elps.201000086] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
|
49
|
Zhu J, Tzeng TRJ, Xuan X. Continuous dielectrophoretic separation of particles in a spiral microchannel. Electrophoresis 2010; 31:1382-8. [DOI: 10.1002/elps.200900736] [Citation(s) in RCA: 57] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
|
50
|
Meighan MM, Keebaugh MW, Quihuis AM, Kenyon SM, Hayes MA. Electrophoretic exclusion for the selective transport of small molecules. Electrophoresis 2010; 30:3786-92. [PMID: 19810029 DOI: 10.1002/elps.200900340] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
A novel method capable of differentiating and concentrating small molecules in bulk solution termed "electrophoretic exclusion" is described and experimentally investigated. In this technique, the hydrodynamic flow of the system is countered by the electrophoretic velocity to prevent a species from entering into the channel. The separation can be controlled by changing the flow rate or applied electric field in order to exclude certain species selectively while allowing others to pass through the capillary. Proof of principle studies employed a flow injection regime of the method and examined the exclusion of Methyl Violet dye in the presence of a neutral species. Methyl Violet was concentrated almost 40 times the background concentration in 30 s using 6 kV. Additionally, a threshold voltage necessary for exclusion was determined. The establishment of a threshold voltage enabled the differentiation of two similar cationic species: Methyl Green and Neutral Red.
Collapse
|