1
|
Aroulanda C, Lesot P. Molecular enantiodiscrimination by NMR spectroscopy in chiral oriented systems: Concept, tools, and applications. Chirality 2021; 34:182-244. [PMID: 34936130 DOI: 10.1002/chir.23386] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2021] [Revised: 09/20/2021] [Accepted: 10/15/2021] [Indexed: 11/06/2022]
Abstract
The study of enantiodiscriminations in relation to various facets of enantiomorphism (chirality/prochirality) and/or molecular symmetry is an exciting area of modern organic chemistry and an ongoing challenge for nuclear magnetic resonance (NMR) spectroscopists who have developed many useful analytical approaches to solve stereochemical problems. Among them, the anisotropic NMR using chiral aligning solvents has provided a set of new and original tools by making accessible all intramolecular, order-dependent NMR interactions (anisotropic interactions), such as residual chemical shift anisotropy (RCSA), residual dipolar coupling (RDC), and residual quadrupolar coupling (RQC) for spin I > 1/2, while preserving high spectral resolution. The force of NMR in enantiopure, oriented solvents lies on its ability to orient differently in average on the NMR timescale enantiomers of chiral molecules and enantiotopic elements of prochiral ones, leading distinct NMR spectra or signals to be detected. In this compendium mainly written for all chemists playing with (pro)chirality, we overview various key aspects of NMR in weakly aligning chiral solvents as the lyotropic liquid crystals (LLCs), in particular those developed in France to study (pro)chiral compounds in relation with chemists needs: study of enantiopurity of mixture, stereochemistry, natural isotopic fractionation, as well as molecular conformation and configuration. Key representative examples covering the diversity of enantiomorphism concept, and the main and most recent applications illustrating the analytical potential of this NMR in polypeptide-based chiral liquid crystals (CLCs) are examined. The latest analytical strategy developed to determine in-solution conformational distribution of flexibles solutes using NMR in polypeptide-based aligned solvents is also proposed.
Collapse
Affiliation(s)
- Christie Aroulanda
- RMN en Milieu Orienté, ICMMO, UMR CNRS 8182, Université Paris-Saclay, Orsay cedex, France
| | - Philippe Lesot
- RMN en Milieu Orienté, ICMMO, UMR CNRS 8182, Université Paris-Saclay, Orsay cedex, France
| |
Collapse
|
2
|
Gouilleux B, Meddour A, Lesot P. 2 H QUOSY 2D-NMR Experiments in Weakly Aligning Systems: From the Conventional to the Ultrafast Approach. Chemphyschem 2020; 21:1548-1563. [PMID: 32633460 DOI: 10.1002/cphc.202000336] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2020] [Revised: 06/03/2020] [Indexed: 11/08/2022]
Abstract
We describe three anisotropic ultrafast (UF) QUadrupolar Ordered SpectroscopY (QUOSY) 2D-NMR experiments (referred to as ADUF 2D NMR spectroscopy) designed for recording the 2 H homonuclear 2D spectra of weakly aligned (deuterated) solutes in sub-second experiment times. These new ADUF 2D experiments derive from the Q-COSY, Q-resolved and Q-DQ 2D pulse sequences (J. Am. Chem. Soc. 1999, 121, 5249) and allow the correlation between the two components of each quadrupolar doublet, and then their assignment on the basis of 2 H chemical shifts. The UF 2D pulse sequences are analyzed by using the Cartesian spin-operator formalism for spin I=1 nuclei with a small quadrupolar moment. The optimal experimental/practical conditions as well as the resolution, sensitivity and quantification issues of these ADUF 2D experiments are discussed on comparison to their conventional 2D counterparts and their analytical potentialities. Illustrative ADUF 2D experiments using deuterated achiral/prochiral/chiral solutes in poly-γ-benzyl-L-glutamate based chiral liquid crystals are presented, as well as the first examples of natural abundance deuterium (ANADUF) 2D spectrum using 14.1 T magnetic field and a basic gradient unit (53 G.cm-1 ) in oriented solvents.
Collapse
Affiliation(s)
- Boris Gouilleux
- Université Paris-Saclay, ICMMO, UMR CNRS 8182, RMN en Milieu Orienté, Bât. 410, 15, rue du Doyen Georges Poitou, UFR d'Orsay, 91405, Orsay cedex, France
| | - Abdelkrim Meddour
- Université Paris-Saclay, ICMMO, UMR CNRS 8182, RMN en Milieu Orienté, Bât. 410, 15, rue du Doyen Georges Poitou, UFR d'Orsay, 91405, Orsay cedex, France
| | - Philippe Lesot
- Université Paris-Saclay, ICMMO, UMR CNRS 8182, RMN en Milieu Orienté, Bât. 410, 15, rue du Doyen Georges Poitou, UFR d'Orsay, 91405, Orsay cedex, France
| |
Collapse
|
3
|
|
4
|
Zhao S, Sakai A, Zhang X, Vetting MW, Kumar R, Hillerich B, San Francisco B, Solbiati J, Steves A, Brown S, Akiva E, Barber A, Seidel RD, Babbitt PC, Almo SC, Gerlt JA, Jacobson MP. Prediction and characterization of enzymatic activities guided by sequence similarity and genome neighborhood networks. eLife 2014; 3. [PMID: 24980702 PMCID: PMC4113996 DOI: 10.7554/elife.03275] [Citation(s) in RCA: 73] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2014] [Accepted: 06/26/2014] [Indexed: 01/10/2023] Open
Abstract
Metabolic pathways in eubacteria and archaea often are encoded by operons and/or gene clusters (genome neighborhoods) that provide important clues for assignment of both enzyme functions and metabolic pathways. We describe a bioinformatic approach (genome neighborhood network; GNN) that enables large scale prediction of the in vitro enzymatic activities and in vivo physiological functions (metabolic pathways) of uncharacterized enzymes in protein families. We demonstrate the utility of the GNN approach by predicting in vitro activities and in vivo functions in the proline racemase superfamily (PRS; InterPro IPR008794). The predictions were verified by measuring in vitro activities for 51 proteins in 12 families in the PRS that represent ∼85% of the sequences; in vitro activities of pathway enzymes, carbon/nitrogen source phenotypes, and/or transcriptomic studies confirmed the predicted pathways. The synergistic use of sequence similarity networks3 and GNNs will facilitate the discovery of the components of novel, uncharacterized metabolic pathways in sequenced genomes. DOI:http://dx.doi.org/10.7554/eLife.03275.001 DNA molecules are polymers in which four nucleotides—guanine, adenine, thymine, and cytosine—are arranged along a sugar backbone. The sequence of these four nucleotides along the DNA strand determines the genetic code of the organism, and can be deciphered using various genome sequencing techniques. Microbial genomes are particularly easy to sequence as they contain fewer than several million nucleotides, compared with the 3 billion or so nucleotides that are present in the human genome. Reading a genome sequence is straight forward, but predicting the physiological functions of the proteins encoded by the genes in the sequence can be challenging. In a process called genome annotation, the function of protein is predicted by comparing the relevant gene to the genes of proteins with known functions. However, microbial genomes and proteins are hugely diverse and over 50% of the microbial genomes that have been sequenced have not yet been related to any physiological function. With thousands of microbial genomes waiting to be deciphered, large scale approaches are needed. Zhao et al. take advantage of a particular characteristic of microbial genomes. DNA sequences that code for two proteins required for the same task tend to be closer to each other in the genome than two sequences that code for unrelated functions. Operons are an extreme example; an operon is a unit of DNA that contains several genes that are expressed as proteins at the same time. Zhao et al. have developed a bioinformatic method called the genome neighbourhood network approach to work out the function of proteins based on their position relative to other proteins in the genome. When applied to the proline racemase superfamily (PRS), which contains enzymes with similar sequences that can catalyze three distinct chemical reactions, the new approach was able to assign a function to the majority of proteins in a public database of PRS enzymes, and also revealed new members of the PRS family. Experiments confirmed that the proteins behaved as predicted. The next challenge is to develop the genome neighbourhood network approach so that it can be applied to more complex systems. DOI:http://dx.doi.org/10.7554/eLife.03275.002
Collapse
Affiliation(s)
- Suwen Zhao
- Department of Pharmaceutical Chemistry, University of California, San Francisco, San Francisco, United States
| | - Ayano Sakai
- Institute for Genomic Biology, University of Illinois at Urbana-Champaign, Urbana, United States
| | - Xinshuai Zhang
- Institute for Genomic Biology, University of Illinois at Urbana-Champaign, Urbana, United States
| | - Matthew W Vetting
- Department of Biochemistry, Albert Einstein College of Medicine, New York, United States
| | - Ritesh Kumar
- Institute for Genomic Biology, University of Illinois at Urbana-Champaign, Urbana, United States
| | - Brandan Hillerich
- Department of Biochemistry, Albert Einstein College of Medicine, New York, United States
| | - Brian San Francisco
- Institute for Genomic Biology, University of Illinois at Urbana-Champaign, Urbana, United States
| | - Jose Solbiati
- Institute for Genomic Biology, University of Illinois at Urbana-Champaign, Urbana, United States
| | - Adam Steves
- Department of Bioengineering and Therapeutic Sciences, University of California, San Francisco, San Francisco, United States
| | - Shoshana Brown
- Department of Bioengineering and Therapeutic Sciences, University of California, San Francisco, San Francisco, United States
| | - Eyal Akiva
- Department of Bioengineering and Therapeutic Sciences, University of California, San Francisco, San Francisco, United States
| | - Alan Barber
- Department of Bioengineering and Therapeutic Sciences, University of California, San Francisco, San Francisco, United States
| | - Ronald D Seidel
- Department of Biochemistry, Albert Einstein College of Medicine, New York, United States
| | - Patricia C Babbitt
- Department of Bioengineering and Therapeutic Sciences, University of California, San Francisco, San Francisco, United States
| | - Steven C Almo
- Department of Biochemistry, Albert Einstein College of Medicine, New York, United States
| | - John A Gerlt
- Institute for Genomic Biology, University of Illinois at Urbana-Champaign, Urbana, United States
| | - Matthew P Jacobson
- Department of Pharmaceutical Chemistry, University of California, San Francisco, San Francisco, United States
| |
Collapse
|
5
|
Chan-Huot M, Lesot P, Pelupessy P, Duma L, Bodenhausen G, Duchambon P, Toney MD, Reddy UV, Suryaprakash N. “On-the-Fly” Kinetics of Enzymatic Racemization Using Deuterium NMR in DNA-Based Chiral Oriented Media. Anal Chem 2013; 85:4694-7. [DOI: 10.1021/ac4004002] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Monique Chan-Huot
- Institut Curie, Centre
de Recherche,
91405 Orsay Cedex, France
- INSERM U75991405 Orsay Cedex,
France
- ENS, Département
de Chimie,
75231 Paris Cedex 05, France and UMR 7203, CNRS/UPMC/ENS, Paris, France
| | - Philippe Lesot
- RMN en Milieu Orienté,
ICMMO, UMR-CNRS 8182, Université de Paris-Sud, 91405 Orsay
cedex, France
| | - Philippe Pelupessy
- ENS, Département
de Chimie,
75231 Paris Cedex 05, France and UMR 7203, CNRS/UPMC/ENS, Paris, France
| | - Luminita Duma
- ENS, Département
de Chimie,
75231 Paris Cedex 05, France and UMR 7203, CNRS/UPMC/ENS, Paris, France
| | - Geoffrey Bodenhausen
- ENS, Département
de Chimie,
75231 Paris Cedex 05, France and UMR 7203, CNRS/UPMC/ENS, Paris, France
- Ecole Polytechnique
Fédérale
de Lausanne, Institut des Sciences et Ingénierie Chimiques,
1015 Lausanne, Switzerland
| | - Patricia Duchambon
- Institut Curie, Centre
de Recherche,
91405 Orsay Cedex, France
- INSERM U75991405 Orsay Cedex,
France
| | - Michael D. Toney
- Department
of Chemistry, University of California-Davis, One Shields Avenue,
95616 Davis, California, United States
| | - U. Venkateswara Reddy
- Solid State and Structural Chemistry
Unit and NMR Research Centre, Indian Institute of Science, Bangalore 560012, India
| | - N. Suryaprakash
- Solid State and Structural Chemistry
Unit and NMR Research Centre, Indian Institute of Science, Bangalore 560012, India
| |
Collapse
|
6
|
Shanmuganathan M, Britz-McKibbin P. High quality drug screening by capillary electrophoresis: A review. Anal Chim Acta 2013; 773:24-36. [DOI: 10.1016/j.aca.2013.01.061] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2012] [Revised: 01/24/2013] [Accepted: 01/29/2013] [Indexed: 01/23/2023]
|
7
|
Shanmuganathan M, Britz-McKibbin P. Functional Screening of Pharmacological Chaperones via Restoration of Enzyme Activity upon Denaturation. Biochemistry 2012; 51:7651-3. [PMID: 22970758 DOI: 10.1021/bi301223f] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Affiliation(s)
- Meera Shanmuganathan
- Department of Chemistry
and Chemical Biology, McMaster University, 1280 Main Street West, Hamilton,
ON, Canada L8S 4M1
| | - Philip Britz-McKibbin
- Department of Chemistry
and Chemical Biology, McMaster University, 1280 Main Street West, Hamilton,
ON, Canada L8S 4M1
| |
Collapse
|
8
|
White CE, Gavina JMA, Morton R, Britz-McKibbin P, Finan TM. Control of hydroxyproline catabolism inSinorhizobium meliloti. Mol Microbiol 2012; 85:1133-47. [DOI: 10.1111/j.1365-2958.2012.08164.x] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
|
9
|
Poinsot V, Carpéné MA, Bouajila J, Gavard P, Feurer B, Couderc F. Recent advances in amino acid analysis by capillary electrophoresis. Electrophoresis 2012; 33:14-35. [PMID: 22213525 DOI: 10.1002/elps.201100360] [Citation(s) in RCA: 57] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
This paper describes the most important articles that have been published on amino acid analysis using CE during the period from June 2009 to May 2011 and follows the format of the previous articles of Smith (Electrophoresis 1999, 20, 3078-3083), Prata et al. (Electrophoresis 2001, 22, 4129-4138) and Poinsot et al. (Electrophoresis 2003, 24, 4047-4062; Electrophoresis 2006, 27, 176-194; Electrophoresis 2008, 29, 207-223; Electrophoresis 2010, 31, 105-121). We present new developments in amino acid analysis with CE, which are reported describing the use of lasers or light emitting diodes for fluorescence detection, conductimetry electrochemiluminescence detectors, mass spectrometry applications, and lab-on-a-chip applications using CE. In addition, we describe articles concerning clinical studies and neurochemical applications of these techniques.
Collapse
Affiliation(s)
- Véréna Poinsot
- Université Paul Sabatier, IMRCP, UMR 5623, Toulouse, France
| | | | | | | | | | | |
Collapse
|
10
|
|
11
|
Inhibitor screening of pharmacological chaperones for lysosomal β-glucocerebrosidase by capillary electrophoresis. Anal Bioanal Chem 2011; 399:2843-53. [PMID: 21286689 DOI: 10.1007/s00216-011-4671-6] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2010] [Revised: 01/04/2011] [Accepted: 01/05/2011] [Indexed: 12/30/2022]
Abstract
Pharmacological chaperones (PCs) represent a promising therapeutic strategy for treatment of lysosomal storage disorders based on enhanced stabilization and trafficking of mutant protein upon orthosteric and/or allosteric binding. Herein, we introduce a simple yet reliable enzyme assay using capillary electrophoresis (CE) for inhibitor screening of PCs that target the lysosomal enzyme, β-glucocerebrosidase (GCase). The rate of GCase-catalyzed hydrolysis of the synthetic substrate, 4-methylumbelliferyl-β-D: -glucopyranoside was performed using different classes of PCs by CE with UV detection under standardized conditions. The pH and surfactant dependence of inhibitor binding on recombinant GCase activity was also examined. Enzyme inhibition studies were investigated for five putative PCs including isofagomine (IFG), ambroxol, bromhexine, diltiazem, and fluphenazine. IFG was confirmed as a potent competitive inhibitor of recombinant GCase with half-maximal inhibitory concentration (IC(50)) of 47.5 ± 0.1 and 4.6 ± 1.4 nM at pH 5.2 and pH 7.2, respectively. In contrast, the four other non-carbohydrate amines were demonstrated to function as mixed-type inhibitors with high micromolar activity at neutral pH relative to acidic pH conditions reflective of the lysosome. CE offers a convenient platform for characterization of PCs as a way to accelerate the clinical translation of previously approved drugs for oral treatment of rare genetic disorders, such as Gaucher disease.
Collapse
|
12
|
Fundamental aspects of chiral electromigration techniques and application in pharmaceutical and biomedical analysis. J Pharm Biomed Anal 2010; 55:688-701. [PMID: 21131154 DOI: 10.1016/j.jpba.2010.11.018] [Citation(s) in RCA: 76] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2010] [Revised: 11/11/2010] [Accepted: 11/12/2010] [Indexed: 11/23/2022]
Abstract
Capillary electromigration techniques are often considered ideal methods for the analysis of chiral compounds due to the high resolution power and flexibility of the technique. Therefore, especially capillary electrophoresis using a chiral selector in the background electrolyte, also termed electrokinetic chromatography, has found widespread acceptance in analytical enantioseparations of drug compounds in pharmaceuticals and biological media. Moreover, mechanistic studies on analyte complexation by the chiral selectors have continuously been conducted in an effort to rationalize enantioseparation phenomena. These studies combined capillary electrophoresis with spectroscopic techniques such as nuclear magnetic resonance and/or molecular modeling. The present review focuses on recent examples of mechanistic aspects of capillary electromigration enantioseparations and summarizes recent applications of chiral pharmaceutical and biomedical analysis published between January 2009 and August 2010.
Collapse
|