1
|
Abdul Keyon AS, Miskam M, Ishak NS, Mahat NA, Mohamed Huri MA, Abdul Wahab R, Chandren S, Abdul Razak FI, Ng NT, Ali TG. Capillary electrophoresis for the analysis of antidepressant drugs: A review. J Sep Sci 2019; 42:906-924. [PMID: 30605233 DOI: 10.1002/jssc.201800859] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2018] [Revised: 12/05/2018] [Accepted: 12/06/2018] [Indexed: 11/11/2022]
Abstract
Depression is a common mental disorder that may lead to major mental health problems, and antidepressant drugs have been used as a treatment of choice to mitigate symptoms of major depressive disorders by ameliorating the chemical imbalances of neurotransmitters in brain. Since abusing antidepressant drugs such as selective serotonin reuptake inhibitors and tricyclic antidepressant drugs can cause severe adverse effects, continuous toxicological monitoring of the parent compounds as well as their metabolites using numerous analytical methods appears pertinent. Among them, capillary electrophoresis has been popularly utilized since the method has a lot of advantages viz. using small amounts of sample and solvents, ease of operation, and rapid analysis. This review paper brings a survey of more than 30 papers on capillary electrophoresis of antidepressant drugs published approximately from 1999 until 2018. It focuses on the reported capillary electrophoresis techniques and their applications and challenges for determining antidepressant drugs and their metabolites. It is organized according to the commonly used capillary zone electrophoresis method, followed by non-aqueous capillary electrophoresis and micellar electrokinetic chromatography, with details on breakthrough findings. Where available, information is given about the background electrolyte used, detector utilized, and sensitivity obtained.
Collapse
Affiliation(s)
- Aemi Syazwani Abdul Keyon
- Department of Chemistry, Faculty of Science, Universiti Teknologi Malaysia, Johor Bahru, Johor, Malaysia.,Centre for Sustainable Nanomaterials, Ibnu Sina Institute for Scientific and industrial Research, Universiti Teknologi Malaysia, Johor Bahru, Johor, Malaysia
| | | | - Nur Syazwani Ishak
- Department of Chemistry, Faculty of Science, Universiti Teknologi Malaysia, Johor Bahru, Johor, Malaysia
| | - Naji Arafat Mahat
- Department of Chemistry, Faculty of Science, Universiti Teknologi Malaysia, Johor Bahru, Johor, Malaysia.,Centre for Sustainable Nanomaterials, Ibnu Sina Institute for Scientific and industrial Research, Universiti Teknologi Malaysia, Johor Bahru, Johor, Malaysia
| | - Mohamad Afiq Mohamed Huri
- Department of Chemistry, Faculty of Science, Universiti Teknologi Malaysia, Johor Bahru, Johor, Malaysia
| | - Roswanira Abdul Wahab
- Department of Chemistry, Faculty of Science, Universiti Teknologi Malaysia, Johor Bahru, Johor, Malaysia
| | - Sheela Chandren
- Department of Chemistry, Faculty of Science, Universiti Teknologi Malaysia, Johor Bahru, Johor, Malaysia
| | - Fazira Ilyana Abdul Razak
- Department of Chemistry, Faculty of Science, Universiti Teknologi Malaysia, Johor Bahru, Johor, Malaysia
| | - Nyuk-Ting Ng
- Department of Chemistry, Faculty of Science, Universiti Teknologi Malaysia, Johor Bahru, Johor, Malaysia
| | - Timothy Gandu Ali
- Department of Chemistry, Faculty of Science, Universiti Teknologi Malaysia, Johor Bahru, Johor, Malaysia
| |
Collapse
|
2
|
Arce C, Cahya-Mawarda P, Arroyo-Manzanares N, Garrido JJ, Arce L. CE method for analyzing Salmonella typhimurium in water samples. J Sep Sci 2017; 41:534-539. [PMID: 29087615 DOI: 10.1002/jssc.201700705] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2017] [Revised: 10/19/2017] [Accepted: 10/22/2017] [Indexed: 01/10/2023]
Abstract
Salmonella typhimurium is commonly described as a food-borne pathogen. However, natural and drinking water are known to be important sources for the transmission of this pathogen in developing and developed countries. The standard method to determine Salmonella is laborious and many false positives are detected. To solve this, the present work was focused on the development of a capillary zone electrophoresis method coupled to ultraviolet detection for determination of Salmonella typhimurium in water (mineral and tap water). Separations were performed in less than 11 minutes using 4.5 mM Tris (hydroxymethyl)-aminomethane, 4.5 mM boric acid and 0.1 mM ethylene diamine tetraacetate (pH 8.4) with 0.1% v/v poly ethylene oxide as separation buffer. The precision of the method was evaluated in terms of repeatability obtaining a relative standard deviation of 10.5%. Using the proposed method Salmonella typhimurium could be separated from other bacteria that could be present in water such as Escherichia coli. Finally, the proposed methodology was applied to determine Salmonella typhimurium in tap and mineral water.
Collapse
Affiliation(s)
- Cristina Arce
- Department of Animal Production, University of Córdoba, Campus of Rabanales, Córdoba, Spain
| | - Panji Cahya-Mawarda
- Department of Analytical Chemistry, Institute of Fine Chemistry and Nanochemistry, Marie Curie Annex Building, Campus of Rabanales, Córdoba, Spain.,Research Unit for Clean Technology, Indonesian Institute of Sciences, Jalan Cisitu/Sangkuriang, Bandung, Indonesia
| | - Natalia Arroyo-Manzanares
- Department of Analytical Chemistry, Institute of Fine Chemistry and Nanochemistry, Marie Curie Annex Building, Campus of Rabanales, Córdoba, Spain
| | - Juan J Garrido
- Department of Genetic, University of Córdoba, Campus of Rabanales, Córdoba, Spain
| | - Lourdes Arce
- Department of Analytical Chemistry, Institute of Fine Chemistry and Nanochemistry, Marie Curie Annex Building, Campus of Rabanales, Córdoba, Spain
| |
Collapse
|
3
|
Lian DS, Zeng HS. Capillary Electrophoresis Based on Nucleic Acid Detection as Used in Food Analysis. Compr Rev Food Sci Food Saf 2017; 16:1281-1295. [DOI: 10.1111/1541-4337.12297] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2017] [Revised: 07/14/2017] [Accepted: 07/19/2017] [Indexed: 12/21/2022]
Affiliation(s)
- Dong-Sheng Lian
- Guangzhou Women and Children's Medical Center of Guangzhou Medical University; NO. 9 at Jinsui Rd., Tianhe District Guangzhou Guangdong China
| | - Hua-Song Zeng
- Guangzhou Women and Children's Medical Center of Guangzhou Medical University; NO. 9 at Jinsui Rd., Tianhe District Guangzhou Guangdong China
| |
Collapse
|
4
|
Lian DS, Zhao SJ. Capillary electrophoresis based on nucleic acid detection for diagnosing human infectious disease. Clin Chem Lab Med 2017; 54:707-38. [PMID: 26352354 DOI: 10.1515/cclm-2015-0096] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2015] [Accepted: 06/17/2015] [Indexed: 01/22/2023]
Abstract
Rapid transmission, high morbidity, and mortality are the features of human infectious diseases caused by microorganisms, such as bacteria, fungi, and viruses. These diseases may lead within a short period of time to great personal and property losses, especially in regions where sanitation is poor. Thus, rapid diagnoses are vital for the prevention and therapeutic intervention of human infectious diseases. Several conventional methods are often used to diagnose infectious diseases, e.g. methods based on cultures or morphology, or biochemical tests based on metabonomics. Although traditional methods are considered gold standards and are used most frequently, they are laborious, time consuming, and tedious and cannot meet the demand for rapid diagnoses. Disease diagnosis using capillary electrophoresis methods has the advantages of high efficiency, high throughput, and high speed, and coupled with the different nucleic acid detection strategies overcomes the drawbacks of traditional identification methods, precluding many types of false positive and negative results. Therefore, this review focuses on the application of capillary electrophoresis based on nucleic detection to the diagnosis of human infectious diseases, and offers an introduction to the limitations, advantages, and future developments of this approach.
Collapse
|
5
|
Capillary Isoelectric Focusing—Useful Tool for Detection and Quantification of Lactic Acid Bacteria in Milk. FOOD ANAL METHOD 2016. [DOI: 10.1007/s12161-016-0522-6] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
|
6
|
Lim S, Nan H, Lee MJ, Kang SH. Fast on-site diagnosis of influenza A virus by Palm PCR and portable capillary electrophoresis. J Chromatogr B Analyt Technol Biomed Life Sci 2014; 963:134-9. [PMID: 24956080 DOI: 10.1016/j.jchromb.2014.06.004] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2013] [Revised: 05/17/2014] [Accepted: 06/02/2014] [Indexed: 11/19/2022]
Abstract
A method combining Palm polymerase chain reaction (PCR) and portable capillary electrophoresis (CE) was developed for rapid on-site analysis of influenza A (H1N1) virus. The portable CE system was suitable for rapid diagnosis which was able to detect a sample in ∼4 min after sample loading, while the 'Palm PCR' system allowed for high-speed nucleic acid amplification in ∼16 min. The analysis time from DNA sample to analysis of amplified target DNA molecule was only ∼20 min, which was significantly less than slab gel electrophoresis with other commercially available PCR machine. When the 100-bp DNA ladder was separated, the relative standard deviation values (n=5) for the migration times and peak areas of the 100 and 200-bp DNA molecules were 0.26 and 8.9%. The detection limits were 6.3 and 7.2 pg/μL, respectively. The combined method was also able to identify two influenza A-associated genes (the HA and NP genes of the novel H1N1 influenza). CE separation was achieved with a sieving matrix of 1% poly(vinylpyrrolidone) (Mr=1,300,000) in 1× TBE buffer (pH 8.45). The combined Palm PCR-portable CE system should provide an improved, fast on-site molecular genetic diagnostic method.
Collapse
Affiliation(s)
- Seoyeon Lim
- Department of Applied Chemistry, College of Applied Science, Kyung Hee University, Yongin-si, Gyunggi-do 446-701, Republic of Korea
| | - He Nan
- Department of Applied Chemistry, College of Applied Science, Kyung Hee University, Yongin-si, Gyunggi-do 446-701, Republic of Korea
| | - Min-Jun Lee
- Ahram Biosystems Inc., Seoul 133-120, Republic of Korea
| | - Seong Ho Kang
- Department of Applied Chemistry, College of Applied Science, Kyung Hee University, Yongin-si, Gyunggi-do 446-701, Republic of Korea.
| |
Collapse
|
7
|
Horká M, Karásek P, Salplachta J, Růžička F, Vykydalová M, Kubesová A, Dráb V, Roth M, Slais K. Capillary isoelectric focusing of probiotic bacteria from cow's milk in tapered fused silica capillary with off-line matrix-assisted laser desorption/ionization time-of-flight mass spectrometry identification. Anal Chim Acta 2013; 788:193-9. [PMID: 23845500 DOI: 10.1016/j.aca.2013.05.059] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2013] [Revised: 05/06/2013] [Accepted: 05/18/2013] [Indexed: 11/28/2022]
Abstract
In this study, combination of capillary isoelectric focusing (CIEF) in tapered fused silica (FS) capillary with matrix-assisted laser desorption/ionization time-of-flight mass spectrometry (MALDI-TOF MS) is presented as an efficient approach for unambiguous identification of probiotic bacteria in real sample. For this purpose, bacteria within genus Lactobacillus were selected as model bioanalytes and cow's milk was selected as a biological sample. CIEF analysis of both the cultivated bacteria and the bacteria in the milk was optimized and isoelectric points characterizing the examined bacteria were subsequently determined independently of the bacterial sample origin. The use of tapered FS capillary significantly enhanced the separation capacity and efficiency of the CIEF analyses performed. In addition, the cell number injected into the tapered FS capillary was quantified and an excellent linearity of the calibration curves was achieved which enabled quantitative analysis of the bacteria by CIEF with UV detection. The minimum detectable number of bacterial cells was 2×10(6) mL(-1). Finally, cow's milk spiked with the selected bacterium was analyzed by CIEF in tapered FS capillary, the focused and detected bacterial cells were collected from the capillary, deposited onto the cultivation medium, and identified using MALDI-TOF MS afterward. Our results have revealed that the proposed procedure can be advantageously used for unambiguous identification of probiotic bacteria in a real sample.
Collapse
Affiliation(s)
- Marie Horká
- Institute of Analytical Chemistry of the ASCR, vvi, Brno, Czech Republic.
| | | | | | | | | | | | | | | | | |
Collapse
|
8
|
Gavazzi F, Casazza AP, Depedro C, Mastromauro F, Breviario D. Technical improvement of the TBP (tubulin-based polymorphism) method for plant species detection, based on capillary electrophoresis. Electrophoresis 2013; 33:2840-51. [PMID: 23019101 DOI: 10.1002/elps.201200144] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
Nowadays, feed and food safety and traceability are of primary importance. Hence, a correct labeling of the different products is highly desirable in general, but mandatory for those people who are suffering from eating disorders and food allergies. Among the technologies that have been developed for feed and food analysis, the patented tubulin-based polymorphism (TBP) method emerges as an easy, versatile, and inexpensive diagnostic tool. Initially used to fingerprint different plant species and varieties, TBP was then successfully applied to trace species in mixtures of plant origin such as commercial feeds. TBP is a DNA-based molecular marker, that makes use of PCR for the selective amplification of plant β-tubulin introns. Amplified fragments are then separated by PAGE and visualized by silver staining. We have now developed an improved version of TBP. Based on capillary electrophoresis and fluorescence detection, it makes the method automatic, more sensible, reproducible, and faster. Compared to the classic TBP, this new version allows to obtain a better data resolution and an easier interpretation of the results, clearing the way to large-scale feed/food diagnostics.
Collapse
Affiliation(s)
- Floriana Gavazzi
- Istituto di Biologia e Biotecnologia Agraria, Consiglio Nazionale delle Ricerche, Milan, Italy
| | | | | | | | | |
Collapse
|
9
|
Oukacine F, Quirino JP, Destoumieux-Garzón D, Cottet H. Field enhanced bacterial sample stacking in isotachophoresis using wide-bore capillaries. J Chromatogr A 2012; 1268:180-4. [DOI: 10.1016/j.chroma.2012.10.026] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2012] [Revised: 10/08/2012] [Accepted: 10/09/2012] [Indexed: 12/12/2022]
|
10
|
Abstract
This paper presents a revision on the instrumental analytical techniques and methods used in food analysis together with their main applications in food science research. The present paper includes a brief historical perspective on food analysis, together with a deep revision on the current state of the art of modern analytical instruments, methodologies, and applications in food analysis with a special emphasis on the works published on this topic in the last three years (2009–2011). The article also discusses the present and future challenges in food analysis, the application of “omics” in food analysis (including epigenomics, genomics, transcriptomics, proteomics, and metabolomics), and provides an overview on the new discipline of Foodomics.
Collapse
Affiliation(s)
- Alejandro Cifuentes
- Laboratory of Foodomics, Institute of Food Science Research (CIAL), CSIC, Nicolas Cabrera 9, Campus de Cantoblanco, 28049 Madrid, Spain
| |
Collapse
|
11
|
Shin GW, Kim YT, Heo HY, Chung B, Seo TS, Jung GY. Triblock copolymer-based microchip device for rapid analysis of stuffer-free multiplex ligation-dependent probe amplification products. Electrophoresis 2012; 33:3574-8. [PMID: 23135832 DOI: 10.1002/elps.201200436] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2012] [Revised: 09/01/2012] [Accepted: 09/08/2012] [Indexed: 11/06/2022]
Abstract
Recent improvements in the multiplex ligation-dependent probe amplification (MLPA) method promise successful multiplex analysis of various genetic markers. In particular, it has been demonstrated that elimination of the stuffer sequence included in MLPA probes for length-dependent analysis substantially simplifies the probe design process and improves the accuracy of the analysis. As is the case for other CE-based methods, MLPA could be further developed on a microchip platform. However, high-resolution analysis of short MLPA probes requires careful microchip operation. In this study, we developed a microchip device for the multiplex analysis of five food-borne pathogens using a stuffer-free probe set. Microchip channel design and electrophoresis operating conditions were first optimized for reproducible analysis, after which two sieving matrices were tested. Finally, the method was validated using DNA samples isolated from intentionally infected milk.
Collapse
Affiliation(s)
- Gi Won Shin
- Institute of Environmental and Energy Technology, Pohang University of Science and Technology, Pohang, Gyeongbuk, Korea
| | | | | | | | | | | |
Collapse
|
12
|
Li P, Zhang Z, Zhang Q, Zhang N, Zhang W, Ding X, Li R. Current development of microfluidic immunosensing approaches for mycotoxin detection via capillary electromigration and lateral flow technology. Electrophoresis 2012; 33:2253-65. [PMID: 22887149 DOI: 10.1002/elps.201200050] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Mycotoxin contamination in the food chain has caused serious health issues in humans and animals. Thus, a rapid on-site and lab-independent detection method for mycotoxins, such as aflatoxins (AFTs), is desirable. Microfluidic chip based immunosensor technology is one of the most promising methods for fast mycotoxin assays. In this review, we cover the major microfluidic immunosensors used for mycotoxin analysis, via flow-through (capillary electromigration) and lateral flow technology. Sample preparation from different matrices of agricultural products and foodstuffs is summarized. The choice of materials, fabrication strategies, and detection methods for microfluidic immunosensors are further discussed in detail. The sensors application in mycotoxin determination is also outlined. Finally, future challenges and opportunities are discussed.
Collapse
Affiliation(s)
- Peiwu Li
- Oil Crops Research Institute of the Chinese Academy of Agricultural Sciences, Wuhan, P. R. China.
| | | | | | | | | | | | | |
Collapse
|
13
|
Chung B, Shin GW, Na J, Oh MH, Jung GY. Multiplex quantitative foodborne pathogen detection using high resolution CE-SSCP coupled stuffer-free multiplex ligation-dependent probe amplification. Electrophoresis 2012; 33:1477-81. [PMID: 22648818 DOI: 10.1002/elps.201100615] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
Abstract
Sensitive multiplex detection methods for foodborne pathogens are important in controlling food safety, and detection of genetic markers is accepted to be one of the best tools for sensitive detection. Although CE technology offers great potential in terms of sensitive multiplex detection, the necessary amplification is confined to markers sharing common primers such as the 16S rRNA gene. For precise and sensitive detection, pathogen-specific genes are optimal markers. Although multiplex ligation-dependent probe amplification (MLPA) is appropriate for amplification of specific markers, the requirement for stuffers, to ensure length-dependent separation on CE, is a major obstacle in detection of foodborne pathogens. In the present study, we developed stuffer-free MLPA using high-resolution CE-SSCP to sensitively detect ten foodborne pathogens. The probe set for MLPA prior to CE-SSCP analysis was designed for species-specific detection. After careful optimization of each MLPA step, to ensure that CE-SSCP analysis was informative, we found that all ten pathogens could be reliably identified; the limits of detection were 0.5-5 pg of genomic DNA, and more than 100-fold increase could be quantitatively determined. Thus, MLPA-CE-SSCP is a sensitive and reliable technique for pathogen detection.
Collapse
Affiliation(s)
- Boram Chung
- School of Interdisciplinary Bioscience and Bioengineering, Pohang University of Science and Technology, Pohang, Korea
| | | | | | | | | |
Collapse
|
14
|
Chung B, Shin GW, Hwang HS, Chung YJ, Jung SW, Jung GY. Precise H1N1 swine influenza detection using stuffer-free multiplex ligation-dependent probe amplification in conformation-sensitive capillary electrophoresis. Anal Biochem 2012; 424:54-6. [PMID: 22342882 DOI: 10.1016/j.ab.2012.02.009] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2012] [Revised: 02/05/2012] [Accepted: 02/06/2012] [Indexed: 11/19/2022]
Abstract
The H1N1 influenza virus has spread worldwide to become pandemic. Here, we developed a new method to discriminate various types of influenza A, including H1N1, using stuffer-free multiplex ligation-dependent probe amplification based on a conformation-sensitive separation method, namely capillary electrophoresis-single-strand conformation polymorphism. Unlike conventional methods, our approach precisely detects five relevant gene markers permitting confirmation of infection.
Collapse
Affiliation(s)
- Boram Chung
- School of Interdisciplinary Bioscience and Bioengineering, Pohang University of Science and Technology, Pohang, Gyeongbuk 790-784, Republic of Korea
| | | | | | | | | | | |
Collapse
|
15
|
Castro-Puyana M, García-Cañas V, Simó C, Cifuentes A. Recent advances in the application of capillary electromigration methods for food analysis and Foodomics. Electrophoresis 2011; 33:147-67. [DOI: 10.1002/elps.201100385] [Citation(s) in RCA: 78] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2011] [Revised: 08/10/2011] [Accepted: 08/10/2011] [Indexed: 12/17/2022]
|
16
|
Rabanes HR, Guidote AM, Quirino JP. Capillary electrophoresis of natural products: Highlights of the last five years (2006-2010). Electrophoresis 2011; 33:180-95. [DOI: 10.1002/elps.201100223] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2011] [Revised: 09/22/2011] [Accepted: 09/22/2011] [Indexed: 12/14/2022]
|
17
|
Abstract
The safety of the food supply is a subject of intense interest to consumers, particularly as a result of large-scale outbreaks that involve hundreds and sometimes thousands of consumers. During the last decade, this concern about food safety has expanded to include the diets of companion animals as a result of several incidences of chemical toxicities and infectious disease transmission. This has led to increased research into the causes and controls for these hazards for both companion animals and their owners. The following summary provides an introduction to the issues, challenges and new tools being developed to ensure that commercial pet foods are both nutritious and safe.
Collapse
|