1
|
Long W, You M, Li J, Wang Y, Wang D, Tao X, Rao L, Xia Z, Fu Q. Sulfonic Functionalized Polydopamine Coatings with pH-Independent Surface Charge for Optimizing Capillary Electrophoretic Separations. Molecules 2024; 29:1600. [PMID: 38611879 PMCID: PMC11013714 DOI: 10.3390/molecules29071600] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2024] [Revised: 03/30/2024] [Accepted: 03/31/2024] [Indexed: 04/14/2024] Open
Abstract
Enhancing the pH-independence and controlling the magnitude of electroosmotic flow (EOF) are critical for highly efficient and reproducible capillary electrophoresis (CE) separations. Herein, we present a novel capillary modification method utilizing sulfonated periodate-induced polydopamine (SPD) coating to achieve pH-independent and highly reproducible cathodic EOF in CE. The SPD-coated capillaries were obtained through post-sulfonation treatment of periodate-induced PDA (PDA-SP) coatings adhered on the capillary inner surface. The successful immobilization of the SPD coating and the substantial grafting of sulfonic acid groups were confirmed by a series of characterization techniques. The excellent capability of PDA-SP@capillary in masking silanol groups and maintaining a highly robust EOF mobility was verified. Additionally, the parameters of sulfonation affecting the EOF mobilities were thoroughly examined. The obtained optimum SPD-coated column offered the anticipated highly pH-independent and high-strength cathodic EOF, which is essential for enhancing the CE separation performance and improving analysis efficiency. Consequently, the developed SPD-coated capillaries enabled successful high-efficiency separation of aromatic acids and nucleosides and rapid cyclodextrin-based chiral analysis of racemic drugs. Moreover, the SPD-coated columns exhibited a long lifetime and demonstrated good intra-day, inter-day, and column-to-column repeatability.
Collapse
Affiliation(s)
- Wenwen Long
- School of Pharmacy, Southwest Medical University, Luzhou 646000, China
| | - Mingyue You
- School of Pharmacy, Southwest Medical University, Luzhou 646000, China
| | - Jieli Li
- School of Pharmacy, Southwest Medical University, Luzhou 646000, China
| | - Yan Wang
- School of Pharmacy, Southwest Medical University, Luzhou 646000, China
| | - Dan Wang
- School of Pharmacy, Southwest Medical University, Luzhou 646000, China
| | - Xueping Tao
- School of Pharmacy, Southwest Medical University, Luzhou 646000, China
| | - Li Rao
- Chongqing Key Laboratory of High Active Traditional Chinese Drug Delivery System, Chongqing Medical and Pharmaceutical College, Chongqing 401331, China
| | - Zhining Xia
- School of Pharmaceutical Sciences, Chongqing University, Chongqing 401331, China
| | - Qifeng Fu
- School of Pharmacy, Southwest Medical University, Luzhou 646000, China
| |
Collapse
|
2
|
Jia H, Ren J, Kong Y, Ji Z, Guo S, Li J. Recent Advances in Dopamine-Based Membrane Surface Modification and Its Membrane Distillation Applications. MEMBRANES 2024; 14:81. [PMID: 38668109 PMCID: PMC11052433 DOI: 10.3390/membranes14040081] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/28/2023] [Revised: 09/02/2023] [Accepted: 09/08/2023] [Indexed: 04/28/2024]
Abstract
Surface modification of membranes is essential for improving flux and resistance to contamination for membranes. This is of great significance for membrane distillation, which relies on the vapor pressure difference across the membrane as the driving force. In recent years, biomimetic mussel-inspired substances have become the research hotspots. Among them, dopamine serves as surface modifiers that would achieve highly desirable and effective membrane applications owing to their unique physicochemical properties, such as universal adhesion, enhanced hydrophilicity, tunable reducibility, and excellent thermal conductivity. The incorporation of a hydrophilic layer, along with the utilization of photothermal properties and post-functionalization capabilities in modified membranes, effectively addresses challenges such as low flux, contamination susceptibility, and temperature polarization during membrane distillation. However, to the best of our knowledge, there is still a lack of comprehensive and in-depth discussions. Therefore, this paper systematically compiles the modification method of dopamine on the membrane surface and summarizes its application and mechanism in membrane distillation for the first time. It is believed that this paper would provide a reference for dopamine-assisted membrane separation during production, and further promote its practical application.
Collapse
Affiliation(s)
| | - Jing Ren
- Shanxi Laboratory for Yellow River, Institute of Resources and Environmental Engineering, Shanxi University, Taiyuan 030006, China; (H.J.); (Y.K.); (Z.J.); (S.G.)
| | | | | | | | - Jianfeng Li
- Shanxi Laboratory for Yellow River, Institute of Resources and Environmental Engineering, Shanxi University, Taiyuan 030006, China; (H.J.); (Y.K.); (Z.J.); (S.G.)
| |
Collapse
|
3
|
Gu L, Guan J, Huang Z, Huo H, Shi S, Zhang D, Yan F. β-Cyclodextrin covalent organic framework supported by polydopamine as stationary phases for electrochromatographic enantioseparation. Electrophoresis 2022; 43:1446-1454. [PMID: 35353923 DOI: 10.1002/elps.202200029] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2021] [Revised: 03/24/2022] [Accepted: 03/26/2022] [Indexed: 02/01/2023]
Abstract
In this work, a new open-tubular capillary electrochromatography (OT-CEC) column was prepared using β-cyclodextrin covalent organic framework (β-CD COF) as a stationary phase. Polydopamine was used to assist fabrication of β-CD COF on an inner wall of a fused-silica capillary. The coating layer on the capillary was characterized by scanning electron microscopy (SEM) and Fourier transform infrared spectroscopy (FTIR). Electroosmotic flow (EOF) was also studied to evaluate the variation of the inner wall of immobilized columns. Furthermore, the chiral separation effectiveness of the fabricated capillary column was evaluated by CEC using enantiomers of several related proton pump inhibitors as model analytes, including omeprazole, lansoprazole, pantoprazole and tenatoprazole. The effects of bonding time and concentration of β-CD COF, the type, concentration and pH of buffer, applied voltage were investigated to obtain satisfactory enantioselectivity. In the optimum conditions, the enantiomers of four analytes were resolved within 15 min with resolutions of 1.63-2.62. The relative standard deviation values for migration times and resolutions of the analytes representing intraday and interday were less than 6.75% and 4.24%, respectively. The results reveal that β-CD COF has great potential as chiral-stationary phases for enantioseparation in CEC.
Collapse
Affiliation(s)
- Lei Gu
- College of Chemical Engineering, Liaoning & Shenyang Key Laboratory of Functional Dye and Pigment, Shenyang University of Chemical Technology, Shenyang, P. R. China
| | - Jin Guan
- College of Chemical Engineering, Liaoning & Shenyang Key Laboratory of Functional Dye and Pigment, Shenyang University of Chemical Technology, Shenyang, P. R. China
| | - Ziwei Huang
- College of Chemical Engineering, Liaoning & Shenyang Key Laboratory of Functional Dye and Pigment, Shenyang University of Chemical Technology, Shenyang, P. R. China
| | - Hongyi Huo
- College of Chemical Engineering, Liaoning & Shenyang Key Laboratory of Functional Dye and Pigment, Shenyang University of Chemical Technology, Shenyang, P. R. China
| | - Shuang Shi
- College of Chemical Engineering, Liaoning & Shenyang Key Laboratory of Functional Dye and Pigment, Shenyang University of Chemical Technology, Shenyang, P. R. China
| | - Dongxiang Zhang
- College of Chemical Engineering, Liaoning & Shenyang Key Laboratory of Functional Dye and Pigment, Shenyang University of Chemical Technology, Shenyang, P. R. China
| | - Feng Yan
- College of Science, Shenyang University of Chemical Technology, Shenyang, P. R. China
| |
Collapse
|
4
|
Mei H, Mahalik JP, Lee D, Laws TS, Terlier T, Stein GE, Kumar R, Verduzco R. Understanding interfacial segregation in polymer blend films with random and mixed side chain bottlebrush copolymer additives. SOFT MATTER 2021; 17:9028-9039. [PMID: 34523659 DOI: 10.1039/d1sm01146d] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Bottlebrush polymers are complex macromolecules with tunable physical properties dependent on the chemistry and architecture of both the side chains and the backbone. Prior work has demonstrated that bottlebrush polymer additives can be used to control the interfacial properties of blends with linear polymers but has not specifically addressed the effects of bottlebrush side chain microstructures. Here, using a combination of experiments and self-consistent field theory (SCFT) simulations, we investigated the effects of side chain microstructures by comparing the segregation of bottlebrush additives having random copolymer side chains with bottlebrush additives having a mixture of two different homopolymer side chain chemistries. Specifically, we synthesized bottlebrush polymers with either poly(styrene-ran-methyl methacrylate) side chains or with a mixture of polystyrene (PS) and poly(methyl methacrylate) (PMMA) side chains. The bottlebrush additives were matched in terms of PS and PMMA compositions, and they were blended with linear PS or PMMA chains that ranged in length from shorter to longer than the bottlebrush side chains. Experiments revealed similar behaviors of the two types of bottlebrushes, with a slight preference for mixed side-chain bottlebrushes at the film surface. SCFT simulations were qualitatively consistent with experimental observations, predicting only slight differences in the segregation of bottlebrush additives driven by side chain microstructures. Specifically, these slight differences were driven by the chemistries of the bottlebrush polymer joints and side chain end-groups, which were entropically repelled and attracted to interfaces, respectively. Using SCFT, we also demonstrated that the interfacial behaviors were dominated by entropic effects with high molecular weight linear polymers, leading to enrichment of bottlebrush near interfaces. Surprisingly, the SCFT simulations showed that the chemistry of the joints connecting the bottlebrush backbones and side chains played a more significant role compared with the side chain end groups in affecting differences in surface excess of bottlebrushes with random and mixed side chains. This work provides new insights into the effects of side chain microstructure on segregation of bottlebrush polymer additives.
Collapse
Affiliation(s)
- Hao Mei
- Department of Chemical and Biomolecular Engineering, Rice University, Houston, TX 77005, USA.
| | - Jyoti P Mahalik
- Department of Polymer Science and Engineering, University of Massachusetts, Amherst, MA 01003, USA
- Center for Nanophase Materials Sciences, Oak Ridge National Laboratory, Oak Ridge, TN 37830, USA.
| | - Dongjoo Lee
- Department of Chemical and Biomolecular Engineering, Rice University, Houston, TX 77005, USA.
| | - Travis S Laws
- Department of Chemical and Biomolecular Engineering, University of Tennessee, Knoxville, TN 37996, USA
| | - Tanguy Terlier
- SIMS Lab, Shared Equipment Authority, Rice University, Houston, TX 77005, USA
| | - Gila E Stein
- Department of Chemical and Biomolecular Engineering, University of Tennessee, Knoxville, TN 37996, USA
| | - Rajeev Kumar
- Center for Nanophase Materials Sciences, Oak Ridge National Laboratory, Oak Ridge, TN 37830, USA.
| | - Rafael Verduzco
- Department of Chemical and Biomolecular Engineering, Rice University, Houston, TX 77005, USA.
- Materials Science and NanoEngineering, Rice University, Houston, TX 77005, USA
| |
Collapse
|
5
|
Yan J, Marina PF, Blencowe A. A Facile Strategy for the High Yielding, Quantitative Conversion of Polyglycol End-Groups to Amines. Polymers (Basel) 2021; 13:1403. [PMID: 33926044 PMCID: PMC8123656 DOI: 10.3390/polym13091403] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2021] [Revised: 04/20/2021] [Accepted: 04/22/2021] [Indexed: 11/22/2022] Open
Abstract
Amino end-group functionalised polyglycols are important intermediates in the synthesis of sophisticated polymeric architectures and biomaterials. Herein, we report a facile strategy for the end-group conversion of hydroxyl-terminated polyglycols to amino-terminated polyglycols in high isolated yields and with excellent end-group fidelity. Following traditional conversion of polyglycol hydroxyl end-groups to azides via the corresponding mesylate, reduction with zinc in the presence of ammonium chloride afforded a range of amino end-group functionalised poly(ethylene glycol) and poly(propylene glycol) homopolymers and copolymers with isolated yields of 82-99% and end-group conversions of >99% as determined by NMR spectroscopy and MALDI ToF MS. Furthermore, this process is applicable to a sequential reagent addition approach without intermediate polymer isolation steps with only a slight reduction in yield and end-group conversion (95%). Importantly, a simple work-up procedure provides access to high purity polyglycols without contamination from other reagents.
Collapse
Affiliation(s)
- Jie Yan
- Applied Chemistry and Translational Biomaterials (ACTB) Group, Clinical and Health Sciences, University of South Australia, Adelaide, SA 5001, Australia
| | - Paula Facal Marina
- Applied Chemistry and Translational Biomaterials (ACTB) Group, Clinical and Health Sciences, University of South Australia, Adelaide, SA 5001, Australia
| | - Anton Blencowe
- Applied Chemistry and Translational Biomaterials (ACTB) Group, Clinical and Health Sciences, University of South Australia, Adelaide, SA 5001, Australia
| |
Collapse
|
6
|
Gui Y, Ji B, Yi G, Li X, Zhang K, Fu Q. Polydopamine-Assisted Rapid One-Step Immobilization of L-Arginine in Capillary as Immobilized Chiral Ligands for Enantioseparation of Dansyl Amino Acids by Chiral Ligand Exchange Capillary Electrochromatography. Molecules 2021; 26:molecules26061800. [PMID: 33806847 PMCID: PMC8004743 DOI: 10.3390/molecules26061800] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2021] [Revised: 03/18/2021] [Accepted: 03/21/2021] [Indexed: 01/27/2023] Open
Abstract
Herein, a novel L-arginine (L-Arg)-modified polydopamine (PDA)-coated capillary (PDA/L-Arg@capillary) was firstly fabricated via the basic amino-acid-induced PDA co-deposition strategy and employed to constitute a new chiral ligand exchange capillary electrochromatography (CLE-CEC) method for the high-performance enantioseparation of D,L-amino acids (D,L-AAs) with L-Arg as the immobilized chiral ligand coordinating with the central metal ion Zn(II) as running buffer. Assisted by hydrothermal treatment, the robust immobilization of L-Arg on the capillary inner wall could be facilely achieved within 1 h, prominently improving the synthesis efficiency and simplifying the preparation procedure. The successful preparation of PDA/L-Arg coatings in the capillary was systematically characterized and confirmed using several methods. In comparison with bare and PDA-functionalized capillaries, the enantioseparation capability of the presented CLE-CEC system was significantly enhanced. Eight D,L-AAs were completely separated and three pairs were partially separated under the optimal conditions. The prepared PDA/L-Arg@capillary showed good repeatability and stability. The potential mechanism of the greatly enhanced enantioseparation performance obtained by PDA/L-Arg@capillary was also explored. Moreover, the proposed method was further utilized for studying the enzyme kinetics of L-glutamic dehydrogenase, exhibiting its promising prospects in enzyme assays and other related applications.
Collapse
Affiliation(s)
- Yuanqi Gui
- School of Pharmacy, Southwest Medical University, Luzhou 646000, China; (Y.G.); (B.J.); (G.Y.); (K.Z.)
| | - Baian Ji
- School of Pharmacy, Southwest Medical University, Luzhou 646000, China; (Y.G.); (B.J.); (G.Y.); (K.Z.)
| | - Gaoyi Yi
- School of Pharmacy, Southwest Medical University, Luzhou 646000, China; (Y.G.); (B.J.); (G.Y.); (K.Z.)
| | - Xiuju Li
- School of Pharmacy, Tongren Polytechnic College, Tongren 554300, China
- Correspondence: (X.L.); (Q.F.); Tel.: +86-856-6909046 (X.L.); +86-830-3161291 (Q.F.)
| | - Kailian Zhang
- School of Pharmacy, Southwest Medical University, Luzhou 646000, China; (Y.G.); (B.J.); (G.Y.); (K.Z.)
| | - Qifeng Fu
- School of Pharmacy, Southwest Medical University, Luzhou 646000, China; (Y.G.); (B.J.); (G.Y.); (K.Z.)
- Correspondence: (X.L.); (Q.F.); Tel.: +86-856-6909046 (X.L.); +86-830-3161291 (Q.F.)
| |
Collapse
|
7
|
Sun F, Lu J, Wang Y, Xiong J, Gao C, Xu J. Reductant-assisted polydopamine-modified membranes for efficient water purification. Front Chem Sci Eng 2020. [DOI: 10.1007/s11705-020-1987-9] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|
8
|
Cui C, Ming H, Li L, Li M, Gao J, Han T, Wang Y. Fabrication of an in-situ co-immobilized enzyme in mesoporous silica for synthesizing GSH with ATP regeneration. MOLECULAR CATALYSIS 2020. [DOI: 10.1016/j.mcat.2020.110870] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
|
9
|
Li M, Shen H, Zhou Z, He W, Su P, Song J, Yang Y. Controllable and high‐performance immobilized enzyme reactor: DNA‐directed immobilization of multienzyme in polyamidoamine dendrimer‐functionalized capillaries. Electrophoresis 2020; 41:335-344. [DOI: 10.1002/elps.201900428] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2019] [Revised: 12/30/2019] [Accepted: 01/03/2020] [Indexed: 12/16/2022]
Affiliation(s)
- Mengqi Li
- Key Laboratory of Environmentally Harmful Chemical Analysis, College of ChemistryBeijing University of Chemical Technology Beijing P. R. China
| | - Hao Shen
- Key Laboratory of Environmentally Harmful Chemical Analysis, College of ChemistryBeijing University of Chemical Technology Beijing P. R. China
| | - Zixin Zhou
- Key Laboratory of Environmentally Harmful Chemical Analysis, College of ChemistryBeijing University of Chemical Technology Beijing P. R. China
| | - Wenting He
- Key Laboratory of Environmentally Harmful Chemical Analysis, College of ChemistryBeijing University of Chemical Technology Beijing P. R. China
| | - Ping Su
- Key Laboratory of Environmentally Harmful Chemical Analysis, College of ChemistryBeijing University of Chemical Technology Beijing P. R. China
| | - Jiayi Song
- Key Laboratory of Environmentally Harmful Chemical Analysis, College of ChemistryBeijing University of Chemical Technology Beijing P. R. China
| | - Yi Yang
- Key Laboratory of Environmentally Harmful Chemical Analysis, College of ChemistryBeijing University of Chemical Technology Beijing P. R. China
| |
Collapse
|
10
|
Fan D, Wang G, Ma A, Wang W, Chen H, Bai L, Yang H, Wei D, Yang L. Surface Engineering of Porous Carbon for Self-Healing Nanocomposite Hydrogels by Mussel-Inspired Chemistry and PET-ATRP. ACS APPLIED MATERIALS & INTERFACES 2019; 11:38126-38135. [PMID: 31536325 DOI: 10.1021/acsami.9b12264] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
In this work, surface-functionalized microcapsules from porous carbon nanospheres (PCNs) were successfully prepared by mussel-inspired chemistry with polydopamine (PDA) and metal-free photoinduced electron transfer-atom transfer radical polymerization (PET-ATRP). These functional microcapsules are introduced into self-healing hydrogels to enhance their mechanical strength. The PCNs synthesized by a simple soft template method are mixed with linseed oil for loading of the biomass healing agent, and the microcapsules are first prepared by coating PDA. PDA coatings were used to immobilize the ATRP initiator for initiating 4-vinylpyridine on the surface of microcapsules by PET-ATRP. Using these functional microcapsules, the self-healing efficiency was about 92.5% after 4 h at ambient temperature and the healed tensile strength can be held at 2.5 MPa with a fracture strain of 625.2%. All results indicated that the surface-functionalized microcapsules for self-healing hydrogels have remarkable biocompatibility and mechanical properties.
Collapse
Affiliation(s)
- Dechao Fan
- School of Chemistry and Materials Science, Key Laboratory of High Performance and Functional Polymer in the Universities of Shandong Province; Collaborative Innovation Center of Shandong Province for High Performance Fibers and Their Composites , Ludong University , Yantai 264025 , China
| | - Guanglin Wang
- School of Chemistry and Materials Science, Key Laboratory of High Performance and Functional Polymer in the Universities of Shandong Province; Collaborative Innovation Center of Shandong Province for High Performance Fibers and Their Composites , Ludong University , Yantai 264025 , China
| | - Anyao Ma
- School of Chemistry and Materials Science, Key Laboratory of High Performance and Functional Polymer in the Universities of Shandong Province; Collaborative Innovation Center of Shandong Province for High Performance Fibers and Their Composites , Ludong University , Yantai 264025 , China
| | - Wenxiang Wang
- School of Chemistry and Materials Science, Key Laboratory of High Performance and Functional Polymer in the Universities of Shandong Province; Collaborative Innovation Center of Shandong Province for High Performance Fibers and Their Composites , Ludong University , Yantai 264025 , China
| | - Hou Chen
- School of Chemistry and Materials Science, Key Laboratory of High Performance and Functional Polymer in the Universities of Shandong Province; Collaborative Innovation Center of Shandong Province for High Performance Fibers and Their Composites , Ludong University , Yantai 264025 , China
| | - Liangjiu Bai
- School of Chemistry and Materials Science, Key Laboratory of High Performance and Functional Polymer in the Universities of Shandong Province; Collaborative Innovation Center of Shandong Province for High Performance Fibers and Their Composites , Ludong University , Yantai 264025 , China
| | - Huawei Yang
- School of Chemistry and Materials Science, Key Laboratory of High Performance and Functional Polymer in the Universities of Shandong Province; Collaborative Innovation Center of Shandong Province for High Performance Fibers and Their Composites , Ludong University , Yantai 264025 , China
| | - Donglei Wei
- School of Chemistry and Materials Science, Key Laboratory of High Performance and Functional Polymer in the Universities of Shandong Province; Collaborative Innovation Center of Shandong Province for High Performance Fibers and Their Composites , Ludong University , Yantai 264025 , China
| | - Lixia Yang
- School of Chemistry and Materials Science, Key Laboratory of High Performance and Functional Polymer in the Universities of Shandong Province; Collaborative Innovation Center of Shandong Province for High Performance Fibers and Their Composites , Ludong University , Yantai 264025 , China
| |
Collapse
|
11
|
Liu XR, Pan C, Wang YM. PMOXA/PAA brushes toward on-line preconcentration for BSA in capillary electrophoresis. CHINESE J CHEM PHYS 2019. [DOI: 10.1063/1674-0068/cjcp1805130] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022]
Affiliation(s)
- Xiao-ru Liu
- CAS Key Laboratory of Soft Matter Chemistry, Department of Polymer Science and Engineering, University of Science and Technology of China, Hefei 230026, China
| | - Chao Pan
- CAS Key Laboratory of Soft Matter Chemistry, Department of Polymer Science and Engineering, University of Science and Technology of China, Hefei 230026, China
| | - Yan-mei Wang
- CAS Key Laboratory of Soft Matter Chemistry, Department of Polymer Science and Engineering, University of Science and Technology of China, Hefei 230026, China
| |
Collapse
|
12
|
Tang Y, Cui X, Zhang Y, Ji Y. Preparation and evaluation of a polydopamine-modified capillary silica monolith for capillary electrochromatography. NEW J CHEM 2019. [DOI: 10.1039/c8nj04912b] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
A novel capillary silica monolith (CSM) with surface modification was prepared for capillary electrochromatography (CEC) by using polydopamine (PDA) as a functional coating.
Collapse
Affiliation(s)
- Yixia Tang
- Department of Analytical Chemistry
- China Pharmaceutical University
- Nanjing 210009
- China
- Key Laboratory of Drug Quality Control and Pharmacovigilance
| | - Xiaoqin Cui
- Department of Analytical Chemistry
- China Pharmaceutical University
- Nanjing 210009
- China
- Key Laboratory of Drug Quality Control and Pharmacovigilance
| | - Yuefen Zhang
- Department of Analytical Chemistry
- China Pharmaceutical University
- Nanjing 210009
- China
- Key Laboratory of Drug Quality Control and Pharmacovigilance
| | - Yibing Ji
- Department of Analytical Chemistry
- China Pharmaceutical University
- Nanjing 210009
- China
- Key Laboratory of Drug Quality Control and Pharmacovigilance
| |
Collapse
|
13
|
Cui X, Xu S, Jin C, Ji Y. Recent advances in the preparation and application of mussel-inspired polydopamine-coated capillary tubes in microextraction and miniaturized chromatography systems. Anal Chim Acta 2018; 1033:35-48. [DOI: 10.1016/j.aca.2018.04.070] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2017] [Revised: 04/26/2018] [Accepted: 04/28/2018] [Indexed: 12/13/2022]
|
14
|
Dinh TN, Hou S, Park S, Shalek BA, Jeong KJ. Gelatin Hydrogel Combined with Polydopamine Coating to Enhance Tissue Integration of Medical Implants. ACS Biomater Sci Eng 2018; 4:3471-3477. [PMID: 31131316 DOI: 10.1021/acsbiomaterials.8b00886] [Citation(s) in RCA: 41] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Soft tissue integration of medical implants is important to prevent bacterial infection and implant failure. A bioadhesive that forms firm binding between the implant and the surrounding tissue and facilitates the wound-healing process will be a great tool to establish the desired tissue-implant integration. In this project, we introduce a novel method that can be used to enhance integration between any implant material and any tissue using an enzyme-crosslinked gelatin hydrogel combined with polydopamine (PDA) coating. PDA coating was shown to enhance the binding between the gelatin hydrogel and three model implant materials - aluminum, poly(methyl methacrylate) (PMMA) and titanium. When combined with the gelatin hydrogel, pig cornea tissue adhered more strongly to the PDA coated surfaces than to the uncoated surfaces. The enzyme-crosslinked gelatin hydrogel was non-cytotoxic to human dermal fibroblasts and it also allowed the cells to adhere and proliferate. Altogether, the results indicate that the combination of PDA coating with gelatin hydrogel can be used to enhance the integration of various medical implants.
Collapse
Affiliation(s)
- Thanh N Dinh
- Department of Chemical Engineering, University of New Hampshire, Durham, NH 03824
| | - Shujie Hou
- Department of Chemical Engineering, University of New Hampshire, Durham, NH 03824
| | - Shiwha Park
- Department of Chemical Engineering, University of New Hampshire, Durham, NH 03824
| | - Benjamin A Shalek
- Department of Chemical Engineering, University of New Hampshire, Durham, NH 03824
| | - Kyung Jae Jeong
- Department of Chemical Engineering, University of New Hampshire, Durham, NH 03824
| |
Collapse
|
15
|
Qiu WZ, Yang HC, Xu ZK. Dopamine-assisted co-deposition: An emerging and promising strategy for surface modification. Adv Colloid Interface Sci 2018; 256:111-125. [PMID: 29776584 DOI: 10.1016/j.cis.2018.04.011] [Citation(s) in RCA: 129] [Impact Index Per Article: 21.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2017] [Revised: 04/12/2018] [Accepted: 04/23/2018] [Indexed: 01/20/2023]
Abstract
Mussel-inspired chemistry based on polydopamine (PDA) deposition has been developed as a facile and universal method for the surface modification of various materials. However, the inherent shortcomings of PDA coatings still impede their practical applications in the development of functional materials. In this review, we introduce the recent progress in the emerging dopamine-assisted co-deposition as a one-step strategy for functionalizing PDA-based coatings, and improving them in the aspects of deposition rate, morphology uniformity, surface wettability and chemical stability. The co-deposition mechanisms are categorized and discussed according to the interactions of dopamine or PDA with the introduced co-component. We also emphasize the influence of these interactions on the properties of the resultant PDA-based coatings. Meanwhile, we conclude the representative potential applications of those dopamine-assisted co-deposited coatings in material science, especially including separation membranes and biomaterials. Finally, some important issues and perspectives for theoretical study and applications are briefly discussed.
Collapse
Affiliation(s)
- Wen-Ze Qiu
- MOE Key Laboratory of Macromolecular Synthesis and Functionalization, Department of Polymer Science and Engineering, Zhejiang University, Hangzhou 310027, China
| | - Hao-Cheng Yang
- MOE Key Laboratory of Macromolecular Synthesis and Functionalization, Department of Polymer Science and Engineering, Zhejiang University, Hangzhou 310027, China
| | - Zhi-Kang Xu
- MOE Key Laboratory of Macromolecular Synthesis and Functionalization, Department of Polymer Science and Engineering, Zhejiang University, Hangzhou 310027, China.
| |
Collapse
|
16
|
Chen D, Mei Y, Hu W, Li CM. Electrochemically enhanced antibody immobilization on polydopamine thin film for sensitive surface plasmon resonance immunoassay. Talanta 2018; 182:470-475. [DOI: 10.1016/j.talanta.2018.02.038] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2017] [Revised: 02/02/2018] [Accepted: 02/08/2018] [Indexed: 12/31/2022]
|
17
|
Ryu JH, Messersmith PB, Lee H. Polydopamine Surface Chemistry: A Decade of Discovery. ACS APPLIED MATERIALS & INTERFACES 2018; 10:7523-7540. [PMID: 29465221 PMCID: PMC6320233 DOI: 10.1021/acsami.7b19865] [Citation(s) in RCA: 860] [Impact Index Per Article: 143.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/04/2023]
Abstract
Polydopamine is one of the simplest and most versatile approaches to functionalizing material surfaces, having been inspired by the adhesive nature of catechols and amines in mussel adhesive proteins. Since its first report in 2007, a decade of studies on polydopamine molecular structure, deposition conditions, and physicochemical properties have ensued. During this time, potential uses of polydopamine coatings have expanded in many unforeseen directions, seemingly only limited by the creativity of researchers seeking simple solutions to manipulating surface chemistry. In this review, we describe the current state of the art in polydopamine coating methods, describe efforts underway to uncover and tailor the complex structure and chemical properties of polydopamine, and identify emerging trends and needs in polydopamine research, including the use of dopamine analogs, nitrogen-free polyphenolic precursors, and improvement of coating mechanical properties.
Collapse
Affiliation(s)
- Ji Hyun Ryu
- Department of Carbon Fusion Engineering, Wonkwang University, Iksan, Jeonbuk 54538, South Korea
| | - Phillip B. Messersmith
- Departments of Bioengineering and Materials Science and Engineering, University of California, Berkeley, 210 Hearst Mining Building, Berkeley, California 94720-1760, United States
- Materials Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, California 94720, United States
| | - Haeshin Lee
- Department of Chemistry, Korea Advanced Institute of Science and Technology (KAIST), 291 University Road, Daejeon 34141, South Korea
- Center for Nature-inspired Technology (CNiT), KAIST Institute of NanoCentury, 291 University Road, Daejeon 34141, South Korea
| |
Collapse
|
18
|
Münch AS, Wölk M, Malanin M, Eichhorn KJ, Simon F, Uhlmann P. Smart functional polymer coatings for paper with anti-fouling properties. J Mater Chem B 2018; 6:830-843. [DOI: 10.1039/c7tb02886e] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Preparation of functionalized cellulose films on SiO2 to introduce protein repellent properties evaluated by spectroscopic in situ ellipsometry.
Collapse
Affiliation(s)
| | - Michele Wölk
- Leibniz-Institut für Polymerforschung Dresden e.V
- D-01069 Dresden
- Germany
| | - Mikhail Malanin
- Leibniz-Institut für Polymerforschung Dresden e.V
- D-01069 Dresden
- Germany
| | | | - Frank Simon
- Leibniz-Institut für Polymerforschung Dresden e.V
- D-01069 Dresden
- Germany
| | - Petra Uhlmann
- Leibniz-Institut für Polymerforschung Dresden e.V
- D-01069 Dresden
- Germany
- Department of Chemistry
- Hamilton Hall
| |
Collapse
|
19
|
Goh SC, Luan Y, Wang X, Du H, Chau C, Schellhorn HE, Brash JL, Chen H, Fang Q. Polydopamine–polyethylene glycol–albumin antifouling coatings on multiple substrates. J Mater Chem B 2018; 6:940-949. [DOI: 10.1039/c7tb02636f] [Citation(s) in RCA: 37] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Polydopamine–PEG coatings on different substrates: effects of PDA layer properties on PEG grafting and anti-biofouling properties.
Collapse
Affiliation(s)
- S. C. Goh
- School of Biomedical Engineering
- McMaster University
- Hamilton
- Canada
| | - Y. Luan
- College of Chemistry, Chemical Engineering and Materials Science, Soochow University
- Suzhou
- P. R. China
| | - X. Wang
- College of Chemistry, Chemical Engineering and Materials Science, Soochow University
- Suzhou
- P. R. China
| | - H. Du
- College of Chemistry, Chemical Engineering and Materials Science, Soochow University
- Suzhou
- P. R. China
| | - C. Chau
- School of Biomedical Engineering
- McMaster University
- Hamilton
- Canada
| | | | - J. L. Brash
- School of Biomedical Engineering
- McMaster University
- Hamilton
- Canada
| | - H. Chen
- College of Chemistry, Chemical Engineering and Materials Science, Soochow University
- Suzhou
- P. R. China
| | - Q. Fang
- School of Biomedical Engineering
- McMaster University
- Hamilton
- Canada
- Department of Engineering Physics, McMaster University
| |
Collapse
|
20
|
Polydopamine-functionalized poly(ether ether ketone) tube for capillary electrophoresis-mass spectrometry. Anal Chim Acta 2017; 987:64-71. [DOI: 10.1016/j.aca.2017.08.033] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2017] [Revised: 08/11/2017] [Accepted: 08/14/2017] [Indexed: 11/20/2022]
|
21
|
Du H, Zhang C, Mao K, Wang Y. A star-shaped poly(2-methyl-2-oxazoline)-based antifouling coating: Application in investigation of the interaction between acetaminophen and bovine serum albumin by frontal analysis capillary electrophoresis. Talanta 2017; 170:275-285. [DOI: 10.1016/j.talanta.2017.04.012] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2016] [Revised: 03/27/2017] [Accepted: 04/05/2017] [Indexed: 12/01/2022]
|
22
|
Guo H, Niu X, Pan C, Yi T, Chen H, Chen X. A novel in situ strategy for the preparation of a β-cyclodextrin/polydopamine-coated capillary column for capillary electrochromatography enantioseparations. J Sep Sci 2017; 40:2645-2653. [DOI: 10.1002/jssc.201700152] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2017] [Revised: 03/31/2017] [Accepted: 04/24/2017] [Indexed: 01/02/2023]
Affiliation(s)
- Heying Guo
- State Key Laboratory of Applied Organic Chemistry; College of Chemistry and Chemical Engineering; Key Laboratory of Nonferrous Metal Chemistry and Resources Utilization of Gansu Province; Lanzhou University; Lanzhou China
| | - Xiaoying Niu
- State Key Laboratory of Applied Organic Chemistry; College of Chemistry and Chemical Engineering; Key Laboratory of Nonferrous Metal Chemistry and Resources Utilization of Gansu Province; Lanzhou University; Lanzhou China
| | - Congjie Pan
- State Key Laboratory of Applied Organic Chemistry; College of Chemistry and Chemical Engineering; Key Laboratory of Nonferrous Metal Chemistry and Resources Utilization of Gansu Province; Lanzhou University; Lanzhou China
| | - Tao Yi
- School of Chinese Medicine; Hong Kong Baptist University; Kowloon Tong Hong Kong Special Administrative Region
| | - Hongli Chen
- State Key Laboratory of Applied Organic Chemistry; College of Chemistry and Chemical Engineering; Key Laboratory of Nonferrous Metal Chemistry and Resources Utilization of Gansu Province; Lanzhou University; Lanzhou China
| | - Xingguo Chen
- State Key Laboratory of Applied Organic Chemistry; College of Chemistry and Chemical Engineering; Key Laboratory of Nonferrous Metal Chemistry and Resources Utilization of Gansu Province; Lanzhou University; Lanzhou China
| |
Collapse
|
23
|
Miller DJ, Dreyer DR, Bielawski CW, Paul DR, Freeman BD. Surface Modification of Water Purification Membranes. Angew Chem Int Ed Engl 2017; 56:4662-4711. [DOI: 10.1002/anie.201601509] [Citation(s) in RCA: 441] [Impact Index Per Article: 63.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2016] [Indexed: 12/17/2022]
Affiliation(s)
- Daniel J. Miller
- McKetta Department of Chemical Engineering and Texas Materials Institute, Center for Energy and Environmental Resources The University of Texas at Austin 10100 Burnet Road, Building 133 Austin TX 78758 USA
- Joint Center for Artificial Photosynthesis Lawrence Berkeley National Laboratory 1 Cyclotron Road, 30-210C Berkeley CA 94702 USA
| | - Daniel R. Dreyer
- Nalco Champion 3200 Southwest Freeway, Ste. 2700 Houston TX 77027 USA
| | - Christopher W. Bielawski
- Center for Multidimensional Carbon Materials (CMCM) Institute for Basic Science (IBS), Ulsan National Institute of Science and Technology (UNIST) Ulsan 44919 Republic of Korea
- Department of Chemistry and Department of Energy Engineering Ulsan National Institute of Science and Technology (UNIST) Ulsan 44919 Republic of Korea
| | - Donald R. Paul
- McKetta Department of Chemical Engineering and Texas Materials Institute, Center for Energy and Environmental Resources The University of Texas at Austin 10100 Burnet Road, Building 133 Austin TX 78758 USA
| | - Benny D. Freeman
- McKetta Department of Chemical Engineering and Texas Materials Institute, Center for Energy and Environmental Resources The University of Texas at Austin 10100 Burnet Road, Building 133 Austin TX 78758 USA
| |
Collapse
|
24
|
Miller DJ, Dreyer DR, Bielawski CW, Paul DR, Freeman BD. Oberflächenmodifizierung von Wasseraufbereitungsmembranen. Angew Chem Int Ed Engl 2017. [DOI: 10.1002/ange.201601509] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Affiliation(s)
- Daniel J. Miller
- McKetta Department of Chemical Engineering and Texas Materials Institute, Center for Energy and Environmental Resources The University of Texas, Austin 10100 Burnet Road, Building 133 Austin TX 78758 USA
- Joint Center for Artificial Photosynthesis Lawrence Berkeley National Laboratory 1 Cyclotron Road, 30-210C Berkeley CA 94702 USA
| | - Daniel R. Dreyer
- Nalco Champion 3200 Southwest Freeway, Ste. 2700 Houston TX 77027 USA
| | - Christopher W. Bielawski
- Center for Multidimensional Carbon Materials (CMCM) Institute for Basic Science (IBS), Ulsan National Institute of Science and Technology (UNIST) Ulsan 44919 Republik Korea
- Department of Chemistry and Department of Energy Engineering Ulsan National Institute of Science and Technology (UNIST) Ulsan 44919 Republik Korea
| | - Donald R. Paul
- McKetta Department of Chemical Engineering and Texas Materials Institute, Center for Energy and Environmental Resources The University of Texas, Austin 10100 Burnet Road, Building 133 Austin TX 78758 USA
| | - Benny D. Freeman
- McKetta Department of Chemical Engineering and Texas Materials Institute, Center for Energy and Environmental Resources The University of Texas, Austin 10100 Burnet Road, Building 133 Austin TX 78758 USA
| |
Collapse
|
25
|
Bi Y, Zhou H, Jia H, Wei P. A flow-through enzymatic microreactor immobilizing lipase based on layer-by-layer method for biosynthetic process: Catalyzing the transesterification of soybean oil for fatty acid methyl ester production. Process Biochem 2017. [DOI: 10.1016/j.procbio.2016.12.008] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
|
26
|
Štěpánová S, Kašička V. Recent applications of capillary electromigration methods to separation and analysis of proteins. Anal Chim Acta 2016; 933:23-42. [DOI: 10.1016/j.aca.2016.06.006] [Citation(s) in RCA: 78] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2016] [Revised: 05/10/2016] [Accepted: 06/03/2016] [Indexed: 10/21/2022]
|
27
|
Li Z, Zhang X, Wang S, Yang Y, Qin B, Wang K, Xie T, Wei Y, Ji Y. Polydopamine coated shape memory polymer: enabling light triggered shape recovery, light controlled shape reprogramming and surface functionalization. Chem Sci 2016; 7:4741-4747. [PMID: 30155125 PMCID: PMC6014076 DOI: 10.1039/c6sc00584e] [Citation(s) in RCA: 71] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2016] [Accepted: 04/08/2016] [Indexed: 12/23/2022] Open
Abstract
Photo-active shape memory polymers (SMPs) are considered as a promising candidate for converting light into mechanical energy. However, most known SMPs are only thermo-responsive. To achieve photo-activity, photo-responsive choromophores or fillers usually have to be incorporated from the very beginning of the material synthesis. Here, we introduce a novel post-synthesis approach to endow normal SMPs with photo-active properties using mussel-inspired surface chemistry. Without changing the original properties, the resultant polydopamine (PDA) coated SMPs show an efficient photo-active performance. The coating can be easily patterned and erased, which allows flexible light-triggered 3-D shape deformation of a planar SMP sheet. Moreover, owing to the high chemical activity, the PDA coating also provides a platform to optimize the surface properties of the photo-responsive SMPs through secondary surface modification.
Collapse
Affiliation(s)
- Zhen Li
- The Key Laboratory of Bioorganic Phosphorus Chemistry and Chemical Biology , Department of Chemistry , Tsinghua University , Beijing , 100084 , China . ;
| | - Xiaoyong Zhang
- The Key Laboratory of Bioorganic Phosphorus Chemistry and Chemical Biology , Department of Chemistry , Tsinghua University , Beijing , 100084 , China . ;
| | - Shiqi Wang
- The Key Laboratory of Bioorganic Phosphorus Chemistry and Chemical Biology , Department of Chemistry , Tsinghua University , Beijing , 100084 , China . ;
| | - Yang Yang
- The Key Laboratory of Bioorganic Phosphorus Chemistry and Chemical Biology , Department of Chemistry , Tsinghua University , Beijing , 100084 , China . ;
| | - Benye Qin
- The Key Laboratory of Bioorganic Phosphorus Chemistry and Chemical Biology , Department of Chemistry , Tsinghua University , Beijing , 100084 , China . ;
| | - Ke Wang
- The Key Laboratory of Bioorganic Phosphorus Chemistry and Chemical Biology , Department of Chemistry , Tsinghua University , Beijing , 100084 , China . ;
| | - Tao Xie
- State Key Laboratory of Chemical Engineering , Department of Chemical and Biological Engineering , Zhejiang University , Hangzhou , 310027 , China
| | - Yen Wei
- The Key Laboratory of Bioorganic Phosphorus Chemistry and Chemical Biology , Department of Chemistry , Tsinghua University , Beijing , 100084 , China . ;
| | - Yan Ji
- The Key Laboratory of Bioorganic Phosphorus Chemistry and Chemical Biology , Department of Chemistry , Tsinghua University , Beijing , 100084 , China . ;
| |
Collapse
|
28
|
Zhang Y, Chen L, Zhang C, Liu S, Zhu H, Wang Y. Polydopamine-assisted partial hydrolyzed poly(2-methyl-2-oxazolinze) as coating for determination of melamine in milk by capillary electrophoresis. Talanta 2016; 150:375-87. [DOI: 10.1016/j.talanta.2015.12.054] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2015] [Revised: 12/19/2015] [Accepted: 12/19/2015] [Indexed: 10/22/2022]
|
29
|
Zhang YF, Qi ML, Fu RN. Separation performance of polydopamine-based cucurbit[7]uril stationary phase for capillary gas chromatography. CHINESE CHEM LETT 2016. [DOI: 10.1016/j.cclet.2015.05.054] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
|
30
|
A facile and versatile approach for controlling electroosmotic flow in capillary electrophoresis via mussel inspired polydopamine/polyethyleneimine co-deposition. J Chromatogr A 2015; 1416:94-102. [DOI: 10.1016/j.chroma.2015.09.014] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2015] [Revised: 08/20/2015] [Accepted: 09/03/2015] [Indexed: 01/06/2023]
|
31
|
Li XJ, Fu QF, Zhang QH, Jiang XM, Yang FQ, Wei WL, Xia ZN. Layer-by-layer self-assembly of polydopamine/gold nanoparticle/thiol coating as the stationary phase for open tubular capillary electrochromatography. ANALYTICAL METHODS : ADVANCING METHODS AND APPLICATIONS 2015; 7:8227-8234. [PMID: 39044377 DOI: 10.1039/c5ay01830g] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/25/2024]
Abstract
Much attention has been paid to utilizing polydopamine (PDA) as the stationary phase in open-tubular capillary electrochromatography (OT-CEC) owing to its diverse properties, such as strong adhesion to various surfaces, latent reactivity toward amine and thiol groups and metal ion chelating/redox activities. In this study, a novel open-tubular capillary column coated with polydopamine/gold nanoparticles/thiols (PDA/Au NPs/thiols) has been fabricated based on the multiple properties of PDA for the first time. The capillary inner surface was firstly functionalized with a layer of PDA/Au NPs using the strong adhesive and metal ion redox properties of PDA. Thiols were then introduced and covalently reacted with the hybrid coating based on the Michael addition reaction of PDA and thiols and also Au-S bonds. Moreover, benefitting from the porosity of PDA, layer-by-layer (LBL) self-assembly was further applied to increase the amounts of stationary phase (Au NPs and thiols), which can significantly enhance the separation effectiveness and stability of the coated column. The formation of the PDA/Au NP/thiol coating in the capillary was confirmed and characterized by scanning electron microscopy (SEM), Energy Dispersive Spectrometry (EDS) and AFM (Atomic Force Microscopy). Then the separation effectiveness of the PDA/Au NP/thiol@capillary was verified by the separation of alkylbenzenes, which can achieve baseline separation easily with high column efficiency. In addition, the column showed long lifetime and good stability. The relative standard deviations (RSDs) for intra-day and inter-day repeatability of the PDA/Au NP/thiol@capillary were lower than 5%. Therefore, the layer-by-layer self-assembly of PDA/Au NPs/thiols on the capillary inner-surface could be an effective capillary modification strategy.
Collapse
Affiliation(s)
- Xiu-Ju Li
- School of Chemistry and Chemical Engineering, Chongqing University, Chongqing 400030, China.
| | - Qi-Feng Fu
- School of Chemistry and Chemical Engineering, Chongqing University, Chongqing 400030, China.
| | - Qi-Hui Zhang
- School of Chemistry and Chemical Engineering, Chongqing University, Chongqing 400030, China.
| | - Xue-Mei Jiang
- Key Laboratory of Biorheological Science and Technology, Ministry of Education, Bioengineering College, Chongqing University, Chongqing, 400044, China
| | - Feng-Qing Yang
- School of Chemistry and Chemical Engineering, Chongqing University, Chongqing 400030, China.
| | - Wei-Li Wei
- School of Chemistry and Chemical Engineering, Chongqing University, Chongqing 400030, China.
| | - Zhi-Ning Xia
- School of Chemistry and Chemical Engineering, Chongqing University, Chongqing 400030, China.
| |
Collapse
|
32
|
Zhang C, Chen L, Tan L, Zheng X, Wang Y. Poly(dopamine)-assisted preparation of star poly(ethylene glycol)-based coatings: A detailed study of their protein resistance and application in CE. REACT FUNCT POLYM 2015. [DOI: 10.1016/j.reactfunctpolym.2015.05.009] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
|
33
|
Xiao X, Wang W, Chen J, Jia L. Polydopamine-coated open tubular column for the separation of proteins by capillary electrochromatography. J Sep Sci 2015; 38:2893-9. [DOI: 10.1002/jssc.201500315] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2015] [Revised: 05/12/2015] [Accepted: 05/14/2015] [Indexed: 11/08/2022]
Affiliation(s)
- Xing Xiao
- Ministry of Education Key Laboratory of Laser Life Science & Institute of Laser Life Science, College of Biophotonics; South China Normal University; Guangzhou China
| | - Wentao Wang
- Ministry of Education Key Laboratory of Laser Life Science & Institute of Laser Life Science, College of Biophotonics; South China Normal University; Guangzhou China
| | - Jia Chen
- Ministry of Education Key Laboratory of Laser Life Science & Institute of Laser Life Science, College of Biophotonics; South China Normal University; Guangzhou China
| | - Li Jia
- Ministry of Education Key Laboratory of Laser Life Science & Institute of Laser Life Science, College of Biophotonics; South China Normal University; Guangzhou China
| |
Collapse
|
34
|
Chen L, Zhang Y, Tan L, Liu S, Wang Y. Assembly of poly(dopamine)/poly(acrylamide) mixed coatings by a single-step surface modification strategy and its application to the separation of proteins using capillary electrophoresis. J Sep Sci 2015; 38:2915-23. [DOI: 10.1002/jssc.201500346] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2015] [Revised: 05/13/2015] [Accepted: 05/13/2015] [Indexed: 12/17/2022]
Affiliation(s)
- Lijuan Chen
- CAS Key Laboratory of Soft Matter Chemistry; Department of Polymer Science and Engineering, University of Science and Technology of China; Hefei 230026 P. R. China
| | - Yalin Zhang
- CAS Key Laboratory of Soft Matter Chemistry; Department of Polymer Science and Engineering, University of Science and Technology of China; Hefei 230026 P. R. China
| | - Lin Tan
- CAS Key Laboratory of Soft Matter Chemistry; Department of Polymer Science and Engineering, University of Science and Technology of China; Hefei 230026 P. R. China
| | - Songtao Liu
- CAS Key Laboratory of Soft Matter Chemistry; Department of Polymer Science and Engineering, University of Science and Technology of China; Hefei 230026 P. R. China
| | - Yanmei Wang
- CAS Key Laboratory of Soft Matter Chemistry; Department of Polymer Science and Engineering, University of Science and Technology of China; Hefei 230026 P. R. China
| |
Collapse
|
35
|
Wang G, Liu Y, Huang X, Di D. Adsorption of Quercetin, Kaempferol and Luteolin on Surface-Modified Polytetrafluoroethylene Films. ADSORPT SCI TECHNOL 2015. [DOI: 10.1260/0263-6174.33.5.487] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022] Open
Affiliation(s)
- Gaohong Wang
- Key Laboratory of Chemistry of Northwestern Plant Resources and Key Laboratory for Natural Medicine of Gansu Province, Chinese Academy of Sciences, Lanzhou Institute of Chemical Physics, Lanzhou 730000, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Yanjuan Liu
- Key Laboratory of Chemistry of Northwestern Plant Resources and Key Laboratory for Natural Medicine of Gansu Province, Chinese Academy of Sciences, Lanzhou Institute of Chemical Physics, Lanzhou 730000, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Xinyi Huang
- Key Laboratory of Chemistry of Northwestern Plant Resources and Key Laboratory for Natural Medicine of Gansu Province, Chinese Academy of Sciences, Lanzhou Institute of Chemical Physics, Lanzhou 730000, China
| | - Duolong Di
- Key Laboratory of Chemistry of Northwestern Plant Resources and Key Laboratory for Natural Medicine of Gansu Province, Chinese Academy of Sciences, Lanzhou Institute of Chemical Physics, Lanzhou 730000, China
| |
Collapse
|
36
|
A Comprehensive Study of Silanization and Co-Condensation for Straightforward Single-Step Covalent Neutral Capillary Coating. Chromatographia 2015. [DOI: 10.1007/s10337-015-2895-x] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
|
37
|
Han N, Qi M, Ye M, Fu R, Qu L. Chromatographic selectivity of graphene capillary column pretreated with bio-inspired polydopamine polymer. RSC Adv 2015. [DOI: 10.1039/c5ra14111g] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Column fabrication by integration of graphene sheets on a polydopamine layer achieved improved column efficiency and chromatographic performance in capillary gas chromatographic separations.
Collapse
Affiliation(s)
- Na Han
- Key Laboratory of Cluster Science
- Ministry of Education of China
- Beijing Key Laboratory of Photoelectronic/Electrophotonic Conversion Materials and School of Chemistry
- Beijing Institute of Technology
- Beijing
| | - Meiling Qi
- Key Laboratory of Cluster Science
- Ministry of Education of China
- Beijing Key Laboratory of Photoelectronic/Electrophotonic Conversion Materials and School of Chemistry
- Beijing Institute of Technology
- Beijing
| | - Minghui Ye
- Key Laboratory of Cluster Science
- Ministry of Education of China
- Beijing Key Laboratory of Photoelectronic/Electrophotonic Conversion Materials and School of Chemistry
- Beijing Institute of Technology
- Beijing
| | - Ruonong Fu
- Key Laboratory of Cluster Science
- Ministry of Education of China
- Beijing Key Laboratory of Photoelectronic/Electrophotonic Conversion Materials and School of Chemistry
- Beijing Institute of Technology
- Beijing
| | - Liangti Qu
- Key Laboratory of Cluster Science
- Ministry of Education of China
- Beijing Key Laboratory of Photoelectronic/Electrophotonic Conversion Materials and School of Chemistry
- Beijing Institute of Technology
- Beijing
| |
Collapse
|
38
|
Hou C, Zhu H, Li Y, Li Y, Wang X, Zhu W, Zhou R. Facile synthesis of oxidic PEG-modified magnetic polydopamine nanospheres for Candida rugosa lipase immobilization. Appl Microbiol Biotechnol 2014; 99:1249-59. [DOI: 10.1007/s00253-014-5990-2] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2014] [Revised: 07/18/2014] [Accepted: 07/24/2014] [Indexed: 11/25/2022]
|
39
|
Chen L, Tan L, Liu S, Bai L, Wang Y. Surface modification by grafting of poly(SBMA-co-AEMA)-g-PDA coating and its application in CE. JOURNAL OF BIOMATERIALS SCIENCE-POLYMER EDITION 2014; 25:766-85. [DOI: 10.1080/09205063.2014.905030] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
|
40
|
Bai L, Tan L, Chen L, Liu S, Wang Y. Preparation and characterizations of poly(2-methyl-2-oxazoline) based antifouling coating by thermally induced immobilization. J Mater Chem B 2014; 2:7785-7794. [DOI: 10.1039/c4tb01383b] [Citation(s) in RCA: 46] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Poly[(2-methyl-2-oxazoline)-random-glycidylmethacrylate] was immobilized on a silicon/glass surface via a simple annealing procedure to obtain a covalent and cross-linked antifouling coating.
Collapse
Affiliation(s)
- Longchao Bai
- CAS Key Laboratory of Soft Matter Chemistry
- Department of Polymer Science and Engineering
- University of Science and Technology of China
- Hefei 230026, P. R. China
| | - Lin Tan
- CAS Key Laboratory of Soft Matter Chemistry
- Department of Polymer Science and Engineering
- University of Science and Technology of China
- Hefei 230026, P. R. China
| | - Lijuan Chen
- CAS Key Laboratory of Soft Matter Chemistry
- Department of Polymer Science and Engineering
- University of Science and Technology of China
- Hefei 230026, P. R. China
| | - Songtao Liu
- CAS Key Laboratory of Soft Matter Chemistry
- Department of Polymer Science and Engineering
- University of Science and Technology of China
- Hefei 230026, P. R. China
| | - Yanmei Wang
- CAS Key Laboratory of Soft Matter Chemistry
- Department of Polymer Science and Engineering
- University of Science and Technology of China
- Hefei 230026, P. R. China
| |
Collapse
|
41
|
Liang RP, Wang XN, Liu CM, Meng XY, Qiu JD. Facile preparation of protein stationary phase based on polydopamine/graphene oxide platform for chip-based open tubular capillary electrochromatography enantioseparation. J Chromatogr A 2014; 1323:135-42. [DOI: 10.1016/j.chroma.2013.11.048] [Citation(s) in RCA: 77] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2013] [Revised: 11/14/2013] [Accepted: 11/26/2013] [Indexed: 11/30/2022]
|
42
|
The preparation of a novel polydopamine-graft-poly(2-methyl-2-oxazoline) protein-resistant coating and its applications in protein separation. CHINESE CHEM LETT 2013. [DOI: 10.1016/j.cclet.2013.04.001] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
43
|
A versatile polydopamine platform for facile preparation of protein stationary phase for chip-based open tubular capillary electrochromatography enantioseparation. J Chromatogr A 2013; 1294:145-51. [PMID: 23643186 DOI: 10.1016/j.chroma.2013.04.022] [Citation(s) in RCA: 46] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2013] [Revised: 04/08/2013] [Accepted: 04/11/2013] [Indexed: 11/20/2022]
Abstract
A novel, simple, and economical method for the preparation of chiral stationary phases for chip-based enantioselective open tubular capillary electrochromatography (OT-CEC) using polydopamine (PDA) coating as an adhesive layer was reported for the first time. After the poly(dimethylsiloxane) (PDMS) microfluidic chip was filled with dopamine (DA) solution, PDA film was gradually formed and deposited on the inner wall of microchannel as permanent coating via the oxidation of DA by the oxygen dissolved in the solution. Due to possessing plentiful catechol and amine functional groups, PDA coating can serve as a versatile multifunctional platform for further secondary reactions, leading to tailoring of the coatings for protein bioconjugation by the thiols and amines via Michael addition or Schiff base reactions. Bovine serum albumin (BSA), acting as a target protein, was then stably and homogeneously immobilized in the PDA-coated PDMS microchannel to fabricate a novel protein stationary phase. Compared with the native PDMS microchannels, the modified surfaces exhibited much better wettability, more stable and enhanced electroosmotic mobility, and less nonspecific adsorption. The water contact angle and electroosmotic flow of PDA/BSA-coated PDMS substrate were measured to be 44° and 2.83×10(-4)cm(2)V(-1)s(-1), compared to those of 112° and 2.10×10(-4)cm(2)V(-1)s(-1) from the untreated one, respectively. Under a mild condition, d- and l-tryptophan were efficiently separated with a resolution of 1.68 within 130s utilizing a separation length of 37mm coupled with in-column amperometric detection on the PDA/BSA-coated PDMS microchips. This present versatile platform, facile conjugation of biomolecules onto microchip surfaces via mussel adhesive protein inspired coatings, may offer new processing strategies to prepare a biomimetic surface design on microfluidic chips, which is promising in high-throughput and complex biological analysis.
Collapse
|
44
|
Tan L, Xing JX, Cao FH, Chen LJ, Zhang C, Shi RH, Wang YM. Synthesis of double-hydrophilic double-grafted copolymers PMA-g-PEG/PDMA and their protein-resistant properties. CHINESE JOURNAL OF POLYMER SCIENCE 2013. [DOI: 10.1007/s10118-013-1254-3] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
45
|
|
46
|
Xing J, Tan L, Cao F, Wang Y. Synthesis of star polymer poly(ethylene glycol)3-poly(N,N-dimethyl acrylamide) and its application in protein resistance and separation. J Appl Polym Sci 2012. [DOI: 10.1002/app.38559] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
|
47
|
Rivera JG, Messersmith PB. Polydopamine-assisted immobilization of trypsin onto monolithic structures for protein digestion. J Sep Sci 2012; 35:1514-20. [DOI: 10.1002/jssc.201200073] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Affiliation(s)
- José G. Rivera
- Biomedical Engineering Department; Northwestern University; Evanston IL USA
- Chemistry of Life Processes Institute; Northwestern University; Evanston IL USA
| | - Phillip B. Messersmith
- Biomedical Engineering Department; Northwestern University; Evanston IL USA
- Materials Science and Engineering Department; Northwestern University; Evanston IL USA
- Chemical and Biological Engineering Department; Northwestern University; Evanston IL USA
- Chemistry of Life Processes Institute; Northwestern University; Evanston IL USA
- Institute for Bionanotechnology in Medicine; Northwestern University; Chicago IL USA. Robert H. Lurie Comprehensive Cancer Center; Northwestern University; Chicago IL USA
| |
Collapse
|
48
|
Brubaker CE, Messersmith PB. The present and future of biologically inspired adhesive interfaces and materials. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2012; 28:2200-2205. [PMID: 22224862 DOI: 10.1021/la300044v] [Citation(s) in RCA: 98] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/31/2023]
Abstract
The natural world provides many examples of robust, permanent adhesive platforms. Synthetic adhesive interfaces and materials inspired by mussels of genus Mytulis have been extensively applied, and it is expected that characterization and adaptation of several other biological adhesive strategies will follow the Mytilus edulis model. These candidate species will be introduced, along with a discussion of the adhesive behaviors that make them attractive for synthetic adaptation. While significant progress has been made in the development of biologically inspired adhesive interfaces and materials, persistent questions, current challenges, and emergent areas of research will be also be discussed.
Collapse
Affiliation(s)
- Carrie E Brubaker
- Biomedical Engineering Department, Northwestern University, Evanston, Illinois 60208, USA.
| | | |
Collapse
|
49
|
Ball V, Del Frari D, Michel M, Buehler MJ, Toniazzo V, Singh MK, Gracio J, Ruch D. Deposition Mechanism and Properties of Thin Polydopamine Films for High Added Value Applications in Surface Science at the Nanoscale. BIONANOSCIENCE 2011. [DOI: 10.1007/s12668-011-0032-3] [Citation(s) in RCA: 100] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
|
50
|
Liang RP, Meng XY, Liu CM, Qiu JD. PDMS microchip coated with polydopamine/gold nanoparticles hybrid for efficient electrophoresis separation of amino acids. Electrophoresis 2011; 32:3331-40. [DOI: 10.1002/elps.201100403] [Citation(s) in RCA: 53] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|