1
|
Liu H, Cheng H, Xu J, Hu J, Zhao C, Xing L, Wang M, Wu Z, Peng D, Yu N, Liu J. Genetic diversity and population structure of Polygonatum cyrtonema Hua in China using SSR markers. PLoS One 2023; 18:e0290605. [PMID: 37651363 PMCID: PMC10470896 DOI: 10.1371/journal.pone.0290605] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2023] [Accepted: 08/11/2023] [Indexed: 09/02/2023] Open
Abstract
Polygonatum cyrtonema Hua is a perennial herbaceous plant of the Polygonatum genus, belonging to the Liliaceae family, with significant medicinal and nutritional value. In China, this species is a traditional medicinal and edible herb with a long history of application and is widely appreciated by the people. However, as the demand for medicinal herbs continues to grow, excessive harvesting has led to the depletion of wild resources and the risk of genetic erosion. In addition, the chaotic cultivation of varieties and the lack of high quality germplasm resources have led to inconsistent quality of medical materials. Therefore, it is urgent to conduct genetic diversity evaluation of this species and establish a sound conservation plan. This study assessed the genetic diversity and population structure of 96 samples collected from seven regions in China using the simple sequence repeat (SSR) molecular marker technology. In this study, a total of 60 alleles (Na) were detected across the 10 polymorphic SSR markers used, with an average of 6.0 alleles generated per locus. The values of polymorphic information content (PIC) values ranged from 0.3396 to 0.8794, with an average value of 0.6430. The average value of the effective number of alleles (Ne) was 2.761, and the average value of the Shannon's information index (I) was 1.196. The population structure analysis indicates that the Polygonatum cyrtonema Hua germplasm can be classified into three subpopulations (JZ, QY, JD) at the molecular level, which corresponds to the previous subgroups identified based on individual plant phenotypic traits. Analysis of Molecular Variance (AMOVA) showed that 74% of the genetic variation was between individuals within populations in different regions. The phylogenetic analysis of the 96 germplasm samples divided them into three main populations. The QY and JD subpopulations are largely clustered together, which could be attributed to their mountainous distribution and the local climate environment. The genetic differentiation coefficient (Fst) value was low at 0.065, indicating relatively low population differentiation. The ratio of the genetic differentiation coefficient (Fst) between the JZ population and the other two populations (QY and JD) is much higher than the ratio between the QY and JD populations. Based on the clustering results and the ratio of the genetic differentiation coefficient (Fst), it can be inferred that the genetic relationship between the QY and JD subpopulations is closer, with a certain degree of genetic differentiation from the JZ subpopulation. This study supports the conservation of germplasm resources of Polygonatum cyrtonema Hua in China and provides new parental material for germplasm genetic improvement and breeding programs.
Collapse
Affiliation(s)
- Heng Liu
- Department of Biopharmaceuticals, College of Pharmacy, Anhui University of Chinese Medicine, Hefei, Anhui Province, China
| | - He Cheng
- Department of Biopharmaceuticals, College of Pharmacy, Anhui University of Chinese Medicine, Hefei, Anhui Province, China
| | - Jun Xu
- Department of Biopharmaceuticals, College of Pharmacy, Anhui University of Chinese Medicine, Hefei, Anhui Province, China
| | - Jiayi Hu
- Department of Biopharmaceuticals, College of Pharmacy, Anhui University of Chinese Medicine, Hefei, Anhui Province, China
| | - Chenchen Zhao
- Department of Biopharmaceuticals, College of Pharmacy, Anhui University of Chinese Medicine, Hefei, Anhui Province, China
| | - Lihua Xing
- Department of Biopharmaceuticals, College of Pharmacy, Anhui University of Chinese Medicine, Hefei, Anhui Province, China
- MOE-Anhui Joint Collaborative Innovation Center for Quality Improvement of Anhui Genuine Chinese Medicinal Materials, Hefei, Anhui Province, China
| | - Mengjin Wang
- Department of Biopharmaceuticals, College of Pharmacy, Anhui University of Chinese Medicine, Hefei, Anhui Province, China
| | - Zhendong Wu
- Anhui Qingyang County Jiuhua traditional Chinese Medicinal Materials Technology Co., Ltd, Chizhou City, Anhui Province, China
| | - Daiyin Peng
- Department of Biopharmaceuticals, College of Pharmacy, Anhui University of Chinese Medicine, Hefei, Anhui Province, China
- MOE-Anhui Joint Collaborative Innovation Center for Quality Improvement of Anhui Genuine Chinese Medicinal Materials, Hefei, Anhui Province, China
| | - Nianjun Yu
- Department of Biopharmaceuticals, College of Pharmacy, Anhui University of Chinese Medicine, Hefei, Anhui Province, China
- MOE-Anhui Joint Collaborative Innovation Center for Quality Improvement of Anhui Genuine Chinese Medicinal Materials, Hefei, Anhui Province, China
| | - Junling Liu
- Department of Biopharmaceuticals, College of Pharmacy, Anhui University of Chinese Medicine, Hefei, Anhui Province, China
- Anhui Provincial Institutes for Food and Drug Control, Hefei, Anhui Province, China
| |
Collapse
|
2
|
Mahalakshmi G, Selvakumar B, Vennila KN, Rao PL, Madhuri S, Seenivasaperumal M, Elango KP. Spectroscopic Studies on the Interaction of Naphthyridines with DNA and Fluorescent Detection of DNA in Agarose Gel. J Fluoresc 2021; 31:327-338. [PMID: 33389419 DOI: 10.1007/s10895-020-02658-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2020] [Accepted: 12/03/2020] [Indexed: 11/25/2022]
Abstract
Four new naphthyridine derivatives (R1-R4) possessing amino acid or boronic acid moieties have been synthesized and characterized using 1H and 13C NMR, FT-IR, and mass spectral techniques. The mechanism of binding of these probes with calf thymus DNA (CT-DNA) has been delineated through UV-Vis, fluorescence, and circular dichroism (CD) spectral techniques along with thermodynamic and molecular docking studies. Small hypochromicity in absorption maximum of the probes without any shift in wavelength of absorption suggests groove binding mode of interaction of these probes with CT-DNA, confirmed by CD and 1H NMR spectral data competitive binding assay with ethidium bromide (EB). CT-DNA quenches the fluorescence of these probes via a static quenching mechanism. In the case of R1 and R4, the observed ΔHo < 0 and ΔSo > 0suggest that these probes interact with CT-DNA through H-bonding and hydrophobic interactions, while in the interaction of R2 and R3, van der Walls and H-boding forces are found to be dominant (ΔHo < 0 and ΔSo < 0). Results of molecular docking investigations corroborate well with that of spectral studies, and these probes bind in the minor groove of DNA. These probes are found to be effective fluorescent staining agents for DNA in agarose gel in gel electrophoresis experiment with sensitivity comparable to that of EB, and DNA amounts as low as 37.5 ng are visually detectable in the gel.
Collapse
Affiliation(s)
- G Mahalakshmi
- Department of Chemistry, Gandhigram Rural Institute, Deemed to be University, Gandhigram, 624 302, India
| | - B Selvakumar
- Anthem Biosciences Pvt. Ltd., Bangalore, 560 099, India
| | - K N Vennila
- Department of Chemistry, Gandhigram Rural Institute, Deemed to be University, Gandhigram, 624 302, India
| | - P Lakshmana Rao
- National Institute of Animal Biotechnology, Hyderabad, 500 049, India
| | - S Madhuri
- National Institute of Animal Biotechnology, Hyderabad, 500 049, India
| | - M Seenivasaperumal
- Department of Chemistry, Gandhigram Rural Institute, Deemed to be University, Gandhigram, 624 302, India
| | - Kuppanagounder P Elango
- Department of Chemistry, Gandhigram Rural Institute, Deemed to be University, Gandhigram, 624 302, India.
| |
Collapse
|
3
|
Agarose gel electrophoresis and polyacrylamide gel electrophoresis for visualization of simple sequence repeats. Methods Mol Biol 2013. [PMID: 23546791 DOI: 10.1007/978-1-62703-389-3_12] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register]
Abstract
In the modern age of genetic research there is a constant search for ways to improve the efficiency of plant selection. The most recent technology that can result in a highly efficient means of selection and still be done at a low cost is through plant selection directed by simple sequence repeats (SSRs or microsatellites). The molecular markers are used to select for certain desirable plant traits without relying on ambiguous phenotypic data. The best way to detect these is the use of gel electrophoresis. Gel electrophoresis is a common technique in laboratory settings which is used to separate deoxyribonucleic acid (DNA) and ribonucleic acid (RNA) by size. Loading DNA and RNA onto gels allows for visualization of the size of fragments through the separation of DNA and RNA fragments. This is achieved through the use of the charge in the particles. As the fragments separate, they form into distinct bands at set sizes. We describe the ability to visualize SSRs on slab gels of agarose and polyacrylamide gel electrophoresis.
Collapse
|
4
|
Qiu S, Chen J, Lin S, Lin X. A comparison of silver staining protocols for detecting DNA in polyester-backed polyacrylamide gel. Braz J Microbiol 2012; 43:649-52. [PMID: 24031876 PMCID: PMC3768845 DOI: 10.1590/s1517-83822012000200029] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2011] [Revised: 07/27/2011] [Accepted: 06/07/2012] [Indexed: 12/03/2022] Open
Abstract
Eight silver-staining protocols were applied to detect DNA in polyester-backed gels to select the optimal. Results showed important differences in staining quality and that four methods were well-suited for TGGE gels due to high sensitivity and low background, including the Bassam et al. methods, the manufacturer method and our improved method.
Collapse
Affiliation(s)
- Shanlian Qiu
- Soil and Fertilizer Institute, Fujian Academy of Agricultural Sciences , Fuzhou 350003 , China
| | | | | | | |
Collapse
|
5
|
ZHU Z, CONG W, HE H, WANG X, CHEN M, HONG G, JIN L. Vitamin C-silver: an Environmentally Benign Choice for DNA Visualization on Polyacrylamide Gels. ANAL SCI 2012; 28:379-84. [DOI: 10.2116/analsci.28.379] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Affiliation(s)
- Zhongxin ZHU
- Zhejiang Provincial Key Laboratory of Biopharmaceuticals, Wenzhou Medical College
| | - Weitao CONG
- Zhejiang Provincial Key Laboratory of Biopharmaceuticals, Wenzhou Medical College
| | - Hongzhang HE
- Zhejiang Provincial Key Laboratory of Biopharmaceuticals, Wenzhou Medical College
| | - Xi WANG
- Zhejiang Provincial Key Laboratory of Biopharmaceuticals, Wenzhou Medical College
- The First People’s Hospital of Wenling
| | - Mao CHEN
- Zhejiang Provincial Key Laboratory of Biopharmaceuticals, Wenzhou Medical College
| | - Guoying HONG
- Zhejiang Provincial Key Laboratory of Biopharmaceuticals, Wenzhou Medical College
| | - Litai JIN
- Zhejiang Provincial Key Laboratory of Biopharmaceuticals, Wenzhou Medical College
- School of Basic Medical Sciences, Jilin University
| |
Collapse
|