1
|
Xiao H, Li P, Zhang S, Zhang W, Zhang W, Tang B. Simultaneous fluorescence visualization of mitochondrial hydrogen peroxide and zinc ions in live cells and in vivo. Chem Commun (Camb) 2016; 52:12741-12744. [DOI: 10.1039/c6cc07182a] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
We have developed two new fluorescent probes termedM-H2O2andM-Znfor simultaneous imaging of hydrogen peroxide and zinc ions in mitochondria.
Collapse
Affiliation(s)
- Haibin Xiao
- College of Chemistry
- Chemical Engineering and Materials Science
- Institute of Biomedical Sciences
- Collaborative Innovation Center of Functionalized Probes for Chemical Imaging in Universities of Shandong
- Key Laboratory of Molecular and Nano Probes
| | - Ping Li
- College of Chemistry
- Chemical Engineering and Materials Science
- Institute of Biomedical Sciences
- Collaborative Innovation Center of Functionalized Probes for Chemical Imaging in Universities of Shandong
- Key Laboratory of Molecular and Nano Probes
| | - Shan Zhang
- College of Chemistry
- Chemical Engineering and Materials Science
- Institute of Biomedical Sciences
- Collaborative Innovation Center of Functionalized Probes for Chemical Imaging in Universities of Shandong
- Key Laboratory of Molecular and Nano Probes
| | - Wei Zhang
- College of Chemistry
- Chemical Engineering and Materials Science
- Institute of Biomedical Sciences
- Collaborative Innovation Center of Functionalized Probes for Chemical Imaging in Universities of Shandong
- Key Laboratory of Molecular and Nano Probes
| | - Wen Zhang
- College of Chemistry
- Chemical Engineering and Materials Science
- Institute of Biomedical Sciences
- Collaborative Innovation Center of Functionalized Probes for Chemical Imaging in Universities of Shandong
- Key Laboratory of Molecular and Nano Probes
| | - Bo Tang
- College of Chemistry
- Chemical Engineering and Materials Science
- Institute of Biomedical Sciences
- Collaborative Innovation Center of Functionalized Probes for Chemical Imaging in Universities of Shandong
- Key Laboratory of Molecular and Nano Probes
| |
Collapse
|
2
|
Ge S, Liu W, Liu H, Liu F, Yu J, Yan M, Huang J. Colorimetric detection of the flux of hydrogen peroxide released from living cells based on the high peroxidase-like catalytic performance of porous PtPd nanorods. Biosens Bioelectron 2015; 71:456-462. [DOI: 10.1016/j.bios.2015.04.055] [Citation(s) in RCA: 78] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2015] [Revised: 04/16/2015] [Accepted: 04/17/2015] [Indexed: 11/25/2022]
|
3
|
Li XR, Xu MC, Chen HY, Xu JJ. Bimetallic Au@Pt@Au core-shell nanoparticles on graphene oxide nanosheets for high-performance H 2O 2 bi-directional sensing. J Mater Chem B 2015; 3:4355-4362. [PMID: 32262778 DOI: 10.1039/c5tb00312a] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
Bimetallic Au@Pt@Au triple-layered core-shell nanoparticles consisting of a Au core, Pt inner shell, and an outer shell composed of Au protuberances on graphene oxide (GO) nanosheets were successfully prepared by a galvanic replacement and reagent reduction reaction. Scanning electron microscopy (SEM), transmission electron microscopy (TEM), X-ray photoelectron spectroscopy (XPS), X-ray diffraction (XRD), energy dispersive X-ray spectroscopy (EDX), inductively coupled plasma-atomic emission spectroscopy (ICP-AES), and cyclic voltammetry (CV) were employed to characterize the GO-supported Au@Pt@Au (GO/Au@Pt@Au) nanocomposites. The as-prepared catalyst has peroxidase-like activity, allowing it to express high electrocatalytic ability in hydrogen peroxide (H2O2) oxidation and reduction, thus leading to a highly sensitive H2O2 bi-directional amperometric sensing. The bi-directional sensor showed a linear range from 0.05 μM to 17.5 mM with a detection limit of 0.02 μM (S/N = 3) at an applied potential of +0.5 V and a linear range from 0.5 μM to 110 mM with a detection limit of 0.25 μM (S/N = 3) at an applied potential of -0.3 V. The proposed sensor was tested to determine H2O2 released from living cells and shows good application potential in biological electrochemistry.
Collapse
Affiliation(s)
- Xiao-Rong Li
- State Key Laboratory of Analytical Chemistry for Life Science and Collaborative Innovation Center of Chemistry for Life Sciences, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210093, P. R. China.
| | | | | | | |
Collapse
|
4
|
Kotaskova M, Osman Oglou O, Helm M. Synthesis of new asymmetric xanthene dyes via catalyst-free SNAr with sulfur nucleophiles. Org Biomol Chem 2014; 12:3816-20. [DOI: 10.1039/c4ob00533c] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|
5
|
Yuan L, Lin W, Xie Y, Chen B, Zhu S. Single Fluorescent Probe Responds to H2O2, NO, and H2O2/NO with Three Different Sets of Fluorescence Signals. J Am Chem Soc 2011; 134:1305-15. [DOI: 10.1021/ja2100577] [Citation(s) in RCA: 327] [Impact Index Per Article: 23.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Affiliation(s)
- Lin Yuan
- State Key Laboratory of Chemo/Biosensing and Chemometrics,
College of Chemistry and Chemical Engineering, Hunan University, Changsha
410082, P. R. China
| | - Weiying Lin
- State Key Laboratory of Chemo/Biosensing and Chemometrics,
College of Chemistry and Chemical Engineering, Hunan University, Changsha
410082, P. R. China
| | - Yinan Xie
- State Key Laboratory of Chemo/Biosensing and Chemometrics,
College of Chemistry and Chemical Engineering, Hunan University, Changsha
410082, P. R. China
| | - Bin Chen
- State Key Laboratory of Chemo/Biosensing and Chemometrics,
College of Chemistry and Chemical Engineering, Hunan University, Changsha
410082, P. R. China
| | - Sasa Zhu
- State Key Laboratory of Chemo/Biosensing and Chemometrics,
College of Chemistry and Chemical Engineering, Hunan University, Changsha
410082, P. R. China
| |
Collapse
|
6
|
Mahmoud EA, Sankaranarayanan J, Morachis JM, Kim G, Almutairi A. Inflammation responsive logic gate nanoparticles for the delivery of proteins. Bioconjug Chem 2011; 22:1416-21. [PMID: 21688843 DOI: 10.1021/bc200141h] [Citation(s) in RCA: 115] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Oxidative stress and reduced pH are important stimuli targets for intracellular delivery and for delivery to diseased tissue. However, there is a dearth of materials able to deliver bioactive agents selectively under these conditions. We employed our recently developed dual response strategy to build a polymeric nanoparticle that degrades upon exposure to two stimuli in tandem. Our polythioether ketal based nanoparticles undergo two chemical transformations; the first is the oxidation of the thioether groups along the polymer backbone of the nanoparticles upon exposure to reactive oxygen species (ROS). This transformation switches the polymeric backbone from hydrophobic to hydrophilic and thus allows, in mildly acidic environments, the rapid acid-catalyzed degradation of the ketal groups also along the polymer backbone. Dynamic light scattering and payload release studies showed full particle degradation only in conditions that combined both oxidative stress and acidity, and these conditions led to higher release of encapsulated protein within 24 h. Nanoparticles in neutral pH and under oxidative conditions showed small molecule release and swelling of otherwise intact nanparticles. Notably, cellular studies show absence of toxicity and efficient uptake of nanoparticles by macrophages followed by cytoplasmic release of ovalbumin. Future work will apply this system to inflammatory diseases.
Collapse
Affiliation(s)
- Enas A Mahmoud
- Skaggs School of Pharmacy and Pharmaceutical Sciences, University of California at San Diego, La Jolla, California 92093-0657, United States
| | | | | | | | | |
Collapse
|
7
|
|
8
|
Zhang X, Li Q, Chen Z, Li H, Xu K, Zhang L, Tang B. Electrokinetic gated injection-based microfluidic system for quantitative analysis of hydrogen peroxide in individual HepG2 cells. LAB ON A CHIP 2011; 11:1144-1150. [PMID: 21298131 DOI: 10.1039/c0lc00263a] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/30/2023]
Abstract
A microfluidic system to determine hydrogen peroxide (H(2)O(2)) in individual HepG2 cells based on the electrokinetic gated injection was developed for the first time. A home-synthesized fluorescent probe, bis(p-methylbenzenesulfonate)dichlorofluorescein (FS), was employed to label intracellular H(2)O(2) in the intact cells. On a simple cross microchip, multiple single-cell operations, including single cell injection, cytolysis, electrophoresis separation and detection of H(2)O(2), were automatically carried out within 60 s using the electrokinetic gated injection and laser-induced fluorescence detection (LIFD). The performance of the method was evaluated under the optimal conditions. The linear calibration curve was over a range of 4.39-610 amol (R(2)=0.9994). The detection limit was 0.55 amol or 9.0×10(-10) M (S/N=3). The relative standard deviations (RSDs, n=6) of migration time and peak area were 1.4% and 4.8%, respectively. With the use of this method, the average content of H(2)O(2) in single HepG2 cells was found to be 16.09±9.84 amol (n=15). Separation efficiencies in excess of 17,000 theoretical plates for the cells were achieved. These results demonstrated that the efficient integration and automation of these single-cell operations enabled the sensitive, reproducible, and quantitative examination of intracellular H(2)O(2) at single-cell level. Owing to the advantages of simple microchip structure, controllable single-cell manipulation and ease in building, this platform provides a universal way to automatically determine other intracellular constituents within single cells.
Collapse
Affiliation(s)
- Xinyuan Zhang
- College of Chemistry, Chemical Engineering and Materials Science, Key Laboratory of Molecular and Nano Probes, Engineering Research Center of Pesticide and Medicine Intermediate Clean Production, Ministry of Education, Shandong Normal University, Jinan, 250014
| | | | | | | | | | | | | |
Collapse
|
9
|
Li C, Zhang H, Wu P, Gong Z, Xu G, Cai C. Electrochemical detection of extracellular hydrogen peroxide released from RAW 264.7 murine macrophage cells based on horseradish peroxidase–hydroxyapatite nanohybrids. Analyst 2011; 136:1116-23. [DOI: 10.1039/c0an00825g] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
10
|
Ishikawa SI, Tamaki S, Ohata M, Arihara K, Itoh M. Heme induces DNA damage and hyperproliferation of colonic epithelial cells via hydrogen peroxide produced by heme oxygenase: a possible mechanism of heme-induced colon cancer. Mol Nutr Food Res 2010; 54:1182-91. [PMID: 20112302 DOI: 10.1002/mnfr.200900348] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Abstract
Epidemiological and animal model studies have suggested that high intake of heme, present in red meat, is associated with an increased risk of colon cancer. However, the mechanisms underlying this association are not clear. This study aimed to investigate whether heme induces DNA damage and cell proliferation of colonic epithelial cells via hydrogen peroxide produced by heme oxygenase (HO). We examined the effects of zinc protoporphyrin (ZnPP; a HO inhibitor) and catalase on DNA damage, cell proliferation, and IL-8 production induced by the addition of hemin (1-10 microM) to human colonic epithelial Caco-2 cells. DNA damage was determined with a comet assay, and cell proliferation was evaluated with 5-bromo-2'-deoxyuridine incorporation assay. Both ZnPP and exogenous catalase inhibited the hemin-induced DNA damage and cell hyperproliferation dose-dependently. IL-8 messenger RNA expression and IL-8 production in the epithelial cells increased following the hemin treatment, but the production was inhibited by ZnPP and catalase. These results indicate that hemin has genotoxic and hyperproliferative effects on Caco-2 cells by HO and hydrogen peroxide. The mechanism might explain why a high intake of heme is associated with increased risk of colon cancer.
Collapse
Affiliation(s)
- Shin-ichi Ishikawa
- Department of Animal Science, School of Veterinary Medicine, Kitasato University, Towada, Aomori, Japan.
| | | | | | | | | |
Collapse
|
11
|
Dickinson BC, Huynh C, Chang CJ. A palette of fluorescent probes with varying emission colors for imaging hydrogen peroxide signaling in living cells. J Am Chem Soc 2010; 132:5906-15. [PMID: 20361787 DOI: 10.1021/ja1014103] [Citation(s) in RCA: 401] [Impact Index Per Article: 26.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
We present a new family of fluorescent probes with varying emission colors for selectively imaging hydrogen peroxide (H(2)O(2)) generated at physiological cell signaling levels. This structurally homologous series of fluorescein- and rhodol-based reporters relies on a chemospecific boronate-to-phenol switch to respond to H(2)O(2) over a panel of biologically relevant reactive oxygen species (ROS) with tunable excitation and emission maxima and sensitivity to endogenously produced H(2)O(2) signals, as shown by studies in RAW264.7 macrophages during the phagocytic respiratory burst and A431 cells in response to EGF stimulation. We further demonstrate the utility of these reagents in multicolor imaging experiments by using one of the new H(2)O(2)-specific probes, Peroxy Orange 1 (PO1), in conjunction with the green-fluorescent highly reactive oxygen species (hROS) probe, APF. This dual-probe approach allows for selective discrimination between changes in H(2)O(2) and hypochlorous acid (HOCl) levels in live RAW264.7 macrophages. Moreover, when macrophages labeled with both PO1 and APF were stimulated to induce an immune response, we discovered three distinct types of phagosomes: those that generated mainly hROS, those that produced mainly H(2)O(2), and those that possessed both types of ROS. The ability to monitor multiple ROS fluxes simultaneously using a palette of different colored fluorescent probes opens new opportunities to disentangle the complex contributions of oxidation biology to living systems by molecular imaging.
Collapse
Affiliation(s)
- Bryan C Dickinson
- Department of Chemistry, University of California, Berkeley, California 94720, USA
| | | | | |
Collapse
|
12
|
Arora A, Simone G, Salieb-Beugelaar GB, Kim JT, Manz A. Latest Developments in Micro Total Analysis Systems. Anal Chem 2010; 82:4830-47. [PMID: 20462185 DOI: 10.1021/ac100969k] [Citation(s) in RCA: 265] [Impact Index Per Article: 17.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Affiliation(s)
- Arun Arora
- KIST Europe, Korea Institute of Science and Technology, Campus E71, 66123 Saarbrücken, Germany, FRIAS, Freiburg Institute for Advanced Studies, Albert-Ludwigs-Universität Freiburg, Albertstrasse 19, 79104 Freiburg, Germany, IMTEK, Institute for Microsystem Technology, University of Freiburg, Georges-Köhler-Allee 103, 79110 Freiburg, Germany, and MESA+ Institute for Nanotechnology/Lab-on-a-Chip Group, Twente University, Building Carré, 7500 AE, Enschede, The Netherlands
| | - Giuseppina Simone
- KIST Europe, Korea Institute of Science and Technology, Campus E71, 66123 Saarbrücken, Germany, FRIAS, Freiburg Institute for Advanced Studies, Albert-Ludwigs-Universität Freiburg, Albertstrasse 19, 79104 Freiburg, Germany, IMTEK, Institute for Microsystem Technology, University of Freiburg, Georges-Köhler-Allee 103, 79110 Freiburg, Germany, and MESA+ Institute for Nanotechnology/Lab-on-a-Chip Group, Twente University, Building Carré, 7500 AE, Enschede, The Netherlands
| | - Georgette B. Salieb-Beugelaar
- KIST Europe, Korea Institute of Science and Technology, Campus E71, 66123 Saarbrücken, Germany, FRIAS, Freiburg Institute for Advanced Studies, Albert-Ludwigs-Universität Freiburg, Albertstrasse 19, 79104 Freiburg, Germany, IMTEK, Institute for Microsystem Technology, University of Freiburg, Georges-Köhler-Allee 103, 79110 Freiburg, Germany, and MESA+ Institute for Nanotechnology/Lab-on-a-Chip Group, Twente University, Building Carré, 7500 AE, Enschede, The Netherlands
| | - Jung Tae Kim
- KIST Europe, Korea Institute of Science and Technology, Campus E71, 66123 Saarbrücken, Germany, FRIAS, Freiburg Institute for Advanced Studies, Albert-Ludwigs-Universität Freiburg, Albertstrasse 19, 79104 Freiburg, Germany, IMTEK, Institute for Microsystem Technology, University of Freiburg, Georges-Köhler-Allee 103, 79110 Freiburg, Germany, and MESA+ Institute for Nanotechnology/Lab-on-a-Chip Group, Twente University, Building Carré, 7500 AE, Enschede, The Netherlands
| | - Andreas Manz
- KIST Europe, Korea Institute of Science and Technology, Campus E71, 66123 Saarbrücken, Germany, FRIAS, Freiburg Institute for Advanced Studies, Albert-Ludwigs-Universität Freiburg, Albertstrasse 19, 79104 Freiburg, Germany, IMTEK, Institute for Microsystem Technology, University of Freiburg, Georges-Köhler-Allee 103, 79110 Freiburg, Germany, and MESA+ Institute for Nanotechnology/Lab-on-a-Chip Group, Twente University, Building Carré, 7500 AE, Enschede, The Netherlands
| |
Collapse
|
13
|
Kim G, Lee YEK, Xu H, Philbert MA, Kopelman R. Nanoencapsulation method for high selectivity sensing of hydrogen peroxide inside live cells. Anal Chem 2010; 82:2165-9. [PMID: 20163178 PMCID: PMC2838456 DOI: 10.1021/ac9024544] [Citation(s) in RCA: 76] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Reactive oxygen species (ROS) are ubiquitous in life and death processes of cells (Finkel, T.; Holbrook, N. J. Nature 2000, 408 (6809), 239-247), with a major role played by the most stable ROS, hydrogen peroxide (H(2)O(2)). However, the study of H(2)O(2) in live cells has been hampered by the absence of selective probes. Described here is a novel nanoprobe ("nanoPEBBLE") with dramatically improved H(2)O(2) selectivity. The traditional molecular probe, 2',7'-dichlorofluorescin (DCFH), which is also sensitive to most other ROS, was empowered with high selectivity by a nanomatrix that blocks the interference from all other ROS (hydroxyl radical, superoxide, nitric oxide, peroxynitrite, hypochlorous acid, and alkylperoxyl radical), as well as from enzymes such as peroxidases. The blocking is based on the combination of multiple exclusion principles: time barrier, hydrophobic energy barrier, and size barrier. However, H(2)O(2) sensitivity is maintained down to low nanomolar concentrations. The surface of the nanoprobe was engineered to address biological applications, and the power of this new nanoPEBBLE is demonstrated by its use on RAW264.7 murine macrophages. These nanoprobes may provide a powerful chemical detection/imaging tool for investigating biological mechanisms related to H(2)O(2) or other species, with high spatial and temporal resolution.
Collapse
Affiliation(s)
- Gwangseong Kim
- Department of Biomedical Engineering, University of Michigan, Ann Arbor, Michigan
- Department of Chemistry, University of Michigan, Ann Arbor, Michigan
| | - Yong-Eun Koo Lee
- Department of Chemistry, University of Michigan, Ann Arbor, Michigan
| | - Hao Xu
- Department of Chemistry, University of Michigan, Ann Arbor, Michigan
| | - Martin A. Philbert
- Department of Environmental Health Sciences, University of Michigan, Ann Arbor, Michigan
| | - Raoul Kopelman
- Department of Biomedical Engineering, University of Michigan, Ann Arbor, Michigan
- Department of Chemistry, University of Michigan, Ann Arbor, Michigan
| |
Collapse
|
14
|
Chen Z, Li Q, Wang X, Wang Z, Zhang R, Yin M, Yin L, Xu K, Tang B. Potent Method for the Simultaneous Determination of Glutathione and Hydrogen Peroxide in Mitochondrial Compartments of Apoptotic Cells with Microchip Electrophoresis-Laser Induced Fluorescence. Anal Chem 2010; 82:2006-12. [DOI: 10.1021/ac902741r] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Affiliation(s)
- Zhenzhen Chen
- College of Chemistry, Chemical Engineering and Materials Science, Key Laboratory of Molecular and Nano Probes, Ministry of Education, Engineering Research Center of Pesticide and Medicine Intermediate Clean Production, Ministry of Education, Shandong Normal University, and College of Life Sciences, Shandong Normal University, Jinan 250014, China
| | - Qingling Li
- College of Chemistry, Chemical Engineering and Materials Science, Key Laboratory of Molecular and Nano Probes, Ministry of Education, Engineering Research Center of Pesticide and Medicine Intermediate Clean Production, Ministry of Education, Shandong Normal University, and College of Life Sciences, Shandong Normal University, Jinan 250014, China
| | - Xu Wang
- College of Chemistry, Chemical Engineering and Materials Science, Key Laboratory of Molecular and Nano Probes, Ministry of Education, Engineering Research Center of Pesticide and Medicine Intermediate Clean Production, Ministry of Education, Shandong Normal University, and College of Life Sciences, Shandong Normal University, Jinan 250014, China
| | - Zhiyuan Wang
- College of Chemistry, Chemical Engineering and Materials Science, Key Laboratory of Molecular and Nano Probes, Ministry of Education, Engineering Research Center of Pesticide and Medicine Intermediate Clean Production, Ministry of Education, Shandong Normal University, and College of Life Sciences, Shandong Normal University, Jinan 250014, China
| | - Ruirui Zhang
- College of Chemistry, Chemical Engineering and Materials Science, Key Laboratory of Molecular and Nano Probes, Ministry of Education, Engineering Research Center of Pesticide and Medicine Intermediate Clean Production, Ministry of Education, Shandong Normal University, and College of Life Sciences, Shandong Normal University, Jinan 250014, China
| | - Miao Yin
- College of Chemistry, Chemical Engineering and Materials Science, Key Laboratory of Molecular and Nano Probes, Ministry of Education, Engineering Research Center of Pesticide and Medicine Intermediate Clean Production, Ministry of Education, Shandong Normal University, and College of Life Sciences, Shandong Normal University, Jinan 250014, China
| | - Lingling Yin
- College of Chemistry, Chemical Engineering and Materials Science, Key Laboratory of Molecular and Nano Probes, Ministry of Education, Engineering Research Center of Pesticide and Medicine Intermediate Clean Production, Ministry of Education, Shandong Normal University, and College of Life Sciences, Shandong Normal University, Jinan 250014, China
| | - Kehua Xu
- College of Chemistry, Chemical Engineering and Materials Science, Key Laboratory of Molecular and Nano Probes, Ministry of Education, Engineering Research Center of Pesticide and Medicine Intermediate Clean Production, Ministry of Education, Shandong Normal University, and College of Life Sciences, Shandong Normal University, Jinan 250014, China
| | - Bo Tang
- College of Chemistry, Chemical Engineering and Materials Science, Key Laboratory of Molecular and Nano Probes, Ministry of Education, Engineering Research Center of Pesticide and Medicine Intermediate Clean Production, Ministry of Education, Shandong Normal University, and College of Life Sciences, Shandong Normal University, Jinan 250014, China
| |
Collapse
|