1
|
Krebs F, Zagst H, Stein M, Ratih R, Minkner R, Olabi M, Hartung S, Scheller C, Lapizco-Encinas BH, Sänger-van de Griend C, García CD, Wätzig H. Strategies for capillary electrophoresis: Method development and validation for pharmaceutical and biological applications-Updated and completely revised edition. Electrophoresis 2023; 44:1279-1341. [PMID: 37537327 DOI: 10.1002/elps.202300158] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2023] [Accepted: 07/19/2023] [Indexed: 08/05/2023]
Abstract
This review is in support of the development of selective, precise, fast, and validated capillary electrophoresis (CE) methods. It follows up a similar article from 1998, Wätzig H, Degenhardt M, Kunkel A. "Strategies for capillary electrophoresis: method development and validation for pharmaceutical and biological applications," pointing out which fundamentals are still valid and at the same time showing the enormous achievements in the last 25 years. The structures of both reviews are widely similar, in order to facilitate their simultaneous use. Focusing on pharmaceutical and biological applications, the successful use of CE is now demonstrated by more than 600 carefully selected references. Many of those are recent reviews; therefore, a significant overview about the field is provided. There are extra sections about sample pretreatment related to CE and microchip CE, and a completely revised section about method development for protein analytes and biomolecules in general. The general strategies for method development are summed up with regard to selectivity, efficiency, precision, analysis time, limit of detection, sample pretreatment requirements, and validation.
Collapse
Affiliation(s)
- Finja Krebs
- Institute, of Medicinal and Pharmaceutical Chemistry, Technische Universität Braunschweig, Braunschweig, Lower Saxony, Germany
| | - Holger Zagst
- Institute, of Medicinal and Pharmaceutical Chemistry, Technische Universität Braunschweig, Braunschweig, Lower Saxony, Germany
| | - Matthias Stein
- Institute, of Medicinal and Pharmaceutical Chemistry, Technische Universität Braunschweig, Braunschweig, Lower Saxony, Germany
| | - Ratih Ratih
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, University of Surabaya, Surabaya, East Java, Indonesia
| | - Robert Minkner
- Institute, of Medicinal and Pharmaceutical Chemistry, Technische Universität Braunschweig, Braunschweig, Lower Saxony, Germany
| | - Mais Olabi
- Institute, of Medicinal and Pharmaceutical Chemistry, Technische Universität Braunschweig, Braunschweig, Lower Saxony, Germany
| | - Sophie Hartung
- Institute, of Medicinal and Pharmaceutical Chemistry, Technische Universität Braunschweig, Braunschweig, Lower Saxony, Germany
| | - Christin Scheller
- Institute, of Medicinal and Pharmaceutical Chemistry, Technische Universität Braunschweig, Braunschweig, Lower Saxony, Germany
| | - Blanca H Lapizco-Encinas
- Department of Biomedical Engineering, Kate Gleason College of Engineering, Rochester Institute of Technology, Rochester, New York, USA
| | - Cari Sänger-van de Griend
- Kantisto BV, Baarn, The Netherlands
- Department of Medicinal Chemistry, Faculty of Pharmacy, Uppsala Universitet, Uppsala, Sweden
| | - Carlos D García
- Department of Chemistry, Clemson University, Clemson, South Carolina, USA
| | - Hermann Wätzig
- Institute, of Medicinal and Pharmaceutical Chemistry, Technische Universität Braunschweig, Braunschweig, Lower Saxony, Germany
| |
Collapse
|
2
|
Holzner C, Böttinger K, Blöchl C, Huber CG, Dahms SO, Dall E, Brandstetter H. Legumain Functions as a Transient TrkB Sheddase. Int J Mol Sci 2023; 24:ijms24065394. [PMID: 36982466 PMCID: PMC10049731 DOI: 10.3390/ijms24065394] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2023] [Revised: 03/07/2023] [Accepted: 03/09/2023] [Indexed: 03/14/2023] Open
Abstract
While primarily found in endo-lysosomal compartments, the cysteine protease legumain can also translocate to the cell surface if stabilized by the interaction with the RGD-dependent integrin receptor αVβ3. Previously, it has been shown that legumain expression is inversely related to BDNF-TrkB activity. Here we show that legumain can conversely act on TrkB-BDNF by processing the C-terminal linker region of the TrkB ectodomain in vitro. Importantly, when in complex with BDNF, TrkB was not cleaved by legumain. Legumain-processed TrkB was still able to bind BDNF, suggesting a potential scavenger function of soluble TrkB towards BDNF. The work thus presents another mechanistic link explaining the reciprocal TrkB signaling and δ-secretase activity of legumain, with relevance for neurodegeneration.
Collapse
|
3
|
van der Burg D, Wätzig H, Sänger-van de Griend CE. Method development for quantitative monitoring of monoclonal antibodies in upstream cell-culture process samples with limited sample preparation - An evaluation of various capillary coatings. Electrophoresis 2023; 44:96-106. [PMID: 36239141 PMCID: PMC10099398 DOI: 10.1002/elps.202200144] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2022] [Revised: 09/27/2022] [Accepted: 09/29/2022] [Indexed: 11/11/2022]
Abstract
Monoclonal antibodies (mAbs) have become an important class of biopharmaceuticals used for the treatment of various diseases. Their quantification during the manufacturing process is important. In this work, a capillary zone electrophoresis (CZE) method was developed for the monitoring of the mAb concentration during cell-culture processes. CZE method development rules are outlined, particularly discussing various capillary coatings, such as a neutral covalent polyvinyl alcohol coating, a dynamic successive multiple ionic-polymer coating, and dynamic coatings using background electrolyte additives such as triethanolamine (T-EthA) and triethylamine. The dynamic T-EthA coating resulted in most stable electro-osmotic flows and most efficient peak shapes. The method is validated over the range 0.1-10 mg/ml, with a linear range of 0.08-1.3 mg/ml and an extended range of 1-10 mg/ml by diluting samples in the latter concentration range 10-fold in water. The intraday precision and accuracy were 2%-12% and 88%-107%, respectively, and inter-day precision and accuracy were 4%-9% and 93%-104%, respectively. The precision and accuracy of the lowest concentration level (0.08 mg/ml) were slightly worse and still well in scope for monitoring purposes. The presented method proved applicable for analysing in-process cell-culture samples from different cell-culture processes and is possibly well suited as platform method.
Collapse
Affiliation(s)
- Debbie van der Burg
- Kantisto BV, Baarn, The Netherlands.,Department of Chemistry, KTH Royal Institute of Technology, Division of Applied Physical Chemistry, Stockholm, Sweden.,Institute of Medicinal and Pharmaceutical Chemistry, Technische Universität Braunschweig, Braunschweig, Germany
| | - Hermann Wätzig
- Institute of Medicinal and Pharmaceutical Chemistry, Technische Universität Braunschweig, Braunschweig, Germany
| | | |
Collapse
|
4
|
Stutz H. Advances and applications of electromigration methods in the analysis of therapeutic and diagnostic recombinant proteins – A Review. J Pharm Biomed Anal 2022; 222:115089. [DOI: 10.1016/j.jpba.2022.115089] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2022] [Revised: 09/28/2022] [Accepted: 09/29/2022] [Indexed: 11/29/2022]
|
5
|
Šolínová V, Tůma P, Butnariu M, Kašička V, Koval D. Covalent anionic copolymer coatings with tunable electroosmotic flow for optimization of capillary electrophoretic separations. Electrophoresis 2022; 43:1953-1962. [DOI: 10.1002/elps.202200130] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2022] [Revised: 07/28/2022] [Accepted: 08/08/2022] [Indexed: 11/06/2022]
Affiliation(s)
- Veronika Šolínová
- Institute of Organic Chemistry and Biochemistry of the Czech Academy of Sciences Prague 6 Czech Republic
| | - Petr Tůma
- Department of Hygiene, Third Faculty of Medicine Charles University Prague 10 Czech Republic
| | - Maria Butnariu
- Institute of Organic Chemistry and Biochemistry of the Czech Academy of Sciences Prague 6 Czech Republic
- Department of Analytical Chemistry, Faculty of Science Charles University Prague 2 Czech Republic
| | - Václav Kašička
- Institute of Organic Chemistry and Biochemistry of the Czech Academy of Sciences Prague 6 Czech Republic
| | - Dušan Koval
- Institute of Organic Chemistry and Biochemistry of the Czech Academy of Sciences Prague 6 Czech Republic
| |
Collapse
|
6
|
Segl M, Stutz H. Bottom-Up Analysis of Proteins by Peptide Mass Fingerprinting with tCITP-CZE-ESI-TOF MS After Tryptic Digest. Methods Mol Biol 2022; 2531:93-106. [PMID: 35941481 DOI: 10.1007/978-1-0716-2493-7_7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
The identification of proteins in samples of moderate to complex composition is primarily done by bottom-up approaches. Therefore, proteins are enzymatically digested, mostly by trypsin, and the resulting peptides are then separated prior to their transfer to a mass spectrometer. The following protocol portrays a bottom-up method, which was optimized for the application of CZE-ESI-TOF MS. Protein denaturation is achieved by addition of 2,2,2-trifluoroethanol (TFE) and heat treatment. Afterwards, disulfide bonds are reduced with tris-(2-carboxyethyl)phosphine (TCEP) and subsequently alkylated with iodoacetamide (IAA). The tryptic digest is performed in an ammonium bicarbonate buffer at pH 8.0. The digested protein sample is then concentrated in-capillary by transient capillary isotachophoresis (tCITP) with subsequent CZE separation of tryptic peptides in an acidic background electrolyte. Hyphenation to a time-of-flight (TOF) mass spectrometer is carried out by a triple-tube coaxial sheath flow interface, which uses electrospray ionization (ESI). Peptide identification is done by peptide mass fingerprinting (PMF). The protocol is outlined exemplarily for a model protein, i.e., bovine β-lactoglobulin A.
Collapse
Affiliation(s)
- Marius Segl
- Department of Biosciences and Medical Biology, University of Salzburg, Salzburg, Austria
- Christian Doppler Laboratory for Innovative Tools for the Characterization of Biosimilars, University of Salzburg, Salzburg, Austria
| | - Hanno Stutz
- Department of Biosciences and Medical Biology, University of Salzburg, Salzburg, Austria.
- Christian Doppler Laboratory for Innovative Tools for the Characterization of Biosimilars, University of Salzburg, Salzburg, Austria.
| |
Collapse
|
7
|
Hinson CM, Bardo AM, Shannon CE, Rivera S, Swaminathan J, Marcotte EM, Anslyn EV. Studies of Surface Preparation for the Fluorosequencing of Peptides. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2021; 37:14856-14865. [PMID: 34904833 PMCID: PMC8982273 DOI: 10.1021/acs.langmuir.1c02644] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Silica passivating agents have shown great success in minimizing nonspecific protein binding to glass surfaces for imaging and microscopy applications. Amine-derivatized surfaces are commonly used in conjugation with amide coupling agents to immobilize peptides/proteins through C-terminal or side-chain carboxylic acids. In the case of the single-molecule fluorosequencing of peptides, attachment occurs via the C-terminus and nonspecific surface binding has previously been a source of error in peptide identification. Here, we employ fluorosequencing as a high-throughput, single-molecule sensitivity assay to identify and quantify the extent of nonspecific binding of peptides to amine-derivatized surfaces. We show that there is little improvement when using common passivating agents in combination with the surface derivatizing agent 3-aminopropyl-triethoxysilane (APTES) to couple the peptides to the modified surface. Furthermore, many xanthene fluorophores have carboxylic acids in the appended phenyl ring at positions ortho and meta or ortho and para, and the literature shows that conjugation through the ortho position is not favored. Because xanthene-derived fluorophores are commonly used for single-molecule applications, we devised a novel assay to probe the conjugation of peptides via their fluorophores relative to their C-termini on silane-derivatized surfaces. We find significant attachment to the ortho position, which is a warning to those attempting to immobilize fluorophore-labeled peptides to silica surfaces via amide coupling agents. However, eliminating all amines on the surface by switching to 3-azidopropyl-triethoxysilane (AzTES) for coupling via copper-catalyzed azide-alkyne cycloaddition (CuAAC) and omitting additional passivation agents allowed us to achieve a high level of C-terminally bound peptides relative to nonspecifically or ortho-phenyl-bound, fluorophore-labeled peptides. This strategy substantially improves the specificity of peptide immobilization for single-molecule fluorosequencing experiments.
Collapse
|
8
|
Kuzyk VO, Somsen GW, Haselberg R. CE-MS for Proteomics and Intact Protein Analysis. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2021; 1336:51-86. [PMID: 34628627 DOI: 10.1007/978-3-030-77252-9_4] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
Abstract
This chapter aims to explore various parameters involved in achieving high-end capillary electrophoresis hyphenated to mass spectrometry (CE-MS) analysis of proteins, peptides, and their posttranslational modifications. The structure of the topics discussed in this book chapter is conveniently mapped on the scheme of the CE-MS system itself, starting from sample preconcentration and injection techniques and finishing with mass analyzer considerations. After going through the technical considerations, a variety of relevant applications for this analytical approach are presented, including posttranslational modifications analysis, clinical biomarker discovery, and its growing use in the biotechnological industry.
Collapse
Affiliation(s)
- Valeriia O Kuzyk
- Division of Bioanalytical Chemistry, AIMMS: Amsterdam Institute of Molecular and Life Sciences, Vrije Universiteit Amsterdam, Amsterdam, The Netherlands
| | - Govert W Somsen
- Division of Bioanalytical Chemistry, AIMMS: Amsterdam Institute of Molecular and Life Sciences, Vrije Universiteit Amsterdam, Amsterdam, The Netherlands
| | - Rob Haselberg
- Division of Bioanalytical Chemistry, AIMMS: Amsterdam Institute of Molecular and Life Sciences, Vrije Universiteit Amsterdam, Amsterdam, The Netherlands.
| |
Collapse
|
9
|
Hamidli N, Andrasi M, Nagy C, Gaspar A. Analysis of intact proteins with capillary zone electrophoresis coupled to mass spectromery using uncoated and coated capillaries. J Chromatogr A 2021; 1654:462448. [PMID: 34392123 DOI: 10.1016/j.chroma.2021.462448] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2021] [Revised: 07/28/2021] [Accepted: 07/28/2021] [Indexed: 10/20/2022]
Abstract
Although, in general, the application of coated capillaries is recommended for the separation of intact proteins, bare silica capillary is still the most often used capillary due to its simplicity and cheapness. In this work, the performance of bare fused silica capillary for intact protein analysis was compared to that of different (dynamically coated polybrene (PB) and permanently coated linear polyacrylamide (LPA)) coated capillaries using capillary zone electrophoresis - mass spectrometry (CZE-MS). In cases where low pH (pH=1.8) was used in bare silica capillaries, good precision (0.56-0.78 RSD% and 1.7-6.5 RSD% for migration times and peak areas, respectively), minimal adsorption and separation efficiency (N= 27 000/m - 322 000/m) similar to or even better than those obtained with the coated capillaries (created by an intricate multi-step process) was achieved. The PB and the LPA capillaries demonstrated their slightly better resolving power in terms of separating the different forms/variants of the same protein (e.g., hemoglobin subunits). Among the studied capillaries the one with LPA coating showed the most stable separations in the long term (n=25: 0.18-0.49 RSD% and 3.1-4.9 RSD% for migration times and peak areas, respectively). For the separation of a few proteins or even a larger number of proteins in biological samples (e.g., snake venom) the application of the simple and cheap bare fused silica capillary can be considered as an efficient choice.
Collapse
Affiliation(s)
- N Hamidli
- Department of Inorganic and Analytical Chemistry, University of Debrecen, Egyetem ter 1, H-4032, Debrecen, Hungary
| | - M Andrasi
- Department of Inorganic and Analytical Chemistry, University of Debrecen, Egyetem ter 1, H-4032, Debrecen, Hungary
| | - C Nagy
- Department of Inorganic and Analytical Chemistry, University of Debrecen, Egyetem ter 1, H-4032, Debrecen, Hungary
| | - A Gaspar
- Department of Inorganic and Analytical Chemistry, University of Debrecen, Egyetem ter 1, H-4032, Debrecen, Hungary.
| |
Collapse
|
10
|
Li N, Xu Z, Zheng S, Dai H, Wang L, Tian Y, Dong Z, Jiang L. Superamphiphilic TiO 2 Composite Surface for Protein Antifouling. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2021; 33:e2003559. [PMID: 33984172 DOI: 10.1002/adma.202003559] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/25/2020] [Revised: 03/18/2021] [Indexed: 06/12/2023]
Abstract
Unwanted protein adsorption deteriorates fouling processes and reduces analytical device performance. Wettability plays an important role in protein adsorption by affecting interactions between proteins and surfaces. However, the principles of protein adsorption are not completely understood, and surface coatings that exhibit resistance to protein adsorption and long-term stability still need to be developed. Here, a nanostructured superamphiphilic TiO2 composite (TiO2 /SiO2 ) coating that can effectively prevent nonspecific protein adsorption on water/solid interfaces is reported. The confined water on the superamphiphilic surface enables a low adhesion force and the formation of an energy barrier that plays a key role in preventing protein adsorption. This adaptive design protects the capillary wall from fouling in a harsh environment during the bioanalysis of capillary electrophoresis and is further extended to applications in multifunctional microfluidics for liquid transportation. This facile approach is not only perfectly applied in channels with complicated configurations but may also offer significant insights into the design of advanced superwetting materials to control biomolecule adhesion in biomedical devices, microfluidics, and biological assays.
Collapse
Affiliation(s)
- Ning Li
- CAS Key Laboratory of Bio-Inspired Materials and Interface Sciences, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing, 100190, P. R. China
- Key Laboratory of Bio-Inspired Smart Interfacial Science and Technology of Ministry of Education, Beijing Advanced Innovation Center for Biomedical Engineering, School of Chemistry, Beihang University, Beijing, 100191, P. R. China
| | - Zhe Xu
- Key Laboratory of Bio-Inspired Smart Interfacial Science and Technology of Ministry of Education, Beijing Advanced Innovation Center for Biomedical Engineering, School of Chemistry, Beihang University, Beijing, 100191, P. R. China
| | - Shuang Zheng
- CAS Key Laboratory of Bio-Inspired Materials and Interface Sciences, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing, 100190, P. R. China
| | - Haoyu Dai
- CAS Key Laboratory of Bio-Inspired Materials and Interface Sciences, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing, 100190, P. R. China
| | - Li Wang
- Key Laboratory of Bio-Inspired Smart Interfacial Science and Technology of Ministry of Education, Beijing Advanced Innovation Center for Biomedical Engineering, School of Chemistry, Beihang University, Beijing, 100191, P. R. China
| | - Ye Tian
- CAS Key Laboratory of Bio-Inspired Materials and Interface Sciences, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing, 100190, P. R. China
| | - Zhichao Dong
- CAS Key Laboratory of Bio-Inspired Materials and Interface Sciences, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing, 100190, P. R. China
| | - Lei Jiang
- CAS Key Laboratory of Bio-Inspired Materials and Interface Sciences, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing, 100190, P. R. China
- Key Laboratory of Bio-Inspired Smart Interfacial Science and Technology of Ministry of Education, Beijing Advanced Innovation Center for Biomedical Engineering, School of Chemistry, Beihang University, Beijing, 100191, P. R. China
| |
Collapse
|
11
|
Davoine C, Fillet M, Pochet L. Capillary electrophoresis as a fragment screening tool to cross-validate hits from chromogenic assay: Application to FXIIa. Talanta 2021; 226:122163. [PMID: 33676706 DOI: 10.1016/j.talanta.2021.122163] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2020] [Revised: 12/20/2020] [Accepted: 01/25/2021] [Indexed: 10/22/2022]
Abstract
In this study, a partial-filling affinity capillary electrophoresis (pf-ACE) method was developed for the cross-validation of fragment hits revealed by chromogenic factor XIIa (FXIIa) assay. Chromogenic assay produces false positives, mainly due to spectrophotometric interferences and sample purity issues. pf-ACE was selected as counter-screening technology because of its separative character and the fact that the target does not have to be attached or tagged. The effects of protein plug length, applied voltage and composition of the running buffer were examined and optimized. Detection limit in terms of dissociation constant was estimated at 400 μM. The affinity evaluation was performed close to physiological conditions (pH 7.4, ionic strength 0.13 mol L-1) in a poly (ethylene oxide)-coated capillary of 75 μm internal diameter x 33 cm length with an applied voltage of 3 kV. This method uncovered chromogenic assay's false positives due to zinc contamination. Moreover, pf-ACE supported the evaluation of compounds absorbing at 405 nm.
Collapse
Affiliation(s)
- C Davoine
- Namur Medicine & Drug Innovation Center (NAMEDIC - NARILIS), University of Namur, Rue de Bruxelles 61, 5000, Namur, Belgium; Laboratory for the Analysis of Medicines (LAM), Department of Pharmacy, CIRM, University of Liege, Place du 20 Août 7, 4000, Liège, Belgium
| | - M Fillet
- Laboratory for the Analysis of Medicines (LAM), Department of Pharmacy, CIRM, University of Liege, Place du 20 Août 7, 4000, Liège, Belgium
| | - L Pochet
- Namur Medicine & Drug Innovation Center (NAMEDIC - NARILIS), University of Namur, Rue de Bruxelles 61, 5000, Namur, Belgium.
| |
Collapse
|
12
|
Jaccoulet E, Daniel T, Dammak D, Prognon P, Caudron E. Interest of flow injection spectrophotometry as an orthogonal method for analyzing biomolecule aggregates: Application to stressed monoclonal antibody study. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2021; 251:119436. [PMID: 33461132 DOI: 10.1016/j.saa.2021.119436] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/04/2020] [Revised: 12/31/2020] [Accepted: 01/03/2021] [Indexed: 06/12/2023]
Abstract
This study aimed to explore the suitability of flow injection spectrophotometry (FIS) to analyze three degraded therapeutic monoclonal antibodies (bevacizumab, nivolumab, and rituximab). For this purpose, aggregates were generated with stirring, freeze-thaw, and heat stresses. The intact and stressed mab samples were filtered with 0.22 µm hydrophilic filters and analyzed by size exclusion chromatography (SEC), cation-exchange chromatography (CEX), and FIS. In terms of quantitative and qualitative analysis, protein loss and structural changes were assessed. Various aggregates profiles were obtained according to the mabs and the stresses. FIS allowed performing very satisfactory quantifications for each mab with intermediate precision RSD < 3.0 % and recovery between 97.9 and 102.0 %. From the protein loss measurements, it appears that SEC underestimates the mab aggregate proportions up to two times less as compared with FIS since the latter avoids any non-specific interactions (electrostatic or hydrophobic interactions). Using second derivative spectroscopy and multivariate data analysis, we noticed apparent structural differences, located in the regions 245-265 nm for rituximab and nivolumab and 280-300 nm for bevacizumab, depending on the stress. The FIS complementarity with the other techniques used in this study allowed us to demonstrate that the three mabs behave differently for a given stress condition. While extreme mechanical stress formed large aggregates irrespective of the mabs, rituximab showed to be less stable and more sensitive than the two other mabs under freeze-thaw and heat stresses, generating large aggregates (>200 nm) and partial unfolding. Nivolumab tends to form small aggregates less than 50 nm when heated and freeze-thawed. Moreover, freeze-thaw seems to generate native IgG-1 aggregates with rituximab. Similarly, bevacizumab showed to form these IgG-1 aggregates and was resistant to freeze-thaw, likely thanks to trehalose cryoprotectant from its formulation. Finally, FIS associated with multivariate analysis can provide rich information in one single run and appears to be a fast, simple, and reliable method to set complementary and orthogonal approaches for protein aggregates monitoring.
Collapse
Affiliation(s)
- E Jaccoulet
- Service de Pharmacie, Hôpital Européen Georges Pompidou, Assistance Publique-Hôpitaux de Paris, Paris, France.
| | - T Daniel
- Service de Pharmacie, Hôpital Européen Georges Pompidou, Assistance Publique-Hôpitaux de Paris, Paris, France
| | - D Dammak
- Service de Pharmacie, Hôpital Européen Georges Pompidou, Assistance Publique-Hôpitaux de Paris, Paris, France
| | - P Prognon
- Service de Pharmacie, Hôpital Européen Georges Pompidou, Assistance Publique-Hôpitaux de Paris, Paris, France; Lip(Sys)(2) Chimie Analytique Pharmaceutique, Univ. Paris-Sud, Université Paris-Saclay (EA4041 Groupe de Chimie Analytique de Paris-Sud), F-92290 Châtenay-Malabry, France
| | - E Caudron
- Service de Pharmacie, Hôpital Européen Georges Pompidou, Assistance Publique-Hôpitaux de Paris, Paris, France; Lip(Sys)(2) Chimie Analytique Pharmaceutique, Univ. Paris-Sud, Université Paris-Saclay (EA4041 Groupe de Chimie Analytique de Paris-Sud), F-92290 Châtenay-Malabry, France
| |
Collapse
|
13
|
Canpolat C, Tatlisoz MM. Controlled protein adsorption on a silica microparticle. Electrophoresis 2021; 42:1021-1031. [PMID: 33660874 DOI: 10.1002/elps.202000310] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2020] [Revised: 02/22/2021] [Accepted: 02/27/2021] [Indexed: 12/21/2022]
Abstract
In the present study, controlled protein adsorption on a rigid silica microparticle is investigated numerically using classical Langmuir and two-state models under electrokinetic flow conditions. The instantaneous particle locations are simulated along a straight microchannel using an arbitrary Lagrangian-Eulerian framework in the finite element method for the electrophoretic motion of the charged particle. Within the scope of the parametric study, the strength of the external electric field (E), particle diameter (Dp ), the zeta potential of the particle (ζp ), and the location of the microparticle away from the channel wall (H) are systematically varied. The results are also compared to the data of pressure-driven flow having a parabolic flow profile at the inlet whose maximum magnitude is set to the particle's electrophoretic velocity magnitude. The validation studies reveal that the code developed for the particle motion in the present simulations agrees well with the experimental results. It is observed that protein adsorption can be controlled using electrokinetic phenomena. The plug-like flow profile in electrokinetics is beneficial for a microparticle at every spatial location in the microchannel, whereas it is not valid for the pressure-driven flow. The electric field strength and the zeta potential of the particle accelerate the protein adsorption. The wall shear stress and shear rate are good indicators to predict the adsorption process for electrokinetic flow.
Collapse
Affiliation(s)
- Cetin Canpolat
- Biomedical Engineering Department, Faculty of Engineering, Cukurova University, Adana, Turkey
| | - Mehmet Melih Tatlisoz
- Biomedical Engineering Department, Faculty of Engineering, Cukurova University, Adana, Turkey
| |
Collapse
|
14
|
Tan JYB, Yoon BK, Ma GJ, Sut TN, Cho NJ, Jackman JA. Unraveling How Ethanol-Induced Conformational Changes Affect BSA Protein Adsorption onto Silica Surfaces. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2020; 36:9215-9224. [PMID: 32654494 DOI: 10.1021/acs.langmuir.0c01478] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Protein adsorption at solid-liquid interfaces is highly relevant to a wide range of applications such as biosensors, drug delivery, and pharmaceuticals. Understanding how protein conformation in bulk solution impacts adsorption behavior is fundamentally important and could also lead to the development of improved protein-based coatings. To date, relevant studies have been conducted in aqueous solutions, while it remains largely unknown how organic solvents and more specifically solvent-induced conformational changes might influence protein adsorption. Herein, using the quartz crystal microbalance-dissipation (QCM-D) and localized surface plasmon resonance (LSPR) techniques, we systematically investigated the real-time adsorption behavior of bovine serum albumin (BSA) protein onto silica surfaces in different water-ethanol mixtures ranging from 0 to 60% (v/v) ethanol. The results showed that there was greater protein adsorption at higher ethanol fractions in the 10-30% range, while more complex adsorption profiles were observed in the 40-60% range. The combination of QCM-D and LSPR measurements led us to further identify specific cases in water-ethanol mixtures where washing steps caused densification of the adsorbed protein layer as opposed to typical desorption of weakly adsorbed molecules in aqueous conditions. We discuss mechanistic factors that drive these overall adsorption trends by taking into account how ethanol fraction affects BSA conformation in bulk solution. Together, our findings demonstrate that BSA proteins can adsorb onto silica surfaces across a wide range of water-ethanol mixture conditions, while specific adsorption profiles depended on the ethanol fraction in a manner closely linked to solution-phase conformational properties.
Collapse
Affiliation(s)
- Jia Ying Brenda Tan
- School of Chemical Engineering, Sungkyunkwan University, Suwon 16419, Republic of Korea
- School of Materials Science and Engineering, Nanyang Technological University, 50 Nanyang Avenue, 639798 Singapore
| | - Bo Kyeong Yoon
- School of Chemical Engineering, Sungkyunkwan University, Suwon 16419, Republic of Korea
| | - Gamaliel Junren Ma
- School of Materials Science and Engineering, Nanyang Technological University, 50 Nanyang Avenue, 639798 Singapore
| | - Tun Naw Sut
- School of Chemical Engineering, Sungkyunkwan University, Suwon 16419, Republic of Korea
- School of Materials Science and Engineering, Nanyang Technological University, 50 Nanyang Avenue, 639798 Singapore
| | - Nam-Joon Cho
- School of Materials Science and Engineering, Nanyang Technological University, 50 Nanyang Avenue, 639798 Singapore
| | - Joshua A Jackman
- School of Chemical Engineering, Sungkyunkwan University, Suwon 16419, Republic of Korea
| |
Collapse
|
15
|
Zhao L, Luo F, Wang A, Zhang J, Wang Y, Zhao L, Wang Z, Pu Q. Quick stabilization of capillary for rapid determination of potassium ions in the blood of epilepsy patients by capillary electrophoresis without sample pretreatment. Electrophoresis 2020; 41:1273-1279. [PMID: 32358896 DOI: 10.1002/elps.202000022] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2020] [Revised: 04/21/2020] [Accepted: 04/23/2020] [Indexed: 11/07/2022]
Abstract
Mutations in the potassium channel genes may be linked to the development of epilepsy and affect the blood potassium levels. Therefore, accurate determination of potassium in the blood will be critical to diagnose the cause of epilepsy. CE is a competent technique for the fast detection of multiple ions, but complicated matrices of a blood sample may cause significant variation of migration times and the peak shape. In this work, a procedure for rapid stabilization of the capillary inner surface through preflushing of a blood sample was employed. The process takes only 40 min for a capillary and then it can be used for more than 2 weeks. No pretreatment of the blood sample or other surface modification of the capillary is needed for the analysis. The RSDs of the migration time and peak area were reduced to 1.5 and 5.1% from 12.6 and 14.5%, respectively. The proposed method has been successfully applied to the determination of the potassium contents in the blood sample of patients with epilepsy at different stages. The recoveries of potassium ions in these blood samples are in a range from 86.5 to 104.5%.
Collapse
Affiliation(s)
- Litao Zhao
- School of Pharmacy, Lanzhou University, Lanzhou, P. R. China
| | - Fanghong Luo
- School of Pharmacy, Lanzhou University, Lanzhou, P. R. China
| | - Anting Wang
- School of Pharmacy, Lanzhou University, Lanzhou, P. R. China
| | - Jing Zhang
- School of Pharmacy, Lanzhou University, Lanzhou, P. R. China
| | - Yuanhang Wang
- College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou, P. R. China
| | - Liangtao Zhao
- TSing Biomedical Research Center, The Second Hospital of Lanzhou University, Lanzhou, P. R. China
| | - Zhaoyan Wang
- School of Pharmacy, Lanzhou University, Lanzhou, P. R. China
| | - Qiaosheng Pu
- College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou, P. R. China
| |
Collapse
|
16
|
Schmailzl J, Vorage MW, Stutz H. Intact and middle-down CIEF of commercial therapeutic monoclonal antibody products under non-denaturing conditions. Electrophoresis 2020; 41:1109-1117. [PMID: 32250465 PMCID: PMC7317833 DOI: 10.1002/elps.202000013] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2020] [Revised: 03/04/2020] [Accepted: 03/19/2020] [Indexed: 11/06/2022]
Abstract
A two‐step CIEF with chemical mobilization was developed for charge profiling of the therapeutic mAb rituximab under non‐denaturing separation conditions. CIEF of the intact mAb was combined with a middle‐down approach analyzing Fc/2 and F(ab´)2 fragments after digest with a commercial cysteine protease (IdeS). CIEF methods were optimized separately for the intact mAb and its fragments due to their divergent pIs. Best resolution was achieved by combining Pharmalyte (PL) 8–10.5 with PL 3–10 for variants of intact rituximab and of F(ab´)2 fragments, respectively, whereas PL 6.7–7.7 in combination with PL 3–10 was used for Fc/2 variants. Charge heterogeneity in Fc/2 dominates over F(ab´)2. In addition, a copy product of rituximab, and adalimumab were analyzed. Both mAbs contain additional alkaline C‐terminal lysine variants as confirmed by digest with carboxypeptidase B. The optimized CIEF methods for intact mAb and Fc/2 were tested for their potential as platform approaches for these mAbs. The CIEF method for Fc/2 was slightly adapted in this process. The pI values for major intact mAb variants were determined by adjacent pI markers resulting in 9.29 (rituximab) and 8.42 (adalimumab). In total, seven to eight charge variants could be distinguished for intact adalimumab and rituximab, respectively.
Collapse
Affiliation(s)
| | - Marcel W Vorage
- Department of Biosciences, University of Salzburg, Salzburg, Austria
| | - Hanno Stutz
- Department of Biosciences, University of Salzburg, Salzburg, Austria.,Christian Doppler Laboratory for Innovative Tools in the Characterization of Biosimilars, Salzburg, Austria
| |
Collapse
|
17
|
Ventouri IK, Malheiro DBA, Voeten RLC, Kok S, Honing M, Somsen GW, Haselberg R. Probing Protein Denaturation during Size-Exclusion Chromatography Using Native Mass Spectrometry. Anal Chem 2020; 92:4292-4300. [PMID: 32107919 PMCID: PMC7081181 DOI: 10.1021/acs.analchem.9b04961] [Citation(s) in RCA: 31] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
![]()
Size-exclusion chromatography
employing aqueous mobile phases with
volatile salts at neutral pH combined with electrospray-ionization
mass spectrometry (SEC-ESI-MS) is a useful tool to study proteins
in their native state. However, whether the applied eluent conditions
actually prevent protein–stationary phase interactions, and/or
protein denaturation, often is not assessed. In this study, the effects
of volatile mobile phase additives on SEC retention and ESI of proteins
were thoroughly investigated. Myoglobin was used as the main model
protein, and eluents of varying ionic strength and pH were applied.
The degree of interaction between protein and stationary phase was
evaluated by calculating the SEC distribution coefficient. Protein-ion
charge state distributions obtained during offline and online native
ESI-MS were used to monitor alterations in protein structure. Interestingly,
most of the supposedly mild eluent compositions induced nonideal SEC
behavior and/or protein unfolding. SEC experiments revealed that the
nature, ionic strength, and pH of the eluent affected protein retention.
Protein–stationary phase interactions were effectively avoided
using ammonium acetate at ionic strengths above 0.1 M. Direct-infusion
ESI-MS showed that the tested volatile eluent salts seem to follow
the Hofmeister series: no denaturation was induced using ammonium
acetate (kosmotropic), whereas ammonium formate and bicarbonate (both
chaotropic) caused structural changes. Using a mobile phase of 0.2
M ammonium acetate (pH 6.9), several proteins (i.e., myoglobin, carbonic
anhydrase, and cytochrome c) could be analyzed by SEC-ESI-MS using
different column chemistries without compromising their native state.
Overall, with SEC-ESI-MS, the effect of nonspecific interactions between
protein and stationary phase on the protein structure can be studied,
even revealing gradual structural differences along a peak.
Collapse
Affiliation(s)
- Iro K Ventouri
- Division of Bioanalytical Chemistry, AIMMS Amsterdam Institute of Molecular and Life Sciences, Vrije Universiteit Amsterdam, 1081 HV Amsterdam, The Netherlands.,Centre for Analytical Sciences Amsterdam, 1098XH Amsterdam, The Netherlands.,TI-COAST, 1098 XH Amsterdam, The Netherlands.,Analytical Chemistry Group, van't Hoff Institute for Molecular Sciences, University of Amsterdam, PO Box 94720, 1090 GE Amsterdam, The Netherlands
| | - Daniel B A Malheiro
- Division of Bioanalytical Chemistry, AIMMS Amsterdam Institute of Molecular and Life Sciences, Vrije Universiteit Amsterdam, 1081 HV Amsterdam, The Netherlands.,TI-COAST, 1098 XH Amsterdam, The Netherlands
| | - Robert L C Voeten
- Division of Bioanalytical Chemistry, AIMMS Amsterdam Institute of Molecular and Life Sciences, Vrije Universiteit Amsterdam, 1081 HV Amsterdam, The Netherlands.,Centre for Analytical Sciences Amsterdam, 1098XH Amsterdam, The Netherlands.,TI-COAST, 1098 XH Amsterdam, The Netherlands
| | - Sander Kok
- DSM Materials Science Center, 6167 RD Geleen, The Netherlands
| | - Maarten Honing
- Division of Bioanalytical Chemistry, AIMMS Amsterdam Institute of Molecular and Life Sciences, Vrije Universiteit Amsterdam, 1081 HV Amsterdam, The Netherlands.,DSM Materials Science Center, 6167 RD Geleen, The Netherlands
| | - Govert W Somsen
- Division of Bioanalytical Chemistry, AIMMS Amsterdam Institute of Molecular and Life Sciences, Vrije Universiteit Amsterdam, 1081 HV Amsterdam, The Netherlands.,Centre for Analytical Sciences Amsterdam, 1098XH Amsterdam, The Netherlands
| | - Rob Haselberg
- Division of Bioanalytical Chemistry, AIMMS Amsterdam Institute of Molecular and Life Sciences, Vrije Universiteit Amsterdam, 1081 HV Amsterdam, The Netherlands.,Centre for Analytical Sciences Amsterdam, 1098XH Amsterdam, The Netherlands
| |
Collapse
|
18
|
Jia Y, Cao J, Zhou J, Zhou P. Methyl chitosan coating for glycoform analysis of glycoproteins by capillary electrophoresis. Electrophoresis 2020; 41:729-734. [DOI: 10.1002/elps.201900333] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2019] [Revised: 01/09/2020] [Accepted: 01/15/2020] [Indexed: 02/06/2023]
Affiliation(s)
- Yaru Jia
- Key Laboratory of Analytical Chemistry for Biology and Medicine (Ministry of Education)College of Chemistry and Molecular SciencesWuhan University Wuhan P. R. China
| | - Jinfeng Cao
- Key Laboratory of Analytical Chemistry for Biology and Medicine (Ministry of Education)College of Chemistry and Molecular SciencesWuhan University Wuhan P. R. China
| | - Jinping Zhou
- Key Laboratory of Analytical Chemistry for Biology and Medicine (Ministry of Education)College of Chemistry and Molecular SciencesWuhan University Wuhan P. R. China
| | - Ping Zhou
- Key Laboratory of Analytical Chemistry for Biology and Medicine (Ministry of Education)College of Chemistry and Molecular SciencesWuhan University Wuhan P. R. China
| |
Collapse
|
19
|
Crihfield C, Kristoff C, Veltri L, Penny W, Holland L. Semi-permanent cationic coating for protein separations. J Chromatogr A 2019; 1607:460397. [DOI: 10.1016/j.chroma.2019.460397] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2019] [Revised: 06/17/2019] [Accepted: 07/22/2019] [Indexed: 12/16/2022]
|
20
|
Kim JK, Abdelhamid MA, Pack SP. Direct immobilization and recovery of recombinant proteins from cell lysates by using EctP1-peptide as a short fusion tag for silica and titania supports. Int J Biol Macromol 2019; 135:969-977. [DOI: 10.1016/j.ijbiomac.2019.05.105] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2019] [Revised: 05/16/2019] [Accepted: 05/18/2019] [Indexed: 10/26/2022]
|
21
|
Leclercq L, Morvan M, Koch J, Neusüß C, Cottet H. Modulation of the electroosmotic mobility using polyelectrolyte multilayer coatings for protein analysis by capillary electrophoresis. Anal Chim Acta 2019; 1057:152-161. [DOI: 10.1016/j.aca.2019.01.008] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2018] [Revised: 11/17/2018] [Accepted: 01/04/2019] [Indexed: 12/26/2022]
|
22
|
Yang X, Bartlett MG. Glycan analysis for protein therapeutics. J Chromatogr B Analyt Technol Biomed Life Sci 2019; 1120:29-40. [PMID: 31063953 DOI: 10.1016/j.jchromb.2019.04.031] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2018] [Revised: 04/10/2019] [Accepted: 04/15/2019] [Indexed: 01/07/2023]
Abstract
Glycosylation can be a critical quality attribute for protein therapeutics due to its extensive impact on product safety and efficacy. Glycan characterization is important in the process of protein drug development, from early stage candidate selection to late stage regulatory submission. It is also an indispensable part in the evaluation of biosimilarity. This review discusses the effects of glycosylation on the stability and activity of protein therapeutics, regulatory considerations corresponding to manufacturing and structural characterization of glycosylated protein therapeutics, and focuses on mass spectrometry compatible separation methods for glycan characterization of protein therapeutics. These approaches include hydrophilic interaction liquid chromatography, reversed-phase liquid chromatography, capillary electrophoresis, porous graphitic carbon liquid chromatography and two-dimensional liquid chromatography. Advances and novelties in each separation method, as well as associated challenges and limitations, are discussed at the released glycan, glycopeptide, glycoprotein subunit and intact glycoprotein levels.
Collapse
Affiliation(s)
- Xiangkun Yang
- Department of Pharmaceutical and Biomedical Sciences, College of Pharmacy, University of Georgia, Athens, GA 30602-2352, United States of America
| | - Michael G Bartlett
- Department of Pharmaceutical and Biomedical Sciences, College of Pharmacy, University of Georgia, Athens, GA 30602-2352, United States of America.
| |
Collapse
|
23
|
Romson J, Jacksén J, Emmer Å. An automated system for CE-MALDI and on-target digestion under a fluorocarbon lid applied on spermatophore proteins from Pieris napi. J Chromatogr B Analyt Technol Biomed Life Sci 2019; 1104:228-233. [DOI: 10.1016/j.jchromb.2018.11.021] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2018] [Revised: 10/18/2018] [Accepted: 11/15/2018] [Indexed: 01/27/2023]
|
24
|
Profiling of nanoparticle–protein interactions by electrophoresis techniques. Anal Bioanal Chem 2018; 411:79-96. [DOI: 10.1007/s00216-018-1401-3] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2018] [Revised: 09/18/2018] [Accepted: 09/24/2018] [Indexed: 01/02/2023]
|
25
|
Shulman L, Pei L, Bahnasy MF, Lucy CA. High pH instability of quaternary ammonium surfactant coatings in capillary electrophoresis. Analyst 2018; 142:2145-2151. [PMID: 28524193 DOI: 10.1039/c7an00330g] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The two-tailed cationic surfactant dioctadecyldimethyl ammonium bromide (DODAB) produces semi-permanent coatings that yield strongly reversed electroosmotic flow (EOF), for example -0.31 ± 0.01 cm2 kV-1 s-1 at pH 3.5. Moreover, these coatings are easy to prepare, regenerable, cost effective, and yield high efficiency (520 000-900 000 plates per m) separations of cationic proteins over many runs under acidic (pH 3.5) conditions. Given the quaternary amine functionality of DODAB, we were surprised to observe that DODAB coatings become unstable at pH > 7. At pH 7.2, the EOF of a DODAB coated capillary drifted from reversed to cathodic over only 5 runs, and protein separations became severely compromised. By pH 12, no EOF reversal was observed. Electrophoretic and mass spectrometric studies demonstrate that the coating decomposition involves a surface conversion of the quaternary amine in DODAB to a variety of products, although the exact mechanism remains elusive. Regardless, the results herein demonstrate that semi-permanent coatings based on cationic two-tailed surfactants such as DODAB are limited to separations using acidic buffers.
Collapse
Affiliation(s)
- Lisa Shulman
- Department of Chemistry, Gunning/Lemieux Chemistry Centre, University of Alberta, Edmonton, AB, Canada T6G 2G2.
| | | | | | | |
Collapse
|
26
|
Duša F, Chen W, Witos J, Wiedmer SK. Nanoplasmonic Sensing and Capillary Electrophoresis for Fast Screening of Interactions between Phosphatidylcholine Biomembranes and Surfactants. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2018; 34:5889-5900. [PMID: 29715032 PMCID: PMC6150717 DOI: 10.1021/acs.langmuir.8b01074] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 04/03/2018] [Revised: 04/30/2018] [Indexed: 06/08/2023]
Abstract
Nanoplasmonic sensing (NPS), based on localized surface plasmon resonance, with sensors composed of glass covered with golden nanodisks and overlaid with a SiO2 coating was applied in this study. Egg phosphatidylcholine (eggPC), being an easily accessible membrane-forming lipid, was used for preparation of biomimicking membranes. Small unilamellar vesicles with an approximate hydrodynamic diameter of 30 nm, formed by sonication in 4-(2-hydroxyethyl)piperazine-1-ethanesulfonic acid buffer, were adsorbed within 10 min on the sensor surface either as intact vesicles or as a planar bilayer. The adsorbed biomembrane systems were further utilized for interaction studies with four different well-known surfactants (negatively and positively charged, zwitterionic, and nonionic) and each surfactant was tested at concentrations below and above the critical micelle concentration (CMC). Our results allowed the evaluation of different NPS patterns for every particular supported membrane system, surfactant, and its concentration. The most significant effect on the membrane was achieved upon the introduction of zwitterionic surfactant micelles, which in fact completely solubilized and removed the lipid membranes from the sensor surface. Other surfactant micelles interacted with the membranes and formed mixed structures remaining on the sensor surface. The studies performed at the concentrations below the CMCs of the surfactants showed that different mixed systems were formed. Depending on the supported membrane system and the type of surfactant, the mixed systems indicated different formation kinetics. Additionally, the final water rinse revealed the stability of the formed systems. To investigate the effect of the studied surfactants on the overall surface charge of the biomembrane, capillary electrophoresis (CE) experiments were carried out in parallel with the NPS analysis. The electroosmotic flow mobility of an eggPC-coated fused silica capillary was used to measure the total surface charge of the biomembrane after its treatment with the surfactants. Our results indicated in general good correlation between CE and NPS data. However, some discrepancies were seen while applying either zwitterionic or positively charged surfactants. This confirmed that CE analysis was able to provide additional data about the investigated systems. Taken together, the combination of NPS and CE proved to be an efficient way to describe the nature of interactions between biomimicking membranes and amphiphilic molecules.
Collapse
Affiliation(s)
- Filip Duša
- Institute
of Analytical Chemistry of the Czech Academy of Sciences, Veveří 97, 602 00 Brno, Czech
Republic
| | - Wen Chen
- Department
of Chemistry, University of Helsinki, P.O. Box 55, FIN-00014 University of Helsinki, Helsinki, Finland
| | - Joanna Witos
- Department
of Bioproducts and Biosystems, Aalto University, P.O. Box 16300, FIN-00076 Espoo, Finland
| | - Susanne K. Wiedmer
- Department
of Chemistry, University of Helsinki, P.O. Box 55, FIN-00014 University of Helsinki, Helsinki, Finland
| |
Collapse
|
27
|
Mathematical modeling approaches to describe the dynamics of protein adsorption at solid interfaces. Colloids Surf B Biointerfaces 2018; 162:370-379. [DOI: 10.1016/j.colsurfb.2017.12.006] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2017] [Revised: 11/21/2017] [Accepted: 12/06/2017] [Indexed: 11/22/2022]
|
28
|
Holtkamp HU, Movassaghi S, Morrow SJ, Kubanik M, Hartinger CG. Metallomic study on the metabolism of RAPTA-C and cisplatin in cell culture medium and its impact on cell accumulation. Metallomics 2018; 10:455-462. [DOI: 10.1039/c8mt00024g] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The different extracellular speciation of cisplatin and the organoruthenium developmental anticancer agent RAPTA-C impacts the accumulation in cancer cells.
Collapse
Affiliation(s)
- Hannah U. Holtkamp
- School of Chemical Sciences
- University of Auckland
- Auckland 1142
- New Zealand
| | - Sanam Movassaghi
- School of Chemical Sciences
- University of Auckland
- Auckland 1142
- New Zealand
| | - Stuart J. Morrow
- School of Chemical Sciences
- University of Auckland
- Auckland 1142
- New Zealand
| | - Mario Kubanik
- School of Chemical Sciences
- University of Auckland
- Auckland 1142
- New Zealand
| | | |
Collapse
|
29
|
McGettrick JR, Palmer CP. Evaluation of poly([2‐(acryloyloxy)ethyl]trimethylammonium chloride) cationic polymer capillary coating for capillary electrophoresis and electrokinetic chromatography separations. J Sep Sci 2017; 40:4060-4066. [DOI: 10.1002/jssc.201700461] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2017] [Revised: 07/28/2017] [Accepted: 07/29/2017] [Indexed: 11/06/2022]
Affiliation(s)
- Julie R. McGettrick
- Department of Chemistry and Biochemistry University of Montana Missoula MT USA
| | | |
Collapse
|
30
|
Shi B, Shin YK, Hassanali AA, Singer SJ. Biomolecules at the amorphous silica/water interface: Binding and fluorescence anisotropy of peptides. Colloids Surf B Biointerfaces 2017; 157:83-92. [DOI: 10.1016/j.colsurfb.2017.05.048] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2017] [Revised: 05/15/2017] [Accepted: 05/17/2017] [Indexed: 01/19/2023]
|
31
|
Affinity purification of Car9-tagged proteins on silica matrices: Optimization of a rapid and inexpensive protein purification technology. Protein Expr Purif 2017; 135:70-77. [DOI: 10.1016/j.pep.2017.05.003] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2017] [Revised: 05/11/2017] [Accepted: 05/11/2017] [Indexed: 11/21/2022]
|
32
|
Hajba L, Guttman A. Recent advances in column coatings for capillary electrophoresis of proteins. Trends Analyt Chem 2017. [DOI: 10.1016/j.trac.2017.02.013] [Citation(s) in RCA: 57] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
|
33
|
Stock LG, Leitner M, Traxler L, Bonazza K, Leclercq L, Cottet H, Friedbacher G, Ebner A, Stutz H. Advanced portrayal of SMIL coating by allying CZE performance with in-capillary topographic and charge-related surface characterization. Anal Chim Acta 2017; 951:1-15. [DOI: 10.1016/j.aca.2016.10.030] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2016] [Accepted: 10/22/2016] [Indexed: 10/20/2022]
|
34
|
Poulsen NN, Østergaard J, Petersen NJ, Daasbjerg K, Iruthayaraj J, Dedinaite A, Makuska R, Jensen H. Automated coating procedures to produce poly(ethylene glycol) brushes in fused-silica capillaries. J Sep Sci 2016; 40:779-788. [DOI: 10.1002/jssc.201600878] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2016] [Revised: 11/05/2016] [Accepted: 11/09/2016] [Indexed: 11/08/2022]
Affiliation(s)
| | - Jesper Østergaard
- Department of Pharmacy; University of Copenhagen; Copenhagen Denmark
| | | | - Kim Daasbjerg
- Department of Chemistry; Aarhus University; Aarhus Denmark
- Interdisciplinary Nanoscience Center (iNANO); Aarhus University; Aarhus Denmark
- Carbon Dioxide Activation Center; Aarhus University; Aarhus Denmark
| | - Joseph Iruthayaraj
- Interdisciplinary Nanoscience Center (iNANO); Aarhus University; Aarhus Denmark
- Biological and Chemical Engineering Division; Aarhus University; Aarhus N Denmark
| | - Andra Dedinaite
- Department of Chemistry; Surface and Corrosion Science; School of Chemical Sciences and Engineering; KTH Royal Institute of Technology; Stockholm Sweden
| | - Ricardas Makuska
- Department of Polymer Chemistry; Vilnius University; Vilnius Lithuania
| | - Henrik Jensen
- Department of Pharmacy; University of Copenhagen; Copenhagen Denmark
| |
Collapse
|
35
|
Cruz-Teran CA, Carlin KB, Efimenko K, Genzer J, Rao BM. Targeted Mutagenesis and Combinatorial Library Screening Enables Control of Protein Orientation on Surfaces and Increased Activity of Adsorbed Proteins. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2016; 32:8660-8667. [PMID: 27490089 DOI: 10.1021/acs.langmuir.6b01446] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/06/2023]
Abstract
While nonspecific adsorption is widely used for immobilizing proteins on solid surfaces, the random nature of protein adsorption may reduce the activity of immobilized proteins due to occlusion of the active site. We hypothesized that the orientation a protein assumes on a given surface can be controlled by systematically introducing mutations into a region distant from its active site, thereby retaining activity of the immobilized protein. To test this hypothesis, we generated a combinatorial protein library by randomizing six targeted residues in a binding protein derived from highly stable, nonimmunoglobulin Sso7d scaffold; mutations were targeted in a region that is distant from the binding site. This library was screened to isolate binders that retain binding to its cognate target (chicken immunoglobulin Y, cIgY) as well as exhibit adsorption on unmodified silica at pH 7.4 and high ionic strength conditions. A single mutant, Sso7d-2B5, was selected for further characterization. Sso7d-2B5 retained binding to cIgY with an apparent dissociation constant similar to that of the parent protein; both mutant and parent proteins saturated the surface of silica with similar densities. Strikingly, however, silica beads coated with Sso7d-2B5 could achieve up to 7-fold higher capture of cIgY than beads coated with the parent protein. These results strongly suggest that mutations introduced in Sso7d-2B5 alter its orientation relative to the parent protein, when adsorbed on silica surfaces. Our approach also provides a generalizable strategy for introducing mutations in proteins so as to improve their activity upon immobilization, and has direct relevance to development of protein-based biosensors and biocatalysts.
Collapse
Affiliation(s)
- Carlos A Cruz-Teran
- Department of Chemical and Biomolecular Engineering, North Carolina State University , Raleigh, North Carolina 27695, United States
| | - Kevin B Carlin
- Department of Chemical and Biomolecular Engineering, North Carolina State University , Raleigh, North Carolina 27695, United States
| | - Kirill Efimenko
- Department of Chemical and Biomolecular Engineering, North Carolina State University , Raleigh, North Carolina 27695, United States
| | - Jan Genzer
- Department of Chemical and Biomolecular Engineering, North Carolina State University , Raleigh, North Carolina 27695, United States
| | - Balaji M Rao
- Department of Chemical and Biomolecular Engineering, North Carolina State University , Raleigh, North Carolina 27695, United States
| |
Collapse
|
36
|
Štěpánová S, Kašička V. Recent applications of capillary electromigration methods to separation and analysis of proteins. Anal Chim Acta 2016; 933:23-42. [DOI: 10.1016/j.aca.2016.06.006] [Citation(s) in RCA: 78] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2016] [Revised: 05/10/2016] [Accepted: 06/03/2016] [Indexed: 10/21/2022]
|
37
|
Bacterial surface layer proteins as a novel capillary coating material for capillary electrophoretic separations. Anal Chim Acta 2016; 923:89-100. [DOI: 10.1016/j.aca.2016.04.005] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2016] [Revised: 03/31/2016] [Accepted: 04/02/2016] [Indexed: 11/22/2022]
|
38
|
Znaleziona J, Drahoňovský D, Drahoš B, Ševčík J, Maier V. Novel cationic coating agent for protein separation by capillary electrophoresis(†). J Sep Sci 2016; 39:2406-12. [PMID: 27120584 DOI: 10.1002/jssc.201501349] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2015] [Revised: 04/13/2016] [Accepted: 04/14/2016] [Indexed: 11/08/2022]
Abstract
A novel positively charged surfactant N-dodecyl-N,N-dimethyl-(1,2-propandiol) ammonium chloride was used for the dynamic coating of the inner wall of a silica capillary. This paper covers the evaluation of dynamic coating and study of the influence of the analysis conditions for the magnitude and direction of electroosmotic flow as well as for the effective and selective separation of chosen proteins (ribonuclease A, cytochrome c, lysozyme, and myoglobin). The concentration of 0.1 mM of N-dodecyl-N,N-dimethyl-(1,2-propandiol) ammonium chloride enabled the reversal of the electro-osmotic flow, however, to separate basic as well as neutral proteins the higher concentration of the studied surfactant was necessary. The final conditions for the separation of studied proteins were set at 100 mM sodium acetate pH 5.5 with 10.0 mM of the studied surfactant. The results were also compared with those of two commercially available cationic surfactants, cetyltrimethylammonium bromide and dodecyltrimethylammonium bromide. Additionally, the developed method for protein separation was applied for the determination of lysozyme in a cheese sample. The limits of detection and quantification of lysozyme were 0.9 and 3.0 mg/L, respectively. The mean concentration of lysozyme found in the cheese sample was 167.3 ± 10.3 mg/kg.
Collapse
Affiliation(s)
- Joanna Znaleziona
- Regional Centre of Advanced Technologies and Materials Department of Analytical Chemistry, Faculty of Science, Palacký University in Olomouc, Olomouc, Czech Republic
| | - Dušan Drahoňovský
- Department of Organic Chemistry, Faculty of Science, Charles University in Prague, Prague 2, Czech Republic
| | - Bohuslav Drahoš
- Department of Inorganic Chemistry, Faculty of Science, Palacký University in Olomouc, Olomouc, Czech Republic
| | - Juraj Ševčík
- Regional Centre of Advanced Technologies and Materials Department of Analytical Chemistry, Faculty of Science, Palacký University in Olomouc, Olomouc, Czech Republic
| | - Vítězslav Maier
- Regional Centre of Advanced Technologies and Materials Department of Analytical Chemistry, Faculty of Science, Palacký University in Olomouc, Olomouc, Czech Republic
| |
Collapse
|
39
|
Danel C, Melnyk P, Azaroual N, Larchanché PE, Goossens JF, Vaccher C. Evaluation of three neutral capillary coatings for the determination of analyte-cyclodextrin binding constants by affinity capillary electrophoresis. Application to N,N'-disubstituted piperazine derivatives. J Chromatogr A 2016; 1455:163-171. [PMID: 27286645 DOI: 10.1016/j.chroma.2016.05.090] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2016] [Revised: 05/23/2016] [Accepted: 05/26/2016] [Indexed: 01/08/2023]
Abstract
The performances of three neutral static coatings (hydroxypropyl cellulose, polyethylene oxide and poly(N,N-dimethylacrylamide) have been evaluated in order to determine the binding constants of the complexes formed between four polycationic compounds (piperazine derivatives) and four cyclodextrins of pharmaceutical interest (β-CD, HP-β-CD, Me-β-CD and sulfobutyl ether-β-CD) by affinity capillary electrophoresis. The physically-adsorbed poly(N,N-dimethylacrylamide) coating proves to be the more efficient to mask the silanol groups of the capillary wall since the lowest electroosmotic flow was measured for this coating. Moreover, it drastically reduces the adsorption of the compounds since it allows a correct repeatability of their migration time, higher efficiencies of the peaks and no baseline shift. Then, it was verified for four complexes that this coating allows a correct determination of the binding constants avoiding the CD adsorption which is responsible of an undervaluation of binding constants. The highest binding constants are obtained using the anionic sulfobutyl ether-β-CD (SBE-β-CD). The structure of the complex formed between the tacrine derivative and the SBE-β-CD was further investigated through 2D ROESY NMR experiments and structure-binding constant relationships. Results suggest that the inclusion in the SBE-β-CD cavity occurs through the aliphatic ring portion of the tacrine moiety.
Collapse
Affiliation(s)
- Cécile Danel
- Univ. Lille, CHU Lille, EA 7365 GRITA Groupe de Recherche sur les formes Injectables et les Technologies Associées, F-59000 Lille, France.
| | - Patricia Melnyk
- Univ. Lille, Inserm, CHU Lille, UMR-S 1172 JPArc Centre de Recherche Jean-Pierre AUBERT Neurosciences et Cancer, F-59000 Lille, France.
| | - Nathalie Azaroual
- Univ. Lille, CHU Lille, EA 7365 GRITA Groupe de Recherche sur les formes Injectables et les Technologies Associées, F-59000 Lille, France.
| | - Paul-Emmanuel Larchanché
- Univ. Lille, Inserm, CHU Lille, UMR-S 1172 JPArc Centre de Recherche Jean-Pierre AUBERT Neurosciences et Cancer, F-59000 Lille, France.
| | - Jean-François Goossens
- Univ. Lille, CHU Lille, EA 7365 GRITA Groupe de Recherche sur les formes Injectables et les Technologies Associées, F-59000 Lille, France.
| | - Claude Vaccher
- Univ. Lille, CHU Lille, EA 7365 GRITA Groupe de Recherche sur les formes Injectables et les Technologies Associées, F-59000 Lille, France.
| |
Collapse
|
40
|
Gao F, Teplyakov AV. Dehydrohalogenation Condensation Reaction of Phenylhydrazine with Cl-Terminated Si(111) Surfaces. THE JOURNAL OF PHYSICAL CHEMISTRY. C, NANOMATERIALS AND INTERFACES 2016; 120:5539-5548. [PMID: 27822334 PMCID: PMC5096846 DOI: 10.1021/acs.jpcc.5b12424] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/03/2023]
Abstract
Formation of stable organic-inorganic contacts with silicon often requires oxygen- and carbon-free interfaces. Some of the general approaches to create such interfaces rely on the formation of a Si-N bond. A reaction of dehydrohalogenation condensation of Cl-terminated Si(111) surface with phenylhydrazine is investigated as a means to introduce a simple function to the surface using a -NH-NH2 moiety as opposed to previously investigated approaches. The use of substituted hydrazine allows for the formation of a stable structure that is less strained compared to the previously investigated primary amines and leads to minimal surface oxidation. The process is confirmed by a combination of infrared studies, X-ray photoelectron spectroscopy, and time-of-flight secondary ion mass spectrometry investigations. Density functional theory is utilized to yield a plausible surface reaction mechanism and provide a set of experimental observables to compare with these data.
Collapse
|
41
|
Leitner M, Stock LG, Traxler L, Leclercq L, Bonazza K, Friedbacher G, Cottet H, Stutz H, Ebner A. Mapping molecular adhesion sites inside SMIL coated capillaries using atomic force microscopy recognition imaging. Anal Chim Acta 2016; 930:39-48. [PMID: 27265903 DOI: 10.1016/j.aca.2016.05.002] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2015] [Revised: 04/29/2016] [Accepted: 05/01/2016] [Indexed: 10/21/2022]
Abstract
Capillary zone electrophoresis (CZE) is a powerful analytical technique for fast and efficient separation of different analytes ranging from small inorganic ions to large proteins. However electrophoretic resolution significantly depends on the coating of the inner capillary surface. High technical efforts like Successive Multiple Ionic Polymer Layer (SMIL) generation have been taken to develop stable coatings with switchable surface charges fulfilling the requirements needed for optimal separation. Although the performance can be easily proven in normalized test runs, characterization of the coating itself remains challenging. Atomic force microscopy (AFM) allows for topographical investigation of biological and analytical relevant surfaces with nanometer resolution and yields information about the surface roughness and homogeneity. Upgrading the scanning tip to a molecular biosensor by adhesive molecules (like partly inverted charged molecules) allows for performing topography and recognition imaging (TREC). As a result, simultaneously acquired sample topography and adhesion maps can be recorded. We optimized this technique for electrophoresis capillaries and investigated the charge distribution of differently composed and treated SMIL coatings. By using the positively charged protein avidin as a single molecule sensor, we compared these SMIL coatings with respect to negative charges, resulting in adhesion maps with nanometer resolution. The capability of TREC as a functional investigation technique at the nanoscale was successfully demonstrated.
Collapse
Affiliation(s)
- Michael Leitner
- Institute of Biophysics, Johannes Kepler University Linz, Gruberstrasse 40, 4020 Linz, Austria
| | - Lorenz G Stock
- Division of Chemistry and Bioanalytics, Department of Molecular Biology, University Salzburg, Hellbrunnerstrasse 34, 5020 Salzburg, Austria; Christian Doppler Laboratory for Innovative Tools for the Characterization of Biosimilars, University Salzburg, Hellbrunnerstrasse 34, 5020 Salzburg, Austria
| | - Lukas Traxler
- Institute of Biophysics, Johannes Kepler University Linz, Gruberstrasse 40, 4020 Linz, Austria
| | - Laurent Leclercq
- Institut des Biomolécules Max Mousseron (IBMM, UMR 5247, CNRS, Université de Montpellier, Ecole Nationale Supérieure de Chimie de Montpellier), Place Eugène Bataillon, CC 1706, 34095 Montpellier, France
| | - Klaus Bonazza
- Institute of Chemical Technologies and Analytics, Vienna University of Technology, Getreidemarkt 9/164, 1060 Vienna, Austria
| | - Gernot Friedbacher
- Institute of Chemical Technologies and Analytics, Vienna University of Technology, Getreidemarkt 9/164, 1060 Vienna, Austria
| | - Hervé Cottet
- Institut des Biomolécules Max Mousseron (IBMM, UMR 5247, CNRS, Université de Montpellier, Ecole Nationale Supérieure de Chimie de Montpellier), Place Eugène Bataillon, CC 1706, 34095 Montpellier, France
| | - Hanno Stutz
- Division of Chemistry and Bioanalytics, Department of Molecular Biology, University Salzburg, Hellbrunnerstrasse 34, 5020 Salzburg, Austria; Christian Doppler Laboratory for Innovative Tools for the Characterization of Biosimilars, University Salzburg, Hellbrunnerstrasse 34, 5020 Salzburg, Austria
| | - Andreas Ebner
- Institute of Biophysics, Johannes Kepler University Linz, Gruberstrasse 40, 4020 Linz, Austria.
| |
Collapse
|
42
|
Nowak PM, Woźniakiewicz M, Garnysz M, Kościelniak P. A comparative study of various physicochemically modified capillaries used in CE technique for the three distinct analytical purposes. J Chromatogr B Analyt Technol Biomed Life Sci 2016; 1020:134-41. [DOI: 10.1016/j.jchromb.2016.03.037] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2015] [Revised: 03/19/2016] [Accepted: 03/24/2016] [Indexed: 10/22/2022]
|
43
|
Jaccoulet E, Smadja C, Taverna M. Quality Control of Therapeutic Monoclonal Antibodies at the Hospital After Their Compounding and Before Their Administration to Patients. Methods Mol Biol 2016; 1466:179-184. [PMID: 27473490 DOI: 10.1007/978-1-4939-4014-1_14] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/06/2023]
Abstract
Monoclonal antibodies (mAbs) are widely used in cancer therapy and recently many new mAbs have gained EMA and FDA approvals for oncology indications. Here we describe a highly reproducible CZE method, relying on a cationic coating allowing separation and identification of a complex mixture of four compounded mAbs widely used in cancer therapy (cetuximab, rituximab, bevacizumab, and trastuzumab).
Collapse
Affiliation(s)
- Emmanuel Jaccoulet
- Institut Galien Paris-Sud, UMR 8612, Proteins and Nanotechnology in Analytical Science, CNRS, Univ Paris-Sud, Univ Paris-Saclay, 5 rue Jean-Baptiste Clément, 92296, Châtenay-Malabry, France
- Hôpital Européen Georges Pompidou, Paris, France
| | - Claire Smadja
- Institut Galien Paris-Sud, UMR 8612, Proteins and Nanotechnology in Analytical Science, CNRS, Univ Paris-Sud, Univ Paris-Saclay, 5 rue Jean-Baptiste Clément, 92296, Châtenay-Malabry, France.
| | - Myriam Taverna
- Institut Galien Paris-Sud, UMR 8612, Proteins and Nanotechnology in Analytical Science (PNAS), CNRS, Univ. Paris-Sud, Université Paris-Saclay, Châtenay-Malabry, France
| |
Collapse
|
44
|
Domínguez-Vega E, Haselberg R, Somsen GW. Capillary Zone Electrophoresis-Mass Spectrometry of Intact Proteins. Methods Mol Biol 2016; 1466:25-41. [PMID: 27473479 DOI: 10.1007/978-1-4939-4014-1_3] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/06/2023]
Abstract
Capillary electrophoresis (CE) coupled with mass spectrometry (MS) has proven to be a powerful analytical tool for the characterization of intact proteins. It combines the high separation efficiency, short analysis time, and versatility of CE with the mass selectivity and sensitivity offered by MS detection. This chapter focuses on important practical considerations when applying CE-MS for the analysis of intact proteins. Technological aspects with respect to the use of CE-MS interfaces and application of noncovalent capillary coatings preventing protein adsorption are treated. Critical factors for successful protein analysis are discussed and four typical CE-MS systems are described demonstrating the characterization of different types of intact proteins by CE-MS. These methodologies comprise the use of sheath-liquid and sheathless CE-MS interfaces, and various types of noncovalent capillary coatings allowing efficient and reproducible protein separations. The discussion includes the analysis of lysozyme-drug conjugates and the therapeutic proteins human growth hormone, human interferon-β-1a, and human erythropoietin.
Collapse
Affiliation(s)
- Elena Domínguez-Vega
- Division of BioAnalytical Chemistry, VU University, de Boelelaan 1083, 1081 HV, Amsterdam, The Netherlands
| | - Rob Haselberg
- Division of BioAnalytical Chemistry, VU University, de Boelelaan 1083, 1081 HV, Amsterdam, The Netherlands
| | - Govert W Somsen
- Division of BioAnalytical Chemistry, VU University, de Boelelaan 1083, 1081 HV, Amsterdam, The Netherlands.
| |
Collapse
|
45
|
Neuberger S, Rafai A, Neusüß C. Screening of Small Intact Proteins by Capillary Electrophoresis Electrospray Ionization-Mass Spectrometry (CE-ESI-MS). Methods Mol Biol 2016; 1466:43-56. [PMID: 27473480 DOI: 10.1007/978-1-4939-4014-1_4] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/06/2023]
Abstract
Capillary electrophoresis (CE) has been shown to be a suitable separation technique for complex samples. Combined with electrospray ionization-mass spectrometry (ESI-MS), it is a powerful tool offering the opportunity of high selectivity and sensitivity combined with the possibility to identify and characterize intact proteins. In this protocol, we demonstrate a screening method for intact proteins based on capillary zone electrophoresis (CZE) separation coupled with online mass spectrometric detection. In order to avoid protein-wall interactions, a neutral coated capillary is used to create a universal method for proteins with both low and high electrophoretic mobilities. In addition, we show the successful validation and application of this screening method for a set of eight standard proteins and the glycoprotein erythropoietin.
Collapse
Affiliation(s)
- Sabine Neuberger
- Department of Chemistry, Aalen University, Beethovenstraβe 1, Aalen, D-73430, Germany
| | | | - Christian Neusüß
- Department of Chemistry, Aalen University, Beethovenstraβe 1, Aalen, D-73430, Germany.
| |
Collapse
|
46
|
One step physically adsorbed coating of silica capillary with excellent stability for the separation of basic proteins by capillary zone electrophoresis. Talanta 2015; 144:110-4. [DOI: 10.1016/j.talanta.2015.05.080] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2015] [Revised: 05/27/2015] [Accepted: 05/29/2015] [Indexed: 11/21/2022]
|
47
|
Odinokov AV, Bagaturyants AA. Specific Interactions of Neutral Side Chains of an Adsorbed Protein with the Surface of α-Quartz and Silica Gel. J Phys Chem B 2015; 119:8679-84. [PMID: 26086173 DOI: 10.1021/acs.jpcb.5b04064] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
Abstract
Many key features of the protein adsorption on the silica surfaces still remain unraveled. One of the open questions is the interaction of nonpolar side chains with siloxane cavities. Here, we use nonequilibrium molecular dynamics simulations for the detailed investigation of the binding of several hydrophobic and amphiphilic protein side chains with silica surface. These interactions were found to be a possible driving force for protein adsorption. The free energy gain was larger for the disordered surface of amorphous silica gel as compared to α-quartz, but the impact depended on the type of amino acid. The dependence was analyzed from the structural point of view. For every amino acid an enthalpy-entropy compensation behavior was observed. These results confirm a hypothesis of an essential role of hydrophobic interactions in protein unfolding and irreversible adsorption on the silica surface.
Collapse
Affiliation(s)
- Alexey V Odinokov
- †Photochemistry Center, Russian Academy of Sciences, Novatorov street 7a, building 1, Moscow 119421, Russia
| | - Alexander A Bagaturyants
- †Photochemistry Center, Russian Academy of Sciences, Novatorov street 7a, building 1, Moscow 119421, Russia.,‡Moscow Engineering Physics Institute, Kashirskoe hwy 31, Moscow 115409, Russia
| |
Collapse
|
48
|
Jaccoulet E, Smadja C, Prognon P, Taverna M. Capillary electrophoresis for rapid identification of monoclonal antibodies for routine application in hospital. Electrophoresis 2015; 36:2050-6. [PMID: 25964136 DOI: 10.1002/elps.201400603] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2014] [Revised: 03/25/2015] [Accepted: 04/25/2015] [Indexed: 11/08/2022]
Abstract
mAbs are widely used in cancer therapy. Their compounding, performed just before their administration to patients, is executed in a production unit of the hospital. Identification of these drugs, individually prepared in bags for infusion before patient administration, is of paramount importance to detect potential mistakes during compounding stage. A fast and reliable analytical method based on CZE combined to a cationic capillary coating (hexadimethrine bromide) was developed for identification of the most widely used compounded therapeutic for cancer therapy (bevacizumab, cetuximab, rituximab, and trastuzumab). Considering the high structural and physico-chemical similarities of these mAbs, an extensive optimization of the BGE composition has been performed. The addition of perchlorate ions and polysorbate in the BGE greatly increased the resolution. To validate the method, an internal standard was used and the relative migration times (RTm) were estimated. Very satisfactory RSDs of the RTm for rituximab (0.76%), cetuximab (0.46%), bevacizumab (0.31%), and trastuzumab (0.60%) were obtained. The intraday and interday RSD of the method were less than 0.32 and 1.3%, respectively for RTm. Significant differences between theses RTms have been demonstrated allowing mAbs identification. Finally, accurate mAbs identification has been demonstrated by a blind test.
Collapse
Affiliation(s)
- Emmanuel Jaccoulet
- Institut Galien Paris Sud, Université Paris Sud, Châtenay-Malabry, France.,CNRS UMR 8612, Châtenay-Malabry, France.,Hôpital Européen Georges Pompidou, Service Pharmacie (AP-HP), Paris, France
| | - Claire Smadja
- Institut Galien Paris Sud, Université Paris Sud, Châtenay-Malabry, France.,CNRS UMR 8612, Châtenay-Malabry, France
| | - Patrice Prognon
- Hôpital Européen Georges Pompidou, Service Pharmacie (AP-HP), Paris, France
| | - Myriam Taverna
- Institut Galien Paris Sud, Université Paris Sud, Châtenay-Malabry, France.,CNRS UMR 8612, Châtenay-Malabry, France
| |
Collapse
|
49
|
Bekri S, Leclercq L, Cottet H. Polyelectrolyte multilayer coatings for the separation of proteins by capillary electrophoresis: Influence of polyelectrolyte nature and multilayer crosslinking. J Chromatogr A 2015; 1399:80-7. [DOI: 10.1016/j.chroma.2015.04.033] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2015] [Revised: 04/17/2015] [Accepted: 04/20/2015] [Indexed: 10/23/2022]
|
50
|
Redman EA, Batz NG, Mellors JS, Ramsey JM. Integrated Microfluidic Capillary Electrophoresis-Electrospray Ionization Devices with Online MS Detection for the Separation and Characterization of Intact Monoclonal Antibody Variants. Anal Chem 2015; 87:2264-72. [DOI: 10.1021/ac503964j] [Citation(s) in RCA: 92] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Affiliation(s)
- Erin A. Redman
- Department of Chemistry, ‡Department of Applied
Physical Sciences, §Department of Biomedical
Engineering, ∥Carolina Center for Genome Sciences, University of North Carolina, Chapel Hill, North Carolina 27599, United States
| | - Nicholas G. Batz
- Department of Chemistry, ‡Department of Applied
Physical Sciences, §Department of Biomedical
Engineering, ∥Carolina Center for Genome Sciences, University of North Carolina, Chapel Hill, North Carolina 27599, United States
| | - J. Scott Mellors
- Department of Chemistry, ‡Department of Applied
Physical Sciences, §Department of Biomedical
Engineering, ∥Carolina Center for Genome Sciences, University of North Carolina, Chapel Hill, North Carolina 27599, United States
| | - J. Michael Ramsey
- Department of Chemistry, ‡Department of Applied
Physical Sciences, §Department of Biomedical
Engineering, ∥Carolina Center for Genome Sciences, University of North Carolina, Chapel Hill, North Carolina 27599, United States
| |
Collapse
|