1
|
Butterworth AL, Golozar M, Estlack Z, McCauley J, Mathies RA, Kim J. Integrated high performance microfluidic organic analysis instrument for planetary and space exploration. LAB ON A CHIP 2024; 24:2551-2560. [PMID: 38624013 DOI: 10.1039/d4lc00012a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/17/2024]
Abstract
The exploration of our solar system to characterize the molecular organic inventory will enable the identification of potentially habitable regions and initiate the search for biosignatures of extraterrestrial life. However, it is challenging to perform the required high-resolution, high-sensitivity chemical analyses in space and in planetary environments. To address this challenge, we have developed a microfluidic organic analyzer (MOA) instrument that consists of a multilayer programmable microfluidic analyzer (PMA) for fluidic processing at the microliter scale coupled with a microfabricated glass capillary electrophoresis (CE) wafer for separation and analysis of the sample components. Organic analytes are labeled with a functional group-specific (e.g. amine, organic acid, aldehyde) fluorescent dye, separated according to charge and hydrodynamic size by capillary electrophoresis (CE), and detected with picomolar limit of detection (LOD) using laser-induced fluorescence (LIF). Our goal is a sensitive automated instrument and autonomous process that enables sample-in to data-out performance in a flight capable format. We present here the design, fabrication, and operation of a technology development unit (TDU) that meets these design goals with a core mass of 3 kg and a volume of <5 L. MOA has a demonstrated resolution of 2 × 105 theoretical plates for relevant amino acids using a 15 cm long CE channel and 467 V cm-1. The LOD of LIF surpasses 100 pM (0.01 ppb), enabling biosignature detection in harsh environments on Earth. MOA is ideally suited for probing biosignatures in potentially habitable destinations on icy moons such as Europa and Enceladus, and on Mars.
Collapse
Affiliation(s)
- Anna L Butterworth
- Space Sciences laboratory, University of California Berkeley, Berkeley, CA 94720, USA.
| | - Matin Golozar
- Chemistry Department, University of California, Berkeley, CA 94720, USA
- Department of Mechanical Engineering, University of Utah, Salt Lake City, UT 84112, USA.
| | - Zachary Estlack
- Department of Mechanical Engineering, University of Utah, Salt Lake City, UT 84112, USA.
| | - Jeremy McCauley
- Space Sciences laboratory, University of California Berkeley, Berkeley, CA 94720, USA.
| | - Richard A Mathies
- Space Sciences laboratory, University of California Berkeley, Berkeley, CA 94720, USA.
- Chemistry Department, University of California, Berkeley, CA 94720, USA
| | - Jungkyu Kim
- Department of Mechanical Engineering, University of Utah, Salt Lake City, UT 84112, USA.
| |
Collapse
|
2
|
Estlack Z, Golozar M, Butterworth AL, Mathies RA, Kim J. Operation of a programmable microfluidic organic analyzer under microgravity conditions simulating space flight environments. NPJ Microgravity 2023; 9:41. [PMID: 37286631 DOI: 10.1038/s41526-023-00290-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2022] [Accepted: 05/25/2023] [Indexed: 06/09/2023] Open
Abstract
A programmable microfluidic organic analyzer was developed for detecting life signatures beyond Earth and clinical monitoring of astronaut health. Extensive environmental tests, including various gravitational environments, are required to confirm the functionality of this analyzer and advance its overall Technology Readiness Level. This work examines how the programmable microfluidic analyzer performed under simulated Lunar, Martian, zero, and hypergravity conditions during a parabolic flight. We confirmed that the functionality of the programmable microfluidic analyzer was minimally affected by the significant changes in the gravitational field, thus paving the way for its use in a variety of space mission opportunities.
Collapse
Affiliation(s)
- Zachary Estlack
- Department of Mechanical Engineering, University of Utah, Salt Lake City, UT, 84112, USA
| | - Matin Golozar
- Space Sciences Laboratory, University of California Berkeley, Berkeley, CA, 94720, USA
- Biophysics Graduate Group and Chemistry Department, University of California Berkeley, Berkeley, CA, 94720, USA
| | - Anna L Butterworth
- Space Sciences Laboratory, University of California Berkeley, Berkeley, CA, 94720, USA
| | - Richard A Mathies
- Space Sciences Laboratory, University of California Berkeley, Berkeley, CA, 94720, USA
- Biophysics Graduate Group and Chemistry Department, University of California Berkeley, Berkeley, CA, 94720, USA
| | - Jungkyu Kim
- Department of Mechanical Engineering, University of Utah, Salt Lake City, UT, 84112, USA.
| |
Collapse
|
3
|
Van Volkenburg T, Benzing JS, Craft KL, Ohiri K, Kilhefner A, Irons K, Bradburne C. Microfluidic Chromatography for Enhanced Amino Acid Detection at Ocean Worlds. ASTROBIOLOGY 2022; 22:1116-1128. [PMID: 35984944 PMCID: PMC9508454 DOI: 10.1089/ast.2021.0182] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/12/2021] [Accepted: 04/18/2022] [Indexed: 06/15/2023]
Abstract
Increasing interest in the detection of biogenic signatures, such as amino acids, on icy moons and bodies within our solar system has led to the development of compact in situ instruments. Given the expected dilute biosignatures and high salinities of these extreme environments, purification of icy samples before analysis enables increased detection sensitivity. Herein, we outline a novel compact cation exchange method to desalinate proteinogenic amino acids in solution, independent of the type and concentration of salts in the sample. Using a modular microfluidic device, initial experiments explored operational limits of binding capacity with phenylalanine and three model cations, Na+, Mg2+, and Ca2+. Phenylalanine recovery (94-17%) with reduced conductivity (30-200 times) was seen at high salt-to-amino-acid ratios between 25:1 and 500:1. Later experiments tested competition between mixtures of 17 amino acids and other chemistries present in a terrestrial ocean sample. Recoveries ranged from 11% to 85% depending on side chain chemistry and cation competition, with concentration shown for select high affinity amino acids. This work outlines a nondestructive amino acid purification device capable of coupling to multiple downstream analytical techniques for improved characterization of icy samples at remote ocean worlds.
Collapse
Affiliation(s)
| | | | - Kathleen L. Craft
- Johns Hopkins University Applied Physics Laboratory, Laurel, Maryland, USA
| | - Korine Ohiri
- Johns Hopkins University Applied Physics Laboratory, Laurel, Maryland, USA
| | - Ashley Kilhefner
- Johns Hopkins University Applied Physics Laboratory, Laurel, Maryland, USA
| | - Kristen Irons
- University of North Carolina at Chapel Hill College of Arts and Sciences, Chapel Hill, North Carolina, USA
| | | |
Collapse
|
4
|
Duca ZA, Speller NC, Cato ME, Morbioli GG, Stockton AM. A miniaturized, low-cost lens tube based laser-induced fluorescence detection system for automated microfluidic analysis of primary amines. Talanta 2022; 241:123227. [DOI: 10.1016/j.talanta.2022.123227] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2021] [Revised: 01/07/2022] [Accepted: 01/11/2022] [Indexed: 02/08/2023]
|
5
|
Chemical composition of jabuticaba (Plinia jaboticaba) liquors produced from cachaça and cereal alcohol. Lebensm Wiss Technol 2022. [DOI: 10.1016/j.lwt.2021.112923] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
|
6
|
Duca ZA, Speller NC, Cantrell T, Stockton AM. A modular, easy-to-use microcapillary electrophoresis system with laser-induced fluorescence for quantitative compositional analysis of trace organic molecules. THE REVIEW OF SCIENTIFIC INSTRUMENTS 2020; 91:104101. [PMID: 33138565 DOI: 10.1063/5.0008734] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/24/2020] [Accepted: 09/14/2020] [Indexed: 06/11/2023]
Abstract
Microcapillary electrophoresis (μCE) enables high-resolution separations in miniaturized, automated microfluidic devices. Pairing this powerful separation technique with laser-induced fluorescence (LIF) enables a highly sensitive, quantitative, and compositional analysis of organic molecule monomers and short polymers, which are essential, ubiquitous components of life on Earth. Improving methods for their detection has applications to multiple scientific fields, particularly those related to medicine, industry, and space science. Here, a modular benchtop system using μCE with LIF detection was constructed and tested by analyzing standard amino acid samples of valine, serine, alanine, glycine, glutamic acid, and aspartic acid in multiple borate buffered solutions of increasing concentrations from 10 mM to 50 mM, all pH 9.5. The 35 mM borate buffer solution generated the highest resolution before Joule heating dominated. The limits of detection of alanine and glycine using 35 mM borate buffer were found to be 2.12 nM and 2.91 nM, respectively, comparable to other state-of-the-art μCE-LIF instruments. This benchtop system is amenable to a variety of detectors, including a photomultiplier tube, a silicon photomultiplier, or a spectrometer, and currently employs a spectrometer for facile multi-wavelength detection. Furthermore, the microdevice is easily exchanged to fit the desired application of the system, and optical components within the central filter cube can be easily replaced to target alternative fluorescent dyes. This work represents a significant step forward for the analysis of small organic molecules and biopolymers using μCE-LIF systems.
Collapse
Affiliation(s)
- Zachary A Duca
- Georgia Institute of Technology, Atlanta, Georgia 30332, USA
| | | | - Thomas Cantrell
- Georgia Institute of Technology, Atlanta, Georgia 30332, USA
| | | |
Collapse
|
7
|
Krenkova J, Dusa F, Cmelik R. Comparison of oligosaccharide labeling employing reductive amination and hydrazone formation chemistries. Electrophoresis 2020; 41:684-690. [DOI: 10.1002/elps.201900475] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2019] [Revised: 02/02/2020] [Accepted: 02/03/2020] [Indexed: 01/23/2023]
Affiliation(s)
- Jana Krenkova
- Institute of Analytical Chemistry of the Czech Academy of Sciences Brno Czech Republic
| | - Filip Dusa
- Institute of Analytical Chemistry of the Czech Academy of Sciences Brno Czech Republic
| | - Richard Cmelik
- Institute of Analytical Chemistry of the Czech Academy of Sciences Brno Czech Republic
| |
Collapse
|
8
|
Mathies RA, Razu ME, Kim J, Stockton AM, Turin P, Butterworth A. Feasibility of Detecting Bioorganic Compounds in Enceladus Plumes with the Enceladus Organic Analyzer. ASTROBIOLOGY 2017; 17:902-912. [PMID: 28915087 PMCID: PMC5610425 DOI: 10.1089/ast.2017.1660] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/16/2023]
Abstract
Enceladus presents an excellent opportunity to detect organic molecules that are relevant for habitability as well as bioorganic molecules that provide evidence for extraterrestrial life because Enceladus' plume is composed of material from the subsurface ocean that has a high habitability potential and significant organic content. A primary challenge is to send instruments to Enceladus that can efficiently sample organic molecules in the plume and analyze for the most relevant molecules with the necessary detection limits. To this end, we present the scientific feasibility and engineering design of the Enceladus Organic Analyzer (EOA) that uses a microfluidic capillary electrophoresis system to provide sensitive detection of a wide range of relevant organic molecules, including amines, amino acids, and carboxylic acids, with ppm plume-detection limits (100 pM limits of detection). Importantly, the design of a capture plate that effectively gathers plume ice particles at encounter velocities from 200 m/s to 5 km/s is described, and the ice particle impact is modeled to demonstrate that material will be efficiently captured without organic decomposition. While the EOA can also operate on a landed mission, the relative technical ease of a fly-by mission to Enceladus, the possibility to nondestructively capture pristine samples from deep within the Enceladus ocean, plus the high sensitivity of the EOA instrument for molecules of bioorganic relevance for life detection argue for the inclusion of EOA on Enceladus missions. Key Words: Lab-on-a-chip-Organic biomarkers-Life detection-Planetary exploration. Astrobiology 17, 902-912.
Collapse
Affiliation(s)
- Richard A. Mathies
- Department of Chemistry, University of California at Berkeley, Berkeley, California
| | - Md Enayet Razu
- Department of Mechanical Engineering, Texas Tech University, Lubbock, Texas
| | - Jungkyu Kim
- Department of Mechanical Engineering, Texas Tech University, Lubbock, Texas
| | - Amanda M. Stockton
- Department of Chemistry and Biochemistry, Georgia Institute of Technology, Atlanta, Georgia
| | - Paul Turin
- Berkeley Space Sciences Lab, University of California at Berkeley, Berkeley, California
| | - Anna Butterworth
- Berkeley Space Sciences Lab, University of California at Berkeley, Berkeley, California
| |
Collapse
|
9
|
Kim J, Stockton AM, Jensen EC, Mathies RA. Pneumatically actuated microvalve circuits for programmable automation of chemical and biochemical analysis. LAB ON A CHIP 2016; 16:812-9. [PMID: 26864083 DOI: 10.1039/c5lc01397f] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/24/2023]
Abstract
Programmable microfluidic platforms (PMPs) are enabling significant advances in the utility of microfluidics for chemical and biochemical analysis. Traditional microfluidic devices are analogous to application-specific devices--a new device is needed to implement each new chemical or biochemical assay. PMPs are analogous to digital electronic processors--all that is needed to implement a new assay is a change in the order of operations conducted by the device. In this review, we introduce PMPs based on normally-closed microvalves. We discuss recent applications of PMPs in diverse fields including genetic analysis, antibody-based biomarker analysis, and chemical analysis in planetary exploration. Prospects, challenges, and future concepts for this emerging technology will also be presented.
Collapse
Affiliation(s)
- Jungkyu Kim
- Department of Mechanical Engineering, Texas Tech University, Lubbock, TX, USA
| | - Amanda M Stockton
- Department of Chemistry, Georgia Institute of Technology, Atlanta, GA 30332, USA
| | | | - Richard A Mathies
- Department of Chemistry, University of California, Berkeley, CA 94720, USA.
| |
Collapse
|
10
|
Willis PA, Creamer JS, Mora MF. Implementation of microchip electrophoresis instrumentation for future spaceflight missions. Anal Bioanal Chem 2015; 407:6939-63. [PMID: 26253225 DOI: 10.1007/s00216-015-8903-z] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2015] [Revised: 06/30/2015] [Accepted: 07/03/2015] [Indexed: 11/27/2022]
Abstract
We present a comprehensive discussion of the role that microchip electrophoresis (ME) instrumentation could play in future NASA missions of exploration, as well as the current barriers that must be overcome to make this type of chemical investigation possible. We describe how ME would be able to fill fundamental gaps in our knowledge of the potential for past, present, or future life beyond Earth. Despite the great promise of ME for ultrasensitive portable chemical analysis, to date, it has never been used on a robotic mission of exploration to another world. We provide a current snapshot of the technology readiness level (TRL) of ME instrumentation, where the TRL is the NASA systems engineering metric used to evaluate the maturity of technology, and its fitness for implementation on missions. We explain how the NASA flight implementation process would apply specifically to ME instrumentation, and outline the scientific and technology development issues that must be addressed for ME analyses to be performed successfully on another world. We also outline research demonstrations that could be accomplished by independent researchers to help advance the TRL of ME instrumentation for future exploration missions. The overall approach described here for system development could be readily applied to a wide range of other instrumentation development efforts having broad societal and commercial impact.
Collapse
Affiliation(s)
- Peter A Willis
- Jet Propulsion Laboratory, California Institute of Technology, 4800 Oak Grove Dr., Pasadena, CA, 91109, USA,
| | | | | |
Collapse
|
11
|
Kim J, Jensen EC, Stockton AM, Mathies RA. Universal Microfluidic Automaton for Autonomous Sample Processing: Application to the Mars Organic Analyzer. Anal Chem 2013; 85:7682-8. [DOI: 10.1021/ac303767m] [Citation(s) in RCA: 59] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Affiliation(s)
- Jungkyu Kim
- Department of Chemistry, University of California, Berkeley, Berkeley, California 94720, United
States
| | - Erik C. Jensen
- Department of Chemistry, University of California, Berkeley, Berkeley, California 94720, United
States
| | - Amanda M. Stockton
- Department of Chemistry, University of California, Berkeley, Berkeley, California 94720, United
States
| | - Richard A. Mathies
- Department of Chemistry, University of California, Berkeley, Berkeley, California 94720, United
States
| |
Collapse
|
12
|
Alhusban AA, Breadmore MC, Guijt RM. Capillary electrophoresis for monitoring bioprocesses. Electrophoresis 2013; 34:1465-82. [PMID: 23657993 DOI: 10.1002/elps.201200646] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2012] [Revised: 01/30/2013] [Accepted: 02/04/2013] [Indexed: 01/22/2023]
Abstract
Chemical characterization and monitoring of fermentation broths and cell culture media provide significant information on the changes occurring within these complex and dynamic systems. Analytical methods based on CE in capillaries and microchips are attractive for integration in instrumental tools to obtain this critical data, improving the understanding and control of bioprocesses. In this review, the use of CE for chemical characterization and monitoring fermentations is discussed, organized by analyte class, including organic acids, pharmaceuticals, proteins, sugars, amino acids, and metabolites published between 1992 and October 2012. A section is dedicated to the roles CE plays throughout the wine making process, where applications range from characterization and increase in fundamental understanding of the fermentation to forensic applications, verifying the authenticity of the wine.
Collapse
Affiliation(s)
- Ala A Alhusban
- Australian Center for Research on Separation Science, School of Pharmacy, Faculty of Health Sciences, University of Tasmania, Australia
| | | | | |
Collapse
|
13
|
Enantioselective separation of amino acids as biomarkers indicating life in extraterrestrial environments. Anal Bioanal Chem 2013; 405:7931-40. [DOI: 10.1007/s00216-013-6915-0] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2013] [Revised: 03/04/2013] [Accepted: 03/11/2013] [Indexed: 10/27/2022]
|
14
|
Jensen EC, Stockton AM, Chiesl TN, Kim J, Bera A, Mathies RA. Digitally programmable microfluidic automaton for multiscale combinatorial mixing and sample processing. LAB ON A CHIP 2013; 13:288-96. [PMID: 23172232 PMCID: PMC3568922 DOI: 10.1039/c2lc40861a] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/18/2023]
Abstract
A digitally programmable microfluidic Automaton consisting of a 2-dimensional array of pneumatically actuated microvalves is programmed to perform new multiscale mixing and sample processing operations. Large (μL-scale) volume processing operations are enabled by precise metering of multiple reagents within individual nL-scale valves followed by serial repetitive transfer to programmed locations in the array. A novel process exploiting new combining valve concepts is developed for continuous rapid and complete mixing of reagents in less than 800 ms. Mixing, transfer, storage, and rinsing operations are implemented combinatorially to achieve complex assay automation protocols. The practical utility of this technology is demonstrated by performing automated serial dilution for quantitative analysis as well as the first demonstration of on-chip fluorescent derivatization of biomarker targets (carboxylic acids) for microchip capillary electrophoresis on the Mars Organic Analyzer. A language is developed to describe how unit operations are combined to form a microfluidic program. Finally, this technology is used to develop a novel microfluidic 6-sample processor for combinatorial mixing of large sets (>2(6) unique combinations) of reagents. The digitally programmable microfluidic Automaton is a versatile programmable sample processor for a wide range of process volumes, for multiple samples, and for different types of analyses.
Collapse
Affiliation(s)
- Erik C. Jensen
- Biophysics Graduate Group, University of California, Berkeley, CA, USA
| | | | - Thomas N. Chiesl
- Department of Chemistry, University of California, Berkeley, CA, USA
| | - Jungkyu Kim
- Department of Chemistry, University of California, Berkeley, CA, USA
| | | | - Richard A. Mathies
- Biophysics Graduate Group, University of California, Berkeley, CA, USA
- Department of Chemistry, University of California, Berkeley, CA, USA
- ; Fax: +1 (510) 642-3599; Tel: +1 (510) 642-4192
| |
Collapse
|
15
|
Mora MF, Stockton AM, Willis PA. Analysis of thiols by microchip capillary electrophoresis for in situ planetary investigations. Electrophoresis 2012; 34:309-16. [PMID: 23161601 DOI: 10.1002/elps.201200379] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2012] [Revised: 08/30/2012] [Accepted: 09/01/2012] [Indexed: 11/09/2022]
Abstract
The detection of thiols on extraterrestrial bodies could provide evidence for life, as well as a host of potential prebiological or abiological processes. Here, we report a novel protocol to analyze organic thiols by microchip CE with LIF detection. Thiols were labeled with Pacific Blue C5 maleimide and analyzed by MEKC. The separation buffer consisted of 15 mM tetraborate pH 9.2 and 25 mM SDS. The optimized method provided LODs ranging from 1.4 to 15 nM. The method was validated using samples collected from geothermal pools at Hot Creek Gorge, California, which were found to contain 2-propanethiol and 1-butanethiol in the nanomolar concentration range. These samples serve as chemical analogues to material potentially present in the reducing environment of primitive Earth and also at sulfurous regions of Mars. Hence, the protocol developed here enables highly sensitive thiol analysis in samples with complexity comparable to that expected in astrobiologically relevant extraterrestrial settings. This new protocol could be readily added to the existing suite of microfluidic chemical analyses developed for in situ planetary exploration; all that is required is the incorporation of two new reagents to the payload of an existing instrument concept.
Collapse
Affiliation(s)
- Maria F Mora
- Jet Propulsion Laboratory, California Institute of Technology, Pasadena, CA, USA
| | | | | |
Collapse
|
16
|
Mora MF, Stockton AM, Willis PA. Microchip capillary electrophoresis instrumentation for in situ analysis in the search for extraterrestrial life. Electrophoresis 2012; 33:2624-38. [DOI: 10.1002/elps.201200102] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
|
17
|
Cable ML, Hörst SM, Hodyss R, Beauchamp PM, Smith MA, Willis PA. Titan Tholins: Simulating Titan Organic Chemistry in the Cassini-Huygens Era. Chem Rev 2011; 112:1882-909. [DOI: 10.1021/cr200221x] [Citation(s) in RCA: 165] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Morgan L. Cable
- NASA Jet Propulsion Laboratory, California Institute of Technology, Pasadena, California 91109, United States
| | - Sarah M. Hörst
- Cooperative Institute for Research in Environmental Sciences, University of Colorado, Boulder, Colorado 80309, United States
| | - Robert Hodyss
- NASA Jet Propulsion Laboratory, California Institute of Technology, Pasadena, California 91109, United States
| | - Patricia M. Beauchamp
- NASA Jet Propulsion Laboratory, California Institute of Technology, Pasadena, California 91109, United States
| | - Mark A. Smith
- Department of Chemistry, University of Arizona, Tucson, Arizona 85721, United States
- College of Natural Sciences and Mathematics, University of Houston, Houston, Texas 77004, United States
| | - Peter A. Willis
- NASA Jet Propulsion Laboratory, California Institute of Technology, Pasadena, California 91109, United States
| |
Collapse
|
18
|
Stockton AM, Tjin CC, Chiesl TN, Mathies RA. Analysis of carbonaceous biomarkers with the Mars Organic Analyzer microchip capillary electrophoresis system: carboxylic acids. ASTROBIOLOGY 2011; 11:519-528. [PMID: 21790324 DOI: 10.1089/ast.2011.0634] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/31/2023]
Abstract
The oxidizing surface chemistry on Mars argues that any comprehensive search for organic compounds indicative of life requires methods to analyze higher oxidation states of carbon with very low limits of detection. To address this goal, microchip capillary electrophoresis (μCE) methods were developed for analysis of carboxylic acids with the Mars Organic Analyzer (MOA). Fluorescent derivatization was achieved by activation with the water soluble 1-ethyl-3-(3-dimethylaminopropyl)carbodiimide (EDC) followed by reaction with Cascade Blue hydrazide in 30 mM borate, pH 3. A standard containing 12 carboxylic acids found in terrestrial life was successfully labeled and separated in 30 mM borate at pH 9.5, 20 °C by using the MOA CE system. Limits of detection were 5-10 nM for aliphatic monoacids, 20 nM for malic acid (diacid), and 230 nM for citric acid (triacid). Polyacid benzene derivatives containing 2, 3, 4, and 6 carboxyl groups were also analyzed. In particular, mellitic acid was successfully labeled and analyzed with a limit of detection of 300 nM (5 ppb). Analyses of carboxylic acids sampled from a lava tube cave and a hydrothermal area demonstrated the versatility and robustness of our method. This work establishes that the MOA can be used for sensitive analyses of a wide range of carboxylic acids in the search for extraterrestrial organic molecules.
Collapse
Affiliation(s)
- Amanda M Stockton
- Department of Chemistry, University of California, Berkeley, California 94720, USA
| | | | | | | |
Collapse
|