1
|
Zimoch-Rumanek P, Antos D. Coupling cation and anion exchange chromatography for fast separation of monoclonal antibody charge variants. J Chromatogr A 2024; 1733:465256. [PMID: 39153427 DOI: 10.1016/j.chroma.2024.465256] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2024] [Revised: 08/04/2024] [Accepted: 08/09/2024] [Indexed: 08/19/2024]
Abstract
A design procedure for the separation of charge variants of a monoclonal antibody (mAb) was developed, which was based on the coupling of cation-exchange chromatography (CEX) and anion-exchange chromatography (AEX) under high loading conditions. The design of the coupled process was supported by a dynamic model. The model was calibrated on the basis of band profiles of variants determined experimentally for the mAb materials of different variant compositions. The numerical simulations were used to select the coupling configuration and the loading conditions that allowed for efficient separation of the mAb materials into three products enriched with each individual variant: the acidic (av), main (mv) and basic (bv) one. In the CEX section, a two-step pH gradient was used to split the loaded mass of mAb into a weakly bound fraction enriched with av and mv, and a strongly bound fraction containing the bv-rich product. The weakly bound fraction was further processed in the AEX section, where the mv-rich product was eluted in flowthrough, while the av-rich product was collected by a step change in pH. The choice of flow distribution and the number of columns in the CEX and AEX sections depended on the variant composition of the mAb material. For the selected configurations, the optimized mAb loading density in the CEX columns ranged from 10 to 26 mg mL-1, while in the AEX columns it was as high as 300 or 600 mg mL-1, depending on the variant composition of the mAb material. By proper selection of the loading condition, a trade-off between yield and purity of the products could be reached.
Collapse
Affiliation(s)
| | - Dorota Antos
- Department of Chemical and Process Engineering, Rzeszów University of Technology, Rzeszów/PL, Poland.
| |
Collapse
|
2
|
Sutton H, Hong F, Han X, Rauniyar N. Analysis of therapeutic monoclonal antibodies by imaged capillary isoelectric focusing (icIEF). ANALYTICAL METHODS : ADVANCING METHODS AND APPLICATIONS 2024; 16:5450-5458. [PMID: 39042476 DOI: 10.1039/d4ay00836g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/25/2024]
Abstract
Imaged capillary isoelectric focusing (icIEF) is a preferred analytical method for determining isoelectric points (pIs) and charge heterogeneity profiles in biotherapeutic proteins. In this study, we optimized the icIEF method for an in-house IgG1κ monoclonal antibody (mAb-1) and assessed its reproducibility, robustness, and autosampler stability. The optimized method was used to evaluate batch-to-batch consistency in pIs for multiple lots of mAb-1 and determine the relative percentages of charge variants. We also tested the method's performance using multiple lots of another IgG1 mAb, commercially available as Herceptin (trastuzumab). Additionally, we designed and assessed native and denaturing platform icIEF methods for 11 other marketed mAbs, with pIs ranging from 6.0 (eculizumab) to 9.22 (tocilizumab).
Collapse
Affiliation(s)
- Haley Sutton
- Tanvex Biopharma USA, Inc., 10394 Pacific Center Ct, San Diego, CA 92121, USA.
| | - Feng Hong
- Tanvex Biopharma USA, Inc., 10394 Pacific Center Ct, San Diego, CA 92121, USA.
| | - Xuemei Han
- Tanvex Biopharma USA, Inc., 10394 Pacific Center Ct, San Diego, CA 92121, USA.
| | - Navin Rauniyar
- Tanvex Biopharma USA, Inc., 10394 Pacific Center Ct, San Diego, CA 92121, USA.
| |
Collapse
|
3
|
Liu S, Nguyen JB, Zhao Y, Schussler S, Kim S, Qiu H, Li N, Rosconi MP, Pyles EA. Development of a platform method for rapid detection and characterization of domain-specific post-translational modifications in bispecific antibodies. J Pharm Biomed Anal 2024; 244:116120. [PMID: 38547650 DOI: 10.1016/j.jpba.2024.116120] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2024] [Revised: 03/14/2024] [Accepted: 03/17/2024] [Indexed: 04/29/2024]
Abstract
Charge heterogeneity is inherent to all therapeutic antibodies and arises from post-translational modifications (PTMs) and/or protein degradation events that may occur during manufacturing. Among therapeutic antibodies, the bispecific antibody (bsAb) containing two unique Fab arms directed against two different targets presents an additional layer of complexity to the charge profile. In the context of a bsAb, a single domain-specific PTM within one of the Fab domains may be sufficient to compromise target binding and could potentially impact the stability, safety, potency, and efficacy of the drug product. Therefore, characterization and routine monitoring of domain-specific modifications is critical to ensure the quality of therapeutic bispecific antibody products. We developed a Digestion-assisted imaged Capillary isoElectric focusing (DiCE) method to detect and quantitate domain-specific charge variants of therapeutic bispecific antibodies (bsAbs). The method involves enzymatic digestion using immunoglobulin G (IgG)-degrading enzyme of S. pyogenes (IdeS) to generate F(ab)2 and Fc fragments, followed by imaged capillary isoelectric focusing (icIEF) under reduced, denaturing conditions to separate the light chains (LCs) from the Fd domains. Our results suggest that DiCE is a highly sensitive method that is capable of quantitating domain-specific PTMs of a bsAb. In one case study, DiCE was used to quantitate unprocessed C-terminal lysine and site-specific glycation of Lys98 in the complementarity-determining region (CDR) of a bsAb that could not be accurately quantitated using conventional, platform-based charge variant analysis, such as intact icIEF. Quantitation of these PTMs by DiCE was comparable to results from peptide mapping, demonstrating that DiCE is a valuable orthogonal method for ensuring product quality. This method may also have potential applications for characterizing fusion proteins, antibody-drug conjugates, and co-formulated antibody cocktails.
Collapse
Affiliation(s)
- Sophia Liu
- Protein Biochemistry, Regeneron Pharmaceuticals, Inc., 777 Old Saw Mill River Road, Tarrytown, NY 10591, United States
| | - Jennifer B Nguyen
- Protein Biochemistry, Regeneron Pharmaceuticals, Inc., 777 Old Saw Mill River Road, Tarrytown, NY 10591, United States.
| | - Yimeng Zhao
- Analytical Chemistry, Regeneron Pharmaceuticals, Inc., 777 Old Saw Mill River Road, Tarrytown, NY 10591, United States
| | - Svetlana Schussler
- Preclinical Manufacturing and Process Development, Regeneron Pharmaceuticals, Inc., 777 Old Saw Mill River Road, Tarrytown, NY 10591, United States
| | - Sunnie Kim
- Analytical Chemistry, Regeneron Pharmaceuticals, Inc., 777 Old Saw Mill River Road, Tarrytown, NY 10591, United States
| | - Haibo Qiu
- Analytical Chemistry, Regeneron Pharmaceuticals, Inc., 777 Old Saw Mill River Road, Tarrytown, NY 10591, United States
| | - Ning Li
- Analytical Chemistry, Regeneron Pharmaceuticals, Inc., 777 Old Saw Mill River Road, Tarrytown, NY 10591, United States
| | - Michael P Rosconi
- Protein Biochemistry, Regeneron Pharmaceuticals, Inc., 777 Old Saw Mill River Road, Tarrytown, NY 10591, United States
| | - Erica A Pyles
- Protein Biochemistry, Regeneron Pharmaceuticals, Inc., 777 Old Saw Mill River Road, Tarrytown, NY 10591, United States
| |
Collapse
|
4
|
Alhazmi HA, Albratty M. Analytical Techniques for the Characterization and Quantification of Monoclonal Antibodies. Pharmaceuticals (Basel) 2023; 16:291. [PMID: 37259434 PMCID: PMC9967501 DOI: 10.3390/ph16020291] [Citation(s) in RCA: 12] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2022] [Revised: 01/17/2023] [Accepted: 01/18/2023] [Indexed: 08/12/2023] Open
Abstract
Monoclonal antibodies (mAbs) are a fast-growing class of biopharmaceuticals. They are widely used in the identification and detection of cell makers, serum analytes, and pathogenic agents, and are remarkably used for the cure of autoimmune diseases, infectious diseases, or malignancies. The successful application of therapeutic mAbs is based on their ability to precisely interact with their appropriate target sites. The precision of mAbs rely on the isolation techniques delivering pure, consistent, stable, and safe lots that can be used for analytical, diagnostic, or therapeutic applications. During the creation of a biologic, the key quality features of a particular mAb, such as structure, post-translational modifications, and activities at the biomolecular and cellular levels, must be characterized and profiled in great detail. This implies the requirement of powerful state of the art analytical techniques for quality control and characterization of mAbs. Until now, various analytical techniques have been developed to characterize and quantify the mAbs according to the regulatory guidelines. The present review summarizes the major techniques used for the analyses of mAbs which include chromatographic, electrophoretic, spectroscopic, and electrochemical methods in addition to the modifications in these methods for improving the quality of mAbs. This compilation of major analytical techniques will help students and researchers to have an overview of the methodologies employed by the biopharmaceutical industry for structural characterization of mAbs for eventual release of therapeutics in the drug market.
Collapse
Affiliation(s)
- Hassan A. Alhazmi
- Department of Pharmaceutical Chemistry and Pharmacognosy, College of Pharmacy, Jazan University, Jazan 45142, Saudi Arabia
- Substance Abuse and Toxicology Research Centre, Jazan University, Jazan 45142, Saudi Arabia
| | - Mohammed Albratty
- Department of Pharmaceutical Chemistry and Pharmacognosy, College of Pharmacy, Jazan University, Jazan 45142, Saudi Arabia
| |
Collapse
|
5
|
Ostrowski MA, Mack S, Ninonuevo M, Yan J, ElNaggar M, Gentalen E, Michels DA. Rapid multi-attribute characterization of intact bispecific antibodies by a microfluidic chip-based integrated icIEF-MS technology. Electrophoresis 2023; 44:378-386. [PMID: 36200174 PMCID: PMC10092839 DOI: 10.1002/elps.202200165] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2022] [Revised: 09/26/2022] [Accepted: 09/28/2022] [Indexed: 02/09/2023]
Abstract
Rapid, direct identification and quantitation of protein charge variants, and assessment of critical quality attributes with high sensitivity are important drivers required to accelerate the development of biotherapeutics. We describe the use of an enhanced microfluidic chip-based integrated imaged capillary isoelectric focusing-mass spectrometry (icIEF-MS) technology to assess multiple quality attributes of intact antibodies in a single run. Results demonstrate comprehensive detection of multiple charge variants of an aglycosylated knob-into-hole bispecific antibody. Upfront, on-chip separation by icIEF coupled to MS provides the orthogonal separation required to resolve and identify acidic posttranslational modifications including difficult-to-detect deamidation and glycation events at the intact protein level. In addition, on-chip UV detection enables pI determination and relative quantitation of charge isoforms. Six charge variant peaks were resolved by icIEF, mobilized toward the on-chip electrospray tip and directly identified by in-line icIEF-MS using a connected quadrupole time-of-flight mass spectrometer. In addition to acidic charge variants, basic variants were identified as C-terminal lysine, N-terminal cyclization, proline amidation, and the combination of modifications (not typically identified by other intact methods), including lysine and one or two hexose additions. Nonspecific chain cleavages were also resolved, along with their acidic charge variants, demonstrating highly sensitive and comprehensive intact antibody multi-attribute characterization within a 15-min run time.
Collapse
|
6
|
Rumanek T, Kołodziej M, Piątkowski W, Antos D. Preferential precipitation of acidic variants from monoclonal antibody pools. Biotechnol Bioeng 2023; 120:114-124. [PMID: 36226348 DOI: 10.1002/bit.28257] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2022] [Revised: 09/13/2022] [Accepted: 10/08/2022] [Indexed: 11/10/2022]
Abstract
Microheterogeneity of monoclonal antibodies (mAbs) can impact their activity and stability. Formation of charge variants is considered as the most important source of the microheterogeneity. In particular, controlling the content of the acidic species is often of major importance for the production process and regulatory approval of therapeutic proteins. In this study, the preferential precipitation process was developed for reducing the content of acidic variants in mAb downstream pools. The process design was preceded by the determination of phase behavior of mAb variants in the presence of different precipitants. It was shown that the presence of polyethylene glycol (PEG) in protein solutions favored precipitation of acidic variants of mAbs. Precipitation yield was influenced by the variant composition in the mAb feed solutions, the concentration of the precipitant and the protein, and the ionic strength of the solutions. To improve yield, multistage precipitation was employed, where the precipitate was recycled to the precipitation process. The final product was a mixture of supernatants pooled together from the recycling steps. Such an approach can be potentially used either instead or in a combination with chromatography for adjusting the acidic variant content of mAbs, which can benefit in improvement in throughput and reduction in manufacturing costs.
Collapse
Affiliation(s)
- Tomasz Rumanek
- Doctoral School of Engineering and Technical Sciences at the Rzeszow University of Technology, Rzeszów, Poland
| | - Michał Kołodziej
- Department of Chemical and Process Engineering, Rzeszów University of Technology, Rzeszów, Poland
| | - Wojciech Piątkowski
- Department of Chemical and Process Engineering, Rzeszów University of Technology, Rzeszów, Poland
| | - Dorota Antos
- Department of Chemical and Process Engineering, Rzeszów University of Technology, Rzeszów, Poland
| |
Collapse
|
7
|
Candreva J, Esterman AL, Ge D, Patel P, Flagg SC, Das TK, Li X. Dual‐detection approach for a charge variant analysis of monoclonal antibody combination products using imaged capillary isoelectric focusing. Electrophoresis 2022; 43:1701-1709. [DOI: 10.1002/elps.202200026] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2022] [Revised: 05/16/2022] [Accepted: 05/21/2022] [Indexed: 11/10/2022]
Affiliation(s)
- Jason Candreva
- Biologics Development Bristol Myers Squibb New Brunswick New Jersey USA
| | - Abbie L. Esterman
- Biologics Development Bristol Myers Squibb New Brunswick New Jersey USA
| | - Derek Ge
- Pharmaceutical Sciences University of Michigan Ann Arbor Michigan USA
| | - Pritesh Patel
- Biologics Development Bristol Myers Squibb New Brunswick New Jersey USA
| | - Shannon C. Flagg
- Biologics Development Bristol Myers Squibb New Brunswick New Jersey USA
| | - Tapan K. Das
- Biologics Development Bristol Myers Squibb New Brunswick New Jersey USA
| | - Xue Li
- Biologics Development Bristol Myers Squibb New Brunswick New Jersey USA
| |
Collapse
|
8
|
He X, ElNaggar M, Ostrowski MA, Guttman A, Gentalen E, Sperry J. Evaluation of an icIEF-MS system for comparable charge variant analysis of biotherapeutics with rapid peak identification by mass spectrometry. Electrophoresis 2022; 43:1215-1222. [PMID: 35286725 PMCID: PMC9322286 DOI: 10.1002/elps.202100295] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2021] [Revised: 02/02/2022] [Accepted: 02/04/2022] [Indexed: 01/27/2023]
Abstract
Protein therapeutics are usually produced in heterogeneous forms during bioproduction and bioprocessing. Heterogeneity results from post‐translational modifications that can yield charge variants and require characterization throughout product development and manufacturing. Isoelectric focusing (IEF) with UV detection is one of the most common methods to evaluate protein charge heterogeneity in the biopharmaceutical industry. To identify charge variant peaks, a new imaged microfluidic chip‐based isoelectric focusing (icIEF) system coupled directly to mass spectrometry was recently reported. Bridging is required to demonstrate comparability between existing and new technology. As such, here we demonstrate the comparability of the pI value measurement and relative charge species distributions between the icIEF‐MS system and the control data from a frequently utilized methodology in the biopharmaceutical industry for several blinded development‐phase biopharmaceutical monoclonal antibodies across a wide pI range of 7.3–9.0. Hyphenation of the icIEF system with mass spectrometry enabled direct and detailed structural determination of a test molecule, with masses suggesting acidic and basic shifts are caused by sialic acid additions and the presence of unprocessed lysine residues. In addition, MS analysis further identified several low‐abundance glycoforms. The icIEF‐MS system provides sample quantification, characterization, and identification of mAb proteoforms without sacrificing icIEF quantification comparability or speed.
Collapse
Affiliation(s)
| | | | | | - Andras Guttman
- Horvath Csaba Memorial Laboratory of Bioseparation Sciences, University of Debrecen, Hungary.,Previously with SCIEX
| | | | | |
Collapse
|
9
|
Madren S, McElroy W, Schultz‐Kuszak K, Boumajny B, Shu Y, Sautter S, Zhao HC, Schadock‐Hewitt A, Chumsae C, Ball N, Zhang X, Rish K, Zhang S, Wurm C, Cai S, Bauer SP, Stella C, Zheng L, Roper B, Michels DA, Wu G, Kocjan B, Birk M, Erdmann SE, He X, Whittaker B, Song Y, Barrett H, Strozyk K, Jing Y, Huang L, Mhatre V, McLean P, Yu T, Yang H, Mattila M. Global intercompany assessment of ICIEF platform comparability for the characterization of therapeutic proteins. Electrophoresis 2022; 43:1050-1058. [DOI: 10.1002/elps.202100348] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2021] [Revised: 02/07/2022] [Accepted: 02/17/2022] [Indexed: 11/10/2022]
Affiliation(s)
- Seth Madren
- Technical Development Biogen Research Triangle Park Durham NC USA
| | | | | | | | - Yao Shu
- Bio Process + Analytical Development Boehringer Ingelheim Pharma GmbH & Co. KG Biberach an der Riss Germany
| | - Sabine Sautter
- Quality Control/Clinical Supply Transfer Boehringer Ingelheim Pharma GmbH & Co. KG Biberach an der Riss Germany
| | - Helen C. Zhao
- Global Process Development Analytics, Biologics Development Bristol Myers Squibb Devens MA USA
| | - Abby Schadock‐Hewitt
- Global Process Development Analytics, Biologics Development Bristol Myers Squibb Devens MA USA
| | - Chris Chumsae
- Global Process Development Analytics, Biologics Development Bristol Myers Squibb Devens MA USA
| | - Nancy Ball
- Biologics, Catalent Pharma Solutions Kansas City MO USA
| | | | - Kimberly Rish
- Biologics, Catalent Pharma Solutions Kansas City MO USA
| | - Shukui Zhang
- Institute of Biologics Chia Tai Tianqing Pharmaceutical Group Co., Ltd. Jiangsu P. R. China
| | | | - Sumin Cai
- BioTechnology Discovery Research Lead Optimization Eli Lilly and Company Indianapolis IN USA
| | - Scott P. Bauer
- BioTechnology Discovery Research Lead Optimization Eli Lilly and Company Indianapolis IN USA
| | - Cinzia Stella
- Department of Protein Analytical Chemistry Genentech South San Francisco CA USA
| | - Laura Zheng
- Department of Protein Analytical Chemistry Genentech South San Francisco CA USA
| | - Brian Roper
- Department of Protein Analytical Chemistry Genentech South San Francisco CA USA
| | - David A. Michels
- Department of Protein Analytical Chemistry Genentech South San Francisco CA USA
| | - Gang Wu
- Key Laboratory of the Ministry of Health for Research on Quality and Standardization of Biotech Products National Institutes for Food and Drug Control Beijing P. R. China
| | | | - Matej Birk
- Process Analytical Sciences, Novartis Mengeš Slovenia
| | | | - Xiaoping He
- Analytical R&D Biotherapeutics Pharmaceutical Sciences Pfizer Chesterfield MO USA
| | | | - Yvonne Song
- BioProcess Analytics Sanofi Genzyme Framingham MA USA
| | | | | | - Ye Jing
- Analytical Science and Development Shanghai Henlius Biotech Inc. Shanghai P. R. China
| | - Long Huang
- Quality Research Department and Quality Control Department Sichuan Kelun‐Biotech Biopharmaceutical Co., Ltd. Sichuan P. R. China
| | | | - Paul McLean
- Analytical Development Takeda Lexington MA USA
| | - Tiantian Yu
- Shanghai Analytical Sciences WuXi Biologics Shanghai P. R. China
| | - Huijuan Yang
- Shanghai Analytical Sciences WuXi Biologics Shanghai P. R. China
| | - Minna Mattila
- Immunodiagnostic Reagents Business Unit Medix Biochemica Espoo Finland
| |
Collapse
|
10
|
Wu G, Yu C, Wang W, Zhang R, Li M, Wang L. A platform method for charge heterogeneity characterization of fusion proteins by icIEF. Anal Biochem 2022; 638:114505. [PMID: 34856184 DOI: 10.1016/j.ab.2021.114505] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2021] [Revised: 11/23/2021] [Accepted: 11/25/2021] [Indexed: 12/15/2022]
Abstract
The charge heterogeneity of fusion proteins can vary dramatically compared with more traditional biopharmaceuticals like monoclonal antibodies, making the characterization of fusion proteins a challenge. A single platform method suitable for the analysis of multiple fusion proteins would reduce method development and streamline production workflows. Here, we develop a platform method to characterize the charge heterogeneity of a variety of fusion protein therapeutics using imaged capillary isoelectric focusing (icIEF). We describe the development of the platform method, and analyze 9 fusion protein therapeutics. The results are reproducible in peak group area percentage and apparent pI determination. We compare the platform icIEF method to traditional slab gel IEF, which is still used in many laboratories for the analysis of fusion proteins. The peak patterns obtained from the icIEF method is comparable to the band patterns of the gel IEF. The platform method can also be used as the starting point if further optimization is needed even when high resolution is required. The platform method described in this study can be applied as an identity and purity assay for fusion proteins in the biopharmaceutical industry.
Collapse
Affiliation(s)
- Gang Wu
- Key Laboratory of the Ministry of Health for Research on Quality and Standardization of Biotech Products, National Institutes for Food and Drug Control, No. 31, Huatuo Road, Daxing District, Beijing, 102629, China
| | - Chuanfei Yu
- Key Laboratory of the Ministry of Health for Research on Quality and Standardization of Biotech Products, National Institutes for Food and Drug Control, No. 31, Huatuo Road, Daxing District, Beijing, 102629, China
| | - Wenbo Wang
- Key Laboratory of the Ministry of Health for Research on Quality and Standardization of Biotech Products, National Institutes for Food and Drug Control, No. 31, Huatuo Road, Daxing District, Beijing, 102629, China
| | - Rongjian Zhang
- Key Laboratory of the Ministry of Health for Research on Quality and Standardization of Biotech Products, National Institutes for Food and Drug Control, No. 31, Huatuo Road, Daxing District, Beijing, 102629, China
| | - Meng Li
- Key Laboratory of the Ministry of Health for Research on Quality and Standardization of Biotech Products, National Institutes for Food and Drug Control, No. 31, Huatuo Road, Daxing District, Beijing, 102629, China
| | - Lan Wang
- Key Laboratory of the Ministry of Health for Research on Quality and Standardization of Biotech Products, National Institutes for Food and Drug Control, No. 31, Huatuo Road, Daxing District, Beijing, 102629, China.
| |
Collapse
|
11
|
Whole-Column Imaging Detection for Capillary Isoelectric Focusing: Its Applications in Pharmaceutical Industry and Recent Development of the Technology. Trends Analyt Chem 2022. [DOI: 10.1016/j.trac.2022.116567] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
|
12
|
Analysis of Monoclonal Antibodies by Capillary Electrophoresis: Sample Preparation, Separation, and Detection. SEPARATIONS 2021. [DOI: 10.3390/separations8010004] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
Therapeutic monoclonal antibodies (mAbs) are dominating the biopharmaceutical field due to the fact of their high specificity in the treatment of diverse diseases. Nevertheless, mAbs are very complex glycoproteins exhibiting several macro- and microheterogeneities that may affect their safety, quality, and efficacy. This complexity is very challenging for mAbs development, formulation, and quality control. To tackle the quality issue, a combination of multiple analytical approaches is necessary. In this perspective, capillary electrophoresis has gained considerable interest over the last decade due to the fact of its complementary features to chromatographic approaches. This review provides an overview of the strategies of mAbs and derivatives analysis by capillary electrophoresis hyphenated to ultraviolet, fluorescence, and mass spectrometry detection. The main sample preparation approaches used for mAb analytical characterization (i.e., intact, middle-up/down, and bottom-up) are detailed. The different electrophoretic modes used as well as integrated analysis approaches (sample preparation and separation) are critically discussed.
Collapse
|
13
|
Ghosh R, Chen G, Roshankhah R, Umatheva U, Gatt P. A z2 laterally-fed membrane chromatography device for fast high-resolution purification of biopharmaceuticals. J Chromatogr A 2020; 1629:461453. [DOI: 10.1016/j.chroma.2020.461453] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2020] [Revised: 08/04/2020] [Accepted: 08/05/2020] [Indexed: 01/06/2023]
|
14
|
Carillo S, Jakes C, Bones J. In-depth analysis of monoclonal antibodies using microfluidic capillary electrophoresis and native mass spectrometry. J Pharm Biomed Anal 2020; 185:113218. [DOI: 10.1016/j.jpba.2020.113218] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2019] [Revised: 02/27/2020] [Accepted: 02/28/2020] [Indexed: 12/22/2022]
|
15
|
Cruzado-Park ID. Optimization of an IgG1 CIEF separation by using narrow-range ampholytes and DMSO as protein solubilizer. Electrophoresis 2020; 41:1308-1315. [PMID: 32375204 DOI: 10.1002/elps.201900449] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2019] [Revised: 04/27/2020] [Accepted: 04/27/2020] [Indexed: 12/14/2022]
Abstract
CIEF is a powerful separation tool utilized in the characterization and relative quantitation of therapeutic mAb charged isoforms. However, one CIEF method is not capable of separating all mAbs with high resolution and reproducibility. Optimization of sample composition and separation parameters is expected when developing a CIEF method for a specific mAb. This paper summarizes a root cause investigation into why a validated CIEF separation method for MAK33 (a type of IgG1) was no longer reproducible. In addition, this paper introduces the concept of sample focusing volume, which is defined as the actual capillary volume occupied by the sample after focusing and explains why there is less protein precipitation and aggregation when using narrow-range ampholytes than broad-range ampholytes. The use of DMSO as protein solubilizer and possible replacement of urea is also explored in this work. Finally, this paper demonstrates that a new optimized CIEF method can achieve over 100 reproducible high-resolution separations of MAK33 per neutral-coated capillary.
Collapse
|
16
|
Wang D, Nowak C, Mason B, Katiyar A, Liu H. Analytical artifacts in characterization of recombinant monoclonal antibody therapeutics. J Pharm Biomed Anal 2020; 183:113131. [DOI: 10.1016/j.jpba.2020.113131] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2019] [Revised: 01/22/2020] [Accepted: 01/24/2020] [Indexed: 01/12/2023]
|
17
|
Liu Z, Valente J, Lin S, Chennamsetty N, Qiu D, Bolgar M. Cyclization of N-Terminal Glutamic Acid to pyro-Glutamic Acid Impacts Monoclonal Antibody Charge Heterogeneity Despite Its Appearance as a Neutral Transformation. J Pharm Sci 2019; 108:3194-3200. [DOI: 10.1016/j.xphs.2019.05.023] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2018] [Revised: 05/13/2019] [Accepted: 05/21/2019] [Indexed: 12/23/2022]
|
18
|
Chen G, Gerrior A, Hale G, Ghosh R. Feasibility study of the fractionation of monoclonal antibody charge variants using a cuboid packed-bed device. Biochem Eng J 2019. [DOI: 10.1016/j.bej.2019.04.003] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
|
19
|
Cao M, De Mel N, Shannon A, Prophet M, Wang C, Xu W, Niu B, Kim J, Albarghouthi M, Liu D, Meinke E, Lin S, Wang X, Wang J. Charge variants characterization and release assay development for co-formulated antibodies as a combination therapy. MAbs 2019; 11:489-499. [PMID: 30786796 PMCID: PMC6512943 DOI: 10.1080/19420862.2019.1578137] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2022] Open
Abstract
Combination therapy is a fast-growing strategy to maximize therapeutic benefits to patients. Co-formulation of two or more therapeutic proteins has advantages over the administration of multiple medications, including reduced medication errors and convenience for patients. Characterization of co-formulated biologics can be challenging due to the high degree of similarity in the physicochemical properties of co-formulated proteins, especially at different concentrations of individual components. We present the results of a deamidation study of one monoclonal antibody component (mAb-B) in co-formulated combination antibodies (referred to as COMBO) that contain various ratios of mAb-A and mAb-B. A single deamidation site in the complementarity-determining region of mAb-B was identified as a critical quality attribute (CQA) due to its impact on biological activity. A conventional charge-based method of monitoring mAb-B deamidation presented specificity and robustness challenges, especially when mAb-B was a minor component in the COMBO, making it unsuitable for lot release and stability testing. We developed and qualified a new, quality-control-friendly, single quadrupole Dalton mass detector (QDa)-based method to monitor site-specific deamidation. Our approach can be also used as a multi-attribute method for monitoring other quality attributes in COMBO. This analytical paradigm is applicable to the identification of CQAs in combination therapeutic molecules, and to the subsequent development of a highly specific, highly sensitive, and sufficiently robust method for routine monitoring CQAs for lot release test and during stability studies.
Collapse
Affiliation(s)
- Mingyan Cao
- a Department of Analytical Sciences , MedImmune , Gaithersburg , MD , USA
| | - Niluka De Mel
- a Department of Analytical Sciences , MedImmune , Gaithersburg , MD , USA
| | - Anthony Shannon
- a Department of Analytical Sciences , MedImmune , Gaithersburg , MD , USA
| | - Meagan Prophet
- a Department of Analytical Sciences , MedImmune , Gaithersburg , MD , USA
| | - Chunlei Wang
- a Department of Analytical Sciences , MedImmune , Gaithersburg , MD , USA
| | - Weichen Xu
- a Department of Analytical Sciences , MedImmune , Gaithersburg , MD , USA
| | - Ben Niu
- a Department of Analytical Sciences , MedImmune , Gaithersburg , MD , USA
| | - Jun Kim
- a Department of Analytical Sciences , MedImmune , Gaithersburg , MD , USA
| | | | - Dengfeng Liu
- a Department of Analytical Sciences , MedImmune , Gaithersburg , MD , USA
| | - Eric Meinke
- a Department of Analytical Sciences , MedImmune , Gaithersburg , MD , USA
| | - Shihua Lin
- a Department of Analytical Sciences , MedImmune , Gaithersburg , MD , USA
| | - Xiangyang Wang
- b Technical Operations , Viela Bio , Gaithersburg , MD , USA
| | - Jihong Wang
- a Department of Analytical Sciences , MedImmune , Gaithersburg , MD , USA
| |
Collapse
|
20
|
Comparison of imaged capillary isoelectric focusing and cation exchange chromatography for monitoring dextrose-mediated glycation of monoclonal antibodies in infusion solutions. J Chromatogr B Analyt Technol Biomed Life Sci 2019; 1105:156-163. [DOI: 10.1016/j.jchromb.2018.12.021] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2018] [Revised: 12/14/2018] [Accepted: 12/15/2018] [Indexed: 11/19/2022]
|
21
|
Xu Y, Wang D, Mason B, Rossomando T, Li N, Liu D, Cheung JK, Xu W, Raghava S, Katiyar A, Nowak C, Xiang T, Dong DD, Sun J, Beck A, Liu H. Structure, heterogeneity and developability assessment of therapeutic antibodies. MAbs 2018; 11:239-264. [PMID: 30543482 DOI: 10.1080/19420862.2018.1553476] [Citation(s) in RCA: 167] [Impact Index Per Article: 27.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
Increasing attention has been paid to developability assessment with the understanding that thorough evaluation of monoclonal antibody lead candidates at an early stage can avoid delays during late-stage development. The concept of developability is based on the knowledge gained from the successful development of approximately 80 marketed antibody and Fc-fusion protein drug products and from the lessons learned from many failed development programs over the last three decades. Here, we reviewed antibody quality attributes that are critical to development and traditional and state-of-the-art analytical methods to monitor those attributes. Based on our collective experiences, a practical workflow is proposed as a best practice for developability assessment including in silico evaluation, extended characterization and forced degradation using appropriate analytical methods that allow characterization with limited material consumption and fast turnaround time.
Collapse
Affiliation(s)
- Yingda Xu
- a Protein Analytics , Adimab , Lebanon , NH , USA
| | - Dongdong Wang
- b Analytical Department , Bioanalytix, Inc ., Cambridge , MA , USA
| | - Bruce Mason
- c Product Characterization , Alexion Pharmaceuticals, Inc ., New Haven , CT , USA
| | - Tony Rossomando
- c Product Characterization , Alexion Pharmaceuticals, Inc ., New Haven , CT , USA
| | - Ning Li
- d Analytical Chemistry , Regeneron Pharmaceuticals, Inc ., Tarrytown , NY , USA
| | - Dingjiang Liu
- e Formulation Development , Regeneron Pharmaceuticals, Inc ., Tarrytown , NY , USA
| | - Jason K Cheung
- f Pharmaceutical Sciences , MRL, Merck & Co., Inc ., Kenilworth , NJ , USA
| | - Wei Xu
- g Analytical Method Development , MRL, Merck & Co., Inc ., Kenilworth , NJ , USA
| | - Smita Raghava
- h Sterile Formulation Sciences , MRL, Merck & Co., Inc ., Kenilworth , NJ , USA
| | - Amit Katiyar
- i Analytical Development , Bristol-Myers Squibb , Pennington , NJ , USA
| | - Christine Nowak
- c Product Characterization , Alexion Pharmaceuticals, Inc ., New Haven , CT , USA
| | - Tao Xiang
- j Manufacturing Sciences , Abbvie Bioresearch Center , Worcester , MA , USA
| | - Diane D Dong
- j Manufacturing Sciences , Abbvie Bioresearch Center , Worcester , MA , USA
| | - Joanne Sun
- k Product development , Innovent Biologics , Suzhou Industrial Park , China
| | - Alain Beck
- l Analytical chemistry , NBEs, Center d'immunologie Pierre Fabre , St Julien-en-Genevois Cedex , France
| | - Hongcheng Liu
- c Product Characterization , Alexion Pharmaceuticals, Inc ., New Haven , CT , USA
| |
Collapse
|
22
|
Wu G, Yu C, Wang W, Wang L. Interlaboratory method validation of icIEF methodology for analysis of monoclonal antibodies. Electrophoresis 2018; 39:2091-2098. [DOI: 10.1002/elps.201800118] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2018] [Revised: 05/14/2018] [Accepted: 05/16/2018] [Indexed: 11/10/2022]
Affiliation(s)
- Gang Wu
- Key Laboratory of the Ministry of Health for Research on Quality and Standardization of Biotech Products; National Institutes for Food and Drug Control; Dongcheng District Beijing P. R. China
| | - Chuanfei Yu
- Key Laboratory of the Ministry of Health for Research on Quality and Standardization of Biotech Products; National Institutes for Food and Drug Control; Dongcheng District Beijing P. R. China
| | - Wenbo Wang
- Key Laboratory of the Ministry of Health for Research on Quality and Standardization of Biotech Products; National Institutes for Food and Drug Control; Dongcheng District Beijing P. R. China
| | - Lan Wang
- Key Laboratory of the Ministry of Health for Research on Quality and Standardization of Biotech Products; National Institutes for Food and Drug Control; Dongcheng District Beijing P. R. China
| |
Collapse
|
23
|
Scarcelli JJ, Hone M, Beal K, Ortega A, Figueroa B, Starkey JA, Anderson K. Analytical subcloning of a clonal cell line demonstrates cellular heterogeneity that does not impact process consistency or robustness. Biotechnol Prog 2018; 34:602-612. [PMID: 29693321 PMCID: PMC6099511 DOI: 10.1002/btpr.2646] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2018] [Revised: 03/30/2018] [Indexed: 12/20/2022]
Abstract
During development of a cell line intended to support production of an IgG2 monoclonal antibody, a sequence variant caused by a genetic mutation was identified in the bulk drug substance. Gene copy number analysis together with the level of the observed variant in genomic DNA indicated that the master cell bank was a mixed population of cells; some harboring the variant copy and some mutation free. Since the cell bank had been single‐cell cloned, this variant could be used as a biomarker to demonstrate either that the bank was not derived from a single cell, or that the variant was a result of a post‐cloning genetic event, leading to a mixed population of cells. The sequence variant was only present in a small percentage of subclones, confirming the hypothesis that the cell bank was indeed a mixed population. Interrogation of subclones via Southern blot analysis revealed that almost all subclones had very similar transgene integrant structures, suggesting that the cell bank was likely derived from a single cell, and the cellular event that yielded the sequence variant was a post‐cloning event. Further, there were likely several other post‐cloning events that impacted transgene loci, leading to a population of related, yet genetically distinct cells comprising the cell bank. Despite this, the heterogeneous bank performed consistently in a bioprocess across generational age with comparable product quality. These results experimentally demonstrate the heterogeneity of a cell bank derived from a single cell, and its relationship to process consistency. © 2018 The Authors Biotechnology Progress published by Wiley Periodicals, Inc. on behalf of American Institute of Chemical Engineers Biotechnol. Prog., 34:602–612, 2018
Collapse
Affiliation(s)
- John J Scarcelli
- Cell Line Development, Biotherapeutics Pharmaceutical Sciences, Pfizer Inc, Andover, MA, 01810
| | - Megan Hone
- Cell Line Development, Biotherapeutics Pharmaceutical Sciences, Pfizer Inc, Andover, MA, 01810
| | - Kathryn Beal
- Cell Line Development, Biotherapeutics Pharmaceutical Sciences, Pfizer Inc, Andover, MA, 01810
| | - Alejaida Ortega
- Cell Line Development, Biotherapeutics Pharmaceutical Sciences, Pfizer Inc, Andover, MA, 01810
| | - Bruno Figueroa
- Culture Process Development, Biotherapeutics Pharmaceutical Sciences, Pfizer Inc, Andover, MA, 01810
| | - Jason A Starkey
- Analytical Research and Development, Biotherapeutics Pharmaceutical Sciences, Pfizer Inc, Chesterfield, MO, 63017
| | - Karin Anderson
- Cell Line Development, Biotherapeutics Pharmaceutical Sciences, Pfizer Inc, Andover, MA, 01810
| |
Collapse
|
24
|
Kahle J, Wätzig H. Determination of protein charge variants with (imaged) capillary isoelectric focusing and capillary zone electrophoresis. Electrophoresis 2018; 39:2492-2511. [DOI: 10.1002/elps.201800079] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2018] [Revised: 04/03/2018] [Accepted: 04/17/2018] [Indexed: 12/20/2022]
Affiliation(s)
- Julia Kahle
- Technische Universität Braunschweig; Institute of Medicinal and Pharmaceutical Chemistry; Braunschweig Germany
| | - Hermann Wätzig
- Technische Universität Braunschweig; Institute of Medicinal and Pharmaceutical Chemistry; Braunschweig Germany
| |
Collapse
|
25
|
Development of a capillary zone electrophoresis method to quantify E. coli l-asparaginase and its acidic variants. Talanta 2018; 182:83-91. [DOI: 10.1016/j.talanta.2018.01.048] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2017] [Revised: 01/14/2018] [Accepted: 01/17/2018] [Indexed: 11/18/2022]
|
26
|
Parekh BS, Srivastava A, Sundaram S, Ching-Heish M, Goldstein J, Barry M, Zhou Q. Correlating charge heterogeneity data generated by agarose gel isoelectric focusing and ion exchange chromatography methods. J Chromatogr B Analyt Technol Biomed Life Sci 2018; 1073:1-9. [PMID: 29232605 DOI: 10.1016/j.jchromb.2017.11.043] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2017] [Revised: 11/27/2017] [Accepted: 11/30/2017] [Indexed: 10/18/2022]
Abstract
An isoelectric focusing method (IEF) has been used to assess the charge heterogeneity profile of a monoclonal antibody during the early stages of product development. A more precise and sensitive ion exchange chromatography (IEC/CEX) method was developed and implemented as development progressed and was used concurrently with IEF for lot release and to monitor charge heterogeneity. Charge variants resolved by both methods (IEC and IEF) were purified and characterized. Tryptic peptide mapping and N- linked oligosaccharide profile analyses of the IEC and IEF fractions indicated a structural correlation between the charge variants separated by these two methods. The major sources of molecular heterogeneity were due to the variation in the sialyated carbohydrate structure and heavy chain C-terminal lysine truncation. By monitoring the rates of change in the charge heterogeneity profiles of the monoclonal antibody stored at elevated temperatures by the IEC and IEF methods, a positive correlation between the two methods was established. This approach enabled replacement of the IEF method with the more precise IEC method.
Collapse
Affiliation(s)
- Babita Saxena Parekh
- BioAnalytical Sciences, Eli Lilly and Company, Branchburg, NJ 08876, United States
| | - Arvind Srivastava
- BioAnalytical Sciences, Eli Lilly and Company, Branchburg, NJ 08876, United States
| | - Shanmuuga Sundaram
- BioAnalytical Sciences, Eli Lilly and Company, Branchburg, NJ 08876, United States.
| | - Ming Ching-Heish
- BioAnalytical Sciences, Eli Lilly and Company, Branchburg, NJ 08876, United States
| | - Joel Goldstein
- BioAnalytical Sciences, Eli Lilly and Company, Branchburg, NJ 08876, United States
| | - Michael Barry
- BioAnalytical Sciences, Eli Lilly and Company, Branchburg, NJ 08876, United States
| | - Qinwei Zhou
- BioAnalytical Sciences, Eli Lilly and Company, Branchburg, NJ 08876, United States
| |
Collapse
|
27
|
Goyon A, Excoffier M, Janin-Bussat MC, Bobaly B, Fekete S, Guillarme D, Beck A. Determination of isoelectric points and relative charge variants of 23 therapeutic monoclonal antibodies. J Chromatogr B Analyt Technol Biomed Life Sci 2017; 1065-1066:119-128. [PMID: 28961486 DOI: 10.1016/j.jchromb.2017.09.033] [Citation(s) in RCA: 119] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2017] [Revised: 09/19/2017] [Accepted: 09/20/2017] [Indexed: 01/08/2023]
Abstract
Despite the popularity of therapeutic monoclonal antibodies (mAbs), data relative to their ionic physico-chemical properties are very scarce in the literature. In this work, isoelectric points (pIs) of 23 Food and Drug Administration (FDA) and European Medicines Agency (EMA) approved mAbs were determined by imaged capillary isoelectric focusing (icIEF), and ranged from 6.1 to 9.4. The obtained values were in good agreement with those calculated by both Vector NTI and MassLynx softwares. icIEF can therefore be considered as a reference technique for such a determination. The relative percentages of acidic and basic variants determined by cation exchange chromatography (CEX) using both salt- and pH-gradients were comprised between 15% and 30% for most mAbs and were in good agreement with each other, whereas generic icIEF seems to overestimate the amount of acidic charge variants in mAb products. To our knowledge, this is the first study focusing on the ionic properties of a wide range of FDA and EMA approved reference mAbs, using both generic chromatographic and electrophoretic methodologies. To illustrate the interest of the study for mAb developability purposes, ionic properties of a clinical mAb candidate (dalotuzumab) were also investigated.
Collapse
Affiliation(s)
- Alexandre Goyon
- School of Pharmaceutical Sciences, University of Geneva, University of Lausanne, Centre Médical Universitaire (CMU), Rue Michel-Servet 1, 1206, Geneva, Switzerland
| | - Melissa Excoffier
- Center of Immunology Pierre Fabre, 5 Avenue Napoléon III, BP 60497, 74160 Saint-Julien-en-Genevois, France
| | - Marie-Claire Janin-Bussat
- Center of Immunology Pierre Fabre, 5 Avenue Napoléon III, BP 60497, 74160 Saint-Julien-en-Genevois, France
| | - Balazs Bobaly
- School of Pharmaceutical Sciences, University of Geneva, University of Lausanne, Centre Médical Universitaire (CMU), Rue Michel-Servet 1, 1206, Geneva, Switzerland
| | - Szabolcs Fekete
- School of Pharmaceutical Sciences, University of Geneva, University of Lausanne, Centre Médical Universitaire (CMU), Rue Michel-Servet 1, 1206, Geneva, Switzerland
| | - Davy Guillarme
- School of Pharmaceutical Sciences, University of Geneva, University of Lausanne, Centre Médical Universitaire (CMU), Rue Michel-Servet 1, 1206, Geneva, Switzerland.
| | - Alain Beck
- Center of Immunology Pierre Fabre, 5 Avenue Napoléon III, BP 60497, 74160 Saint-Julien-en-Genevois, France
| |
Collapse
|
28
|
Scarcelli JJ, Shang TQ, Iskra T, Allen MJ, Zhang L. Strategic deployment of CHO expression platforms to deliver Pfizer's Monoclonal Antibody Portfolio. Biotechnol Prog 2017; 33:1463-1467. [PMID: 28480558 DOI: 10.1002/btpr.2493] [Citation(s) in RCA: 39] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2017] [Revised: 05/01/2017] [Indexed: 01/27/2023]
Abstract
Development of stable cell lines for expression of large-molecule therapeutics represents a significant portion of the time and effort required to advance a molecule to enabling regulatory toxicology studies and clinical evaluation. Our development strategy employs two different approaches for cell line development based on the needs of a particular project: a random integration approach for projects where high-level expression is critical, and a site-specific integration approach for projects in which speed and reduced employee time spend is a necessity. Here we describe both our random integration and site-specific integration platforms and their applications in support of monoclonal antibody development and production. We also compare product quality attributes of monoclonal antibodies produced with a nonclonal cell pool or clonal cell lines derived from the two platforms. Our data suggests that material source (pools vs. clones) does not significantly alter the examined product quality attributes. Our current practice is to leverage this observation with our site-specific integration platform, where material generated from cell pools is used for an early molecular assessment of a given candidate to make informed decisions around development strategy. © 2017 American Institute of Chemical Engineers Biotechnol. Prog., 33:1463-1467, 2017.
Collapse
Affiliation(s)
- John J Scarcelli
- Cell Line Development, Biotherapeutics Pharmaceutical Sciences, Pfizer Inc., Andover, MA, 01810
| | - Tanya Q Shang
- Analytical Research and Development, Biotherapeutics Pharmaceutical Sciences, Pfizer Inc., Andover, MA, 01810
| | - Tim Iskra
- Purification Process Development, Biotherapeutics Pharmaceutical Sciences, Pfizer Inc., Andover, MA, 01810
| | - Martin J Allen
- Cell Line Development, Biotherapeutics Pharmaceutical Sciences, Pfizer Inc., Chesterfield, MO, 63017
| | - Lin Zhang
- Cell Line Development, Biotherapeutics Pharmaceutical Sciences, Pfizer Inc., Andover, MA, 01810
| |
Collapse
|
29
|
Specific detection and quantitation of bovine IgG in bioreactor derived mouse mAb preparations. J Immunol Methods 2016; 438:26-34. [PMID: 27568282 DOI: 10.1016/j.jim.2016.08.005] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2016] [Revised: 07/26/2016] [Accepted: 08/22/2016] [Indexed: 11/23/2022]
Abstract
Monoclonal antibody and recombinant protein production benefits greatly from bovine serum as an additive. The caveat is that bovine serum IgG, co-purifies with mAbs and IgG Fc-containing fusion proteins and it presents a contaminant in the end products. In order to analytically validate the products, species specific reagents are needed that react with bovine IgG exclusively. Our attempts to find such commercially available reagents failed. Here, we report the production of species specific mAbs which recognize bovine IgG even in the presence of excess amount of mouse IgG. We present five mAbs: Bsi4028, Bsi4032, Bsi4033, Bsi4034 and Bsi4035 suitable to determine the presence of bovine IgG contamination via ELISA or immunoblotting in bioreactor derived mouse mAb preparations. To quantitate bovine IgG content we developed sensitive sandwich ELISAs capable to detect bovine IgG contaminant in the ng/ml (~10-11M/l) range. Finally, we show that bovine IgG is efficiently removed from bioreactor produced mouse mAb preparation via affinity depletion columns prepared with Bsi4028, Bsi4032, Bsi4033, Bsi4034, Bsi4035 mAbs.
Collapse
|
30
|
Hosken BD, Li C, Mullappally B, Co C, Zhang B. Isolation and Characterization of Monoclonal Antibody Charge Variants by Free Flow Isoelectric Focusing. Anal Chem 2016; 88:5662-9. [DOI: 10.1021/acs.analchem.5b03946] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Brian D. Hosken
- Department of Protein Analytical Chemistry, ‡Department of Biological Technologies, Genentech, 1 DNA Way, South San Francisco, California 94080, United States
| | - Charlene Li
- Department of Protein Analytical Chemistry, ‡Department of Biological Technologies, Genentech, 1 DNA Way, South San Francisco, California 94080, United States
| | - Berny Mullappally
- Department of Protein Analytical Chemistry, ‡Department of Biological Technologies, Genentech, 1 DNA Way, South San Francisco, California 94080, United States
| | - Carl Co
- Department of Protein Analytical Chemistry, ‡Department of Biological Technologies, Genentech, 1 DNA Way, South San Francisco, California 94080, United States
| | - Boyan Zhang
- Department of Protein Analytical Chemistry, ‡Department of Biological Technologies, Genentech, 1 DNA Way, South San Francisco, California 94080, United States
| |
Collapse
|
31
|
KUBOTA K, KOBAYASHI N, YABUTA M, OHARA M, NAITO T, KUBO T, OTSUKA K. Validation of Capillary Zone Electrophoretic Method for Evaluating Monoclonal Antibodies and Antibody-Drug Conjugates. CHROMATOGRAPHY 2016. [DOI: 10.15583/jpchrom.2016.011] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Affiliation(s)
- Kei KUBOTA
- Graduate School of Engineering, Kyoto University
- Analytical and Quality Evaluation Research Laboratories, Daiichi Sankyo Co., Ltd
| | - Naoki KOBAYASHI
- Analytical and Quality Evaluation Research Laboratories, Daiichi Sankyo Co., Ltd
| | - Masayuki YABUTA
- Biologics Technology Research Laboratories, Daiichi Sankyo Co., Ltd
| | - Motomu OHARA
- Analytical and Quality Evaluation Research Laboratories, Daiichi Sankyo Co., Ltd
| | | | - Takuya KUBO
- Graduate School of Engineering, Kyoto University
| | - Koji OTSUKA
- Graduate School of Engineering, Kyoto University
| |
Collapse
|
32
|
Capillary isoelectric focusing method development and validation for investigation of recombinant therapeutic monoclonal antibody. J Pharm Biomed Anal 2015; 114:53-61. [DOI: 10.1016/j.jpba.2015.04.037] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2015] [Revised: 04/21/2015] [Accepted: 04/24/2015] [Indexed: 01/31/2023]
|
33
|
Moritz B, Schnaible V, Kiessig S, Heyne A, Wild M, Finkler C, Christians S, Mueller K, Zhang L, Furuya K, Hassel M, Hamm M, Rustandi R, He Y, Solano OS, Whitmore C, Park SA, Hansen D, Santos M, Lies M. Evaluation of capillary zone electrophoresis for charge heterogeneity testing of monoclonal antibodies. J Chromatogr B Analyt Technol Biomed Life Sci 2015; 983-984:101-10. [DOI: 10.1016/j.jchromb.2014.12.024] [Citation(s) in RCA: 51] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2014] [Revised: 12/19/2014] [Accepted: 12/22/2014] [Indexed: 01/30/2023]
|
34
|
Tamizi E, Jouyban A. The potential of the capillary electrophoresis techniques for quality control of biopharmaceuticals-A review. Electrophoresis 2015; 36:831-58. [DOI: 10.1002/elps.201400343] [Citation(s) in RCA: 55] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2014] [Revised: 11/27/2014] [Accepted: 11/27/2014] [Indexed: 12/24/2022]
Affiliation(s)
- Elnaz Tamizi
- Biotechnology Research Center; Tabriz University of Medical Sciences; Tabriz Iran
| | - Abolghasem Jouyban
- Pharmacy Faculty and Drug Applied Research Center; Tabriz University of Medical Sciences; Tabriz Iran
| |
Collapse
|
35
|
Brorson K, Jia AY. Therapeutic monoclonal antibodies and consistent ends: terminal heterogeneity, detection, and impact on quality. Curr Opin Biotechnol 2014; 30:140-6. [DOI: 10.1016/j.copbio.2014.06.012] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2014] [Revised: 06/04/2014] [Accepted: 06/15/2014] [Indexed: 01/16/2023]
|
36
|
Talebi M, Shellie RA, Hilder EF, Lacher NA, Haddad PR. Semiautomated pH Gradient Ion-Exchange Chromatography of Monoclonal Antibody Charge Variants. Anal Chem 2014; 86:9794-9. [DOI: 10.1021/ac502372r] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Mohammad Talebi
- Australian
Centre for Research on Separation Science (ACROSS), School of Physical
Sciences, University of Tasmania, Hobart, Tasmania 7005, Australia
| | - Robert A. Shellie
- Australian
Centre for Research on Separation Science (ACROSS), School of Physical
Sciences, University of Tasmania, Hobart, Tasmania 7005, Australia
| | - Emily F. Hilder
- Australian
Centre for Research on Separation Science (ACROSS), School of Physical
Sciences, University of Tasmania, Hobart, Tasmania 7005, Australia
| | - Nathan A. Lacher
- Analytical R&D, Pfizer BioTherapeutics Pharmaceutical Sciences, Chesterfield, Missouri 63017, United States
| | - Paul R. Haddad
- Australian
Centre for Research on Separation Science (ACROSS), School of Physical
Sciences, University of Tasmania, Hobart, Tasmania 7005, Australia
| |
Collapse
|
37
|
Joshi V, Shivach T, Kumar V, Yadav N, Rathore A. Avoiding antibody aggregation during processing: Establishing hold times. Biotechnol J 2014; 9:1195-205. [DOI: 10.1002/biot.201400052] [Citation(s) in RCA: 47] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2014] [Revised: 03/11/2014] [Accepted: 04/14/2014] [Indexed: 01/17/2023]
|
38
|
Rouiller Y, Périlleux A, Vesin MN, Stettler M, Jordan M, Broly H. Modulation of mAb quality attributes using microliter scale fed-batch cultures. Biotechnol Prog 2014; 30:571-83. [DOI: 10.1002/btpr.1921] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2014] [Revised: 04/23/2014] [Indexed: 01/16/2023]
Affiliation(s)
- Yolande Rouiller
- Biotech Process Sciences, Merck Serono SA; Route de Fenil 25, ZI B 1804 Corsier-sur-Vevey Switzerland
| | - Arnaud Périlleux
- Biotech Process Sciences, Merck Serono SA; Route de Fenil 25, ZI B 1804 Corsier-sur-Vevey Switzerland
| | - Marie-Noëlle Vesin
- Biotech Process Sciences, Merck Serono SA; Route de Fenil 25, ZI B 1804 Corsier-sur-Vevey Switzerland
| | - Matthieu Stettler
- Biotech Process Sciences, Merck Serono SA; Route de Fenil 25, ZI B 1804 Corsier-sur-Vevey Switzerland
| | - Martin Jordan
- Biotech Process Sciences, Merck Serono SA; Route de Fenil 25, ZI B 1804 Corsier-sur-Vevey Switzerland
| | - Hervé Broly
- Biotech Process Sciences, Merck Serono SA; Route de Fenil 25, ZI B 1804 Corsier-sur-Vevey Switzerland
| |
Collapse
|
39
|
Alsenaidy MA, Jain NK, Kim JH, Middaugh CR, Volkin DB. Protein comparability assessments and potential applicability of high throughput biophysical methods and data visualization tools to compare physical stability profiles. Front Pharmacol 2014; 5:39. [PMID: 24659968 PMCID: PMC3950620 DOI: 10.3389/fphar.2014.00039] [Citation(s) in RCA: 41] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2013] [Accepted: 02/19/2014] [Indexed: 11/13/2022] Open
Abstract
In this review, some of the challenges and opportunities encountered during protein comparability assessments are summarized with an emphasis on developing new analytical approaches to better monitor higher-order protein structures. Several case studies are presented using high throughput biophysical methods to collect protein physical stability data as function of temperature, agitation, ionic strength and/or solution pH. These large data sets were then used to construct empirical phase diagrams (EPDs), radar charts, and comparative signature diagrams (CSDs) for data visualization and structural comparisons between the different proteins. Protein samples with different sizes, post-translational modifications, and inherent stability are presented: acidic fibroblast growth factor (FGF-1) mutants, different glycoforms of an IgG1 mAb prepared by deglycosylation, as well as comparisons of different formulations of an IgG1 mAb and granulocyte colony stimulating factor (GCSF). Using this approach, differences in structural integrity and conformational stability profiles were detected under stress conditions that could not be resolved by using the same techniques under ambient conditions (i.e., no stress). Thus, an evaluation of conformational stability differences may serve as an effective surrogate to monitor differences in higher-order structure between protein samples. These case studies are discussed in the context of potential utility in protein comparability studies.
Collapse
Affiliation(s)
- Mohammad A Alsenaidy
- Department of Pharmaceutical Chemistry, Macromolecule and Vaccine Stabilization Center, University of Kansas Lawrence, KS, USA
| | - Nishant K Jain
- Department of Pharmaceutical Chemistry, Macromolecule and Vaccine Stabilization Center, University of Kansas Lawrence, KS, USA
| | - Jae H Kim
- Department of Pharmaceutical Chemistry, Macromolecule and Vaccine Stabilization Center, University of Kansas Lawrence, KS, USA
| | - C Russell Middaugh
- Department of Pharmaceutical Chemistry, Macromolecule and Vaccine Stabilization Center, University of Kansas Lawrence, KS, USA
| | - David B Volkin
- Department of Pharmaceutical Chemistry, Macromolecule and Vaccine Stabilization Center, University of Kansas Lawrence, KS, USA
| |
Collapse
|
40
|
Zhao SS, Chen DDY. Applications of capillary electrophoresis in characterizing recombinant protein therapeutics. Electrophoresis 2013; 35:96-108. [PMID: 24123141 DOI: 10.1002/elps.201300372] [Citation(s) in RCA: 66] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2013] [Revised: 09/16/2013] [Accepted: 09/18/2013] [Indexed: 12/15/2022]
Abstract
The use of recombinant protein for therapeutic applications has increased significantly in the last three decades. The heterogeneity of these proteins, often caused by the complex biosynthesis pathways and the subsequent PTMs, poses a challenge for drug characterization to ensure its safety, quality, integrity, and efficacy. CE, with its simple instrumentation, superior separation efficiency, small sample consumption, and short analysis time, is a well-suited analytical tool for therapeutic protein characterization. Different separation modes, including CIEF, SDS-CGE, CZE, and CE-MS, provide complementary information of the proteins. The CE applications for recombinant therapeutic proteins from the year 2000 to June 2013 are reviewed and technical concerns are discussed in this article.
Collapse
Affiliation(s)
- Shuai Sherry Zhao
- Department of Chemistry, University of British Columbia, Vancouver, Canada
| | | |
Collapse
|
41
|
Abstract
Bioanalytical laboratories develop and validate ligand-binding assays (LBA) used to quantify the concentration of analytes of interest in various buffers and relevant biological matrices. The building blocks of LBA are reagents that recognize molecular and structural motifs on ligands, which are combined in various LBA formats to minimize biological matrix interferences and specifically detect and quantify the analyte of interest. The use of these LBA-requiring critical reagents, can span decades as programs mature to commercialization. Since critical reagents are generated mostly from biological systems, attention to their life cycle management, quality, characterization and sustainability are vital to the success of bioanalytical laboratories. Integrating de novo reagent generation, reagent biophysical characterization, LBA development, validation, and use, with reagent resupply processes leverages interdisciplinary activities and ensures smooth operations of a bioanalytical laboratory.
Collapse
|
42
|
Kinoshita M, Nakatsuji Y, Suzuki S, Hayakawa T, Kakehi K. Quality assurance of monoclonal antibody pharmaceuticals based on their charge variants using microchip isoelectric focusing method. J Chromatogr A 2013; 1309:76-83. [DOI: 10.1016/j.chroma.2013.08.021] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2013] [Revised: 07/25/2013] [Accepted: 08/06/2013] [Indexed: 12/18/2022]
|
43
|
Zhou CM. Characterization of human papillomavirus by capillary isoelectric focusing with whole-column imaging detection. Electrophoresis 2013; 34:3046-53. [DOI: 10.1002/elps.201300161] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2012] [Revised: 07/17/2013] [Accepted: 07/17/2013] [Indexed: 11/09/2022]
Affiliation(s)
- Chao-Ming Zhou
- Department of Quality Research; Shanghai Zerun Biotechnology Co., Ltd; Shanghai; China
| |
Collapse
|
44
|
Bonn R, Rampal S, Rae T, Fishpaugh J. CIEF method optimization: Development of robust and reproducible protein reagent characterization in the clinical immunodiagnostic industry. Electrophoresis 2013; 34:825-32. [DOI: 10.1002/elps.201200529] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2012] [Revised: 10/29/2012] [Accepted: 11/04/2012] [Indexed: 11/09/2022]
Affiliation(s)
- Ryan Bonn
- Abbott Laboratories; Abbott Diagnostics Division; Research and Development; IL; USA
| | | | - Tracey Rae
- Abbott Laboratories; Abbott Diagnostics Division; Research and Development; IL; USA
| | - Jeffrey Fishpaugh
- Abbott Laboratories; Abbott Diagnostics Division; Research and Development; IL; USA
| |
Collapse
|
45
|
Zhang L, Patapoff T, Farnan D, Zhang B. Improving pH gradient cation-exchange chromatography of monoclonal antibodies by controlling ionic strength. J Chromatogr A 2013; 1272:56-64. [DOI: 10.1016/j.chroma.2012.11.060] [Citation(s) in RCA: 49] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2012] [Revised: 11/18/2012] [Accepted: 11/23/2012] [Indexed: 11/25/2022]
|
46
|
Fekete S, Gassner AL, Rudaz S, Schappler J, Guillarme D. Analytical strategies for the characterization of therapeutic monoclonal antibodies. Trends Analyt Chem 2013. [DOI: 10.1016/j.trac.2012.09.012] [Citation(s) in RCA: 93] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
47
|
Rustandi RR, Loughney JW, Hamm M, Hamm C, Lancaster C, Mach A, Ha S. Qualitative and quantitative evaluation of Simon™, a new CE-based automated Western blot system as applied to vaccine development. Electrophoresis 2012; 33:2790-7. [PMID: 22965727 DOI: 10.1002/elps.201200095] [Citation(s) in RCA: 52] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
Many CE-based technologies such as imaged capillary IEF, CE-SDS, CZE, and MEKC are well established for analyzing proteins, viruses, or other biomolecules such as polysaccharides. For example, imaged capillary isoelectric focusing (charge-based protein separation) and CE-SDS (size-based protein separation) are standard replacement methods in biopharmaceutical industries for tedious and labor intensive IEF and SDS-PAGE methods, respectively. Another important analytical tool for protein characterization is a Western blot, where after size-based separation in SDS-PAGE the proteins are transferred to a membrane and blotted with specific monoclonal or polyclonal antibodies. Western blotting analysis is applied in many areas such as biomarker research, therapeutic target identification, and vaccine development. Currently, the procedure is very manual, laborious, and time consuming. Here, we evaluate a new technology called Simple Western™ (or Simon™) for performing automated Western analysis. This new technology is based on CE-SDS where the separated proteins are attached to the wall of capillary by a proprietary photo activated chemical crosslink. Subsequent blotting is done automatically by incubating and washing the capillary with primary and secondary antibodies conjugated with horseradish peroxidase and detected with chemiluminescence. Typically, Western blots are not quantitative, hence we also evaluated the quantitative aspect of this new technology. We demonstrate that Simon™ can quantitate specific components in one of our vaccine candidates and it provides good reproducibility and intermediate precision with CV <10%.
Collapse
Affiliation(s)
- Richard R Rustandi
- Vaccine Analytical Development, Merck Research Laboratories, West Point, PA, USA.
| | | | | | | | | | | | | |
Collapse
|
48
|
Salas-Solano O, Kennel B, Park SS, Roby K, Sosic Z, Boumajny B, Free S, Reed-Bogan A, Michels D, McElroy W, Bonasia P, Hong M, He X, Ruesch M, Moffatt F, Kiessig S, Nunnally B. Robustness of iCIEF methodology for the analysis of monoclonal antibodies: An interlaboratory study. J Sep Sci 2012; 35:3124-9. [DOI: 10.1002/jssc.201200633] [Citation(s) in RCA: 55] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2012] [Revised: 07/30/2012] [Accepted: 07/30/2012] [Indexed: 11/08/2022]
Affiliation(s)
- Oscar Salas-Solano
- Analytical Biochemistry Department; Seattle Genetics Inc.; Bothell WA USA
| | - Babu Kennel
- Technical Analytical Services; Bristol Myers Squibb; East Syracuse NY USA
| | - SungAe Suhr Park
- Drug Product Development; P&PD, Amgen Inc.; Thousand Oaks CA USA
| | | | - Zoran Sosic
- Analytical Development; Biogen Idec; Cambridge MA USA
| | | | - Sarah Free
- Analytical Technology Department; Biogen Idec; NC USA
| | - Angelia Reed-Bogan
- Bioproduct Pharmaceutical Research and Development; Eli Lilly and Company; Indianapolis IN USA
| | - David Michels
- Protein Analytical Chemistry Department; Genentech, Inc.; South San Francisco CA USA
| | - Will McElroy
- Protein Analytical Chemistry Department; Genentech, Inc.; South San Francisco CA USA
| | - Pauline Bonasia
- Quality Control Technical Services; Genzyme; Framingham MA USA
| | - Mingfang Hong
- Pharmaceutical Development and Manufacturing Sciences; Johnson and Johnson; Radnor PA USA
| | - Xiaoping He
- Analytical Research and Development; Global Biologics; Pfizer Global Research and Development, Pfizer; Chesterfield MO USA
| | - Margaret Ruesch
- Analytical Research and Development; Global Biologics; Pfizer Global Research and Development, Pfizer; Chesterfield MO USA
| | - Frank Moffatt
- Protein Analytics Development; Solvias AG; Kaiseraugst Switzerland
| | | | - Brian Nunnally
- Regulatory Affairs; Biogen Idec; Research Triangle Park; NC USA
| |
Collapse
|
49
|
Shi Y, Li Z, Qiao Y, Lin J. Development and validation of a rapid capillary zone electrophoresis method for determining charge variants of mAb. J Chromatogr B Analyt Technol Biomed Life Sci 2012; 906:63-8. [DOI: 10.1016/j.jchromb.2012.08.022] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2011] [Revised: 08/14/2012] [Accepted: 08/16/2012] [Indexed: 10/28/2022]
|
50
|
Anderson CL, Wang Y, Rustandi RR. Applications of imaged capillary isoelectric focussing technique in development of biopharmaceutical glycoprotein-based products. Electrophoresis 2012; 33:1538-44. [DOI: 10.1002/elps.201100611] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
|