1
|
de Haan N, Wuhrer M, Ruhaak L. Mass spectrometry in clinical glycomics: The path from biomarker identification to clinical implementation. CLINICAL MASS SPECTROMETRY (DEL MAR, CALIF.) 2020; 18:1-12. [PMID: 34820521 PMCID: PMC8600986 DOI: 10.1016/j.clinms.2020.08.001] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/06/2020] [Revised: 08/18/2020] [Accepted: 08/21/2020] [Indexed: 02/01/2023]
Abstract
Over the past decades, the genome and proteome have been widely explored for biomarker discovery and personalized medicine. However, there is still a large need for improved diagnostics and stratification strategies for a wide range of diseases. Post-translational modification of proteins by glycosylation affects protein structure and function, and glycosylation has been implicated in many prevalent human diseases. Numerous proteins for which the plasma levels are nowadays evaluated in clinical practice are glycoproteins. While the glycosylation of these proteins often changes with disease, their glycosylation status is largely ignored in the clinical setting. Hence, the implementation of glycomic markers in the clinic is still in its infancy. This is for a large part caused by the high complexity of protein glycosylation itself and of the analytical techniques required for their robust quantification. Mass spectrometry-based workflows are particularly suitable for the quantification of glycans and glycoproteins, but still require advances for their transformation from a biomedical research setting to a clinical laboratory. In this review, we describe why and how glycomics is expected to find its role in clinical tests and the status of current mass spectrometry-based methods for clinical glycomics.
Collapse
Affiliation(s)
- N. de Haan
- Center for Proteomics and Metabolomics, Leiden University Medical Center, Leiden, The Netherlands
| | - M. Wuhrer
- Center for Proteomics and Metabolomics, Leiden University Medical Center, Leiden, The Netherlands
| | - L.R. Ruhaak
- Department of Clinical Chemistry and Laboratory Medicine, Leiden University Medical Center, Leiden, The Netherlands
| |
Collapse
|
2
|
Phetsouphanh C, Zaunders JJ, Kelleher AD. Detecting Antigen-Specific T Cell Responses: From Bulk Populations to Single Cells. Int J Mol Sci 2015; 16:18878-93. [PMID: 26274954 PMCID: PMC4581277 DOI: 10.3390/ijms160818878] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2015] [Revised: 07/29/2015] [Accepted: 08/03/2015] [Indexed: 12/18/2022] Open
Abstract
A new generation of sensitive T cell-based assays facilitates the direct quantitation and characterization of antigen-specific T cell responses. Single-cell analyses have focused on measuring the quality and breadth of a response. Accumulating data from these studies demonstrate that there is considerable, previously-unrecognized, heterogeneity. Standard assays, such as the ICS, are often insufficient for characterization of rare subsets of cells. Enhanced flow cytometry with imaging capabilities enables the determination of cell morphology, as well as the spatial localization of the protein molecules within a single cell. Advances in both microfluidics and digital PCR have improved the efficiency of single-cell sorting and allowed multiplexed gene detection at the single-cell level. Delving further into the transcriptome of single-cells using RNA-seq is likely to reveal the fine-specificity of cellular events such as alternative splicing (i.e., splice variants) and allele-specific expression, and will also define the roles of new genes. Finally, detailed analysis of clonally related antigen-specific T cells using single-cell TCR RNA-seq will provide information on pathways of differentiation of memory T cells. With these state of the art technologies the transcriptomics and genomics of Ag-specific T cells can be more definitively elucidated.
Collapse
Affiliation(s)
| | - John James Zaunders
- Kirby Institute, University of New South Wales, 2031 Sydney, Australia.
- Centre for Applied Medical Research, St. Vincent's Hospital, 2010 Sydney, Australia.
| | - Anthony Dominic Kelleher
- Kirby Institute, University of New South Wales, 2031 Sydney, Australia.
- Centre for Applied Medical Research, St. Vincent's Hospital, 2010 Sydney, Australia.
| |
Collapse
|
3
|
Abstract
The effectiveness of treatment of renal diseases is limited because the lack of diagnostic, prognostic and therapeutic markers. Despite the more than a decade of intensive investigation of urinary biomarkers, no new clinical biomarkers were approved. This is in part because the early expectations toward proteomics in biomarkers discovery were significantly higher than the capability of technology at the time. However, during the last decade, proteomic technology has made dramatic progress in both the hardware and software methods. In this review we are discussing modern quantitative methods of mass-spectrometry and providing several examples of their applications for discovery and validation of renal disease biomarkers. We are optimistic about future prospects for the development of novel of specific clinical urinary biomarkers.
Collapse
Affiliation(s)
- Marina Jerebtsova
- Department of Microbiology, Howard University College of Medicine, 520 W Street N.W., Washington, DC 20059, USA
| | - Sergei Nekhai
- Department of Medicine, Howard University College of Medicine, 520 W Street N.W., Washington, DC 20059, USA ; Center for Sickle Cell Disease, Howard University College of Medicine, 520 W Street N.W., Washington, DC 20059, USA
| |
Collapse
|
4
|
Iliuk AB, Arrington JV, Tao WA. Analytical challenges translating mass spectrometry-based phosphoproteomics from discovery to clinical applications. Electrophoresis 2014; 35:3430-40. [PMID: 24890697 PMCID: PMC4250476 DOI: 10.1002/elps.201400153] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2014] [Revised: 04/29/2014] [Accepted: 05/12/2014] [Indexed: 12/21/2022]
Abstract
Phosphoproteomics is the systematic study of one of the most common protein modifications in high throughput with the aim of providing detailed information of the control, response, and communication of biological systems in health and disease. Advances in analytical technologies and strategies, in particular the contributions of high-resolution mass spectrometers, efficient enrichments of phosphopeptides, and fast data acquisition and annotation, have catalyzed dramatic expansion of signaling landscapes in multiple systems during the past decade. While phosphoproteomics is an essential inquiry to map high-resolution signaling networks and to find relevant events among the apparently ubiquitous and widespread modifications of proteome, it presents tremendous challenges in separation sciences to translate it from discovery to clinical practice. In this mini-review, we summarize the analytical tools currently utilized for phosphoproteomic analysis (with focus on MS), progresses made on deciphering clinically relevant kinase-substrate networks, MS uses for biomarker discovery and validation, and the potential of phosphoproteomics for disease diagnostics and personalized medicine.
Collapse
Affiliation(s)
- Anton B. Iliuk
- Department of Biochemistry, Purdue University, West Lafayette, IN, USA
| | | | - Weiguo Andy Tao
- Department of Biochemistry, Purdue University, West Lafayette, IN, USA
- Department of Chemistry, Purdue University, West Lafayette, IN, USA
- Purdue Center for Cancer Research, Purdue University, West Lafayette, IN, USA
| |
Collapse
|
5
|
Lower fetuin-A, retinol binding protein 4 and several metabolites after gastric bypass compared to sleeve gastrectomy in patients with type 2 diabetes. PLoS One 2014; 9:e96489. [PMID: 24800810 PMCID: PMC4011803 DOI: 10.1371/journal.pone.0096489] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2013] [Accepted: 04/08/2014] [Indexed: 02/06/2023] Open
Abstract
Background Bypass of foregut secreted factors promoting insulin resistance is hypothesized to be one of the mechanisms by which resolution of type 2 diabetes (T2D) follows roux-en-y gastric bypass (GBP) surgery. Aim To identify insulin resistance-associated proteins and metabolites which decrease more after GBP than after sleeve gastrectomy (SG) prior to diabetes remission. Methods Fasting plasma from 15 subjects with T2D undergoing GBP or SG was analyzed by proteomic and metabolomic methods 3 days before and 3 days after surgery. Subjects were matched for age, BMI, metformin therapy and glycemic control. Insulin resistance was calculated using homeostasis model assessment (HOMA-IR). For proteomics, samples were depleted of abundant plasma proteins, digested with trypsin and labeled with iTRAQ isobaric tags prior to liquid chromatography-tandem mass spectrometry analysis. Metabolomic analysis was performed using gas chromatography-mass spectrometry. The effect of the respective bariatric surgery on identified proteins and metabolites was evaluated using two-way analysis of variance and appropriate post-hoc tests. Results HOMA-IR improved, albeit not significantly, in both groups after surgery. Proteomic analysis yielded seven proteins which decreased significantly after GBP only, including Fetuin-A and Retinol binding protein 4, both previously linked to insulin resistance. Significant decrease in Fetuin-A and Retinol binding protein 4 after GBP was confirmed using ELISA and immunoassay. Metabolomic analysis identified significant decrease of citrate, proline, histidine and decanoic acid specifically after GBP. Conclusion Greater early decrease was seen for Fetuin-A, Retinol binding protein 4, and several metabolites after GBP compared to SG, preceding significant weight loss. This may contribute to enhanced T2D remission observed following foregut bypass procedures.
Collapse
|
6
|
Samuel N, Remke M, Rutka JT, Raught B, Malkin D. Proteomic analyses of CSF aimed at biomarker development for pediatric brain tumors. J Neurooncol 2014; 118:225-238. [PMID: 24771250 DOI: 10.1007/s11060-014-1432-3] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2013] [Accepted: 03/31/2014] [Indexed: 11/29/2022]
Abstract
Primary brain tumors cumulatively represent the most common solid tumors of childhood and are the leading cause of cancer related death in this age group. Traditionally, molecular findings and histological analyses from biopsies of resected tumor tissue have been used for diagnosis and classification of these diseases. However, there is a dearth of useful biomarkers that have been validated and clinically implemented for pediatric brain tumors. Notably, diseases of the central nervous system (CNS) can be assayed through analysis of cerebrospinal fluid (CSF) and as such, CSF represents an appropriate medium to obtain liquid biopsies that can be informative for diagnosis, disease classification and risk stratification. Proteomic profiling of pediatric CNS malignancies has identified putative protein markers of disease, yet few effective biomarkers have been clinically validated or implemented. Advances in protein quantification techniques have made it possible to conduct such investigations rapidly and accurately through proteome-wide analyses. This review summarizes the current literature on proteomics in pediatric neuro-oncology and discusses the implications for clinical applications of proteomics research. We also outline strategies for translating effective CSF proteomic studies into clinical applications to optimize the care of this patient population.
Collapse
Affiliation(s)
- Nardin Samuel
- MD/PhD Program, Faculty of Medicine, University of Toronto, Toronto, ON, Canada.,Department of Medical Biophysics, University of Toronto, Toronto, ON, Canada.,The Hospital for Sick Children, Toronto, ON, Canada
| | - Marc Remke
- The Hospital for Sick Children, Toronto, ON, Canada
| | - James T Rutka
- The Hospital for Sick Children, Toronto, ON, Canada.,Division of Neurosurgery, Department of Surgery, University of Toronto, Toronto, ON, Canada
| | - Brian Raught
- Department of Medical Biophysics, University of Toronto, Toronto, ON, Canada
| | - David Malkin
- Department of Medical Biophysics, University of Toronto, Toronto, ON, Canada. .,The Hospital for Sick Children, Toronto, ON, Canada. .,Department of Pediatrics, University of Toronto, Toronto, ON, Canada.
| |
Collapse
|
7
|
Identification of HSP90 as potential biomarker of biliary atresia using two-dimensional electrophoresis and mass spectrometry. PLoS One 2013; 8:e68602. [PMID: 23874684 PMCID: PMC3708914 DOI: 10.1371/journal.pone.0068602] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/01/2013] [Accepted: 05/31/2013] [Indexed: 12/26/2022] Open
Abstract
Biliary atresia (BA) is a devastating cholestatic liver disease targeting infants. Current diagnosis depends on surgical exploration of the biliary tree. The aim of the present study was to identify potential biomarkers for the diagnosis of biliary atresia (BA). Two-dimensional electrophoresis was utilized for the identification of proteins that were differentially expressed in liver biopsies of 20 BA patients and 12 infants with non-BA neonatal cholestasis (NC) as controls. Using mass spectrometry, we identified 15 proteins with expressions significantly altered. Out of the 15 proteins identified, heat shock protein (HSP) 90 was the most significantly altered and was down-regulated in BA samples compared to NC samples using immunoblotting analysis. Our findings suggest that HSP90 might be a potential biomarker for the diagnosis of BA and may be used for monitoring further development and therapy for BA. This study demonstrated that a comprehensive strategy of proteomic identification combined with further validation should be adopted in biomarker discovery.
Collapse
|
8
|
Mass spectrometry-based proteomics in molecular diagnostics: discovery of cancer biomarkers using tissue culture. BIOMED RESEARCH INTERNATIONAL 2013; 2013:783131. [PMID: 23586059 PMCID: PMC3613068 DOI: 10.1155/2013/783131] [Citation(s) in RCA: 45] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/30/2012] [Accepted: 01/30/2013] [Indexed: 12/14/2022]
Abstract
Accurate diagnosis and proper monitoring of cancer patients remain a key obstacle for successful cancer treatment and prevention. Therein comes the need for biomarker discovery, which is crucial to the current oncological and other clinical practices having the potential to impact the diagnosis and prognosis. In fact, most of the biomarkers have been discovered utilizing the proteomics-based approaches. Although high-throughput mass spectrometry-based proteomic approaches like SILAC, 2D-DIGE, and iTRAQ are filling up the pitfalls of the conventional techniques, still serum proteomics importunately poses hurdle in overcoming a wide range of protein concentrations, and also the availability of patient tissue samples is a limitation for the biomarker discovery. Thus, researchers have looked for alternatives, and profiling of candidate biomarkers through tissue culture of tumor cell lines comes up as a promising option. It is a rich source of tumor cell-derived proteins, thereby, representing a wide array of potential biomarkers. Interestingly, most of the clinical biomarkers in use today (CA 125, CA 15.3, CA 19.9, and PSA) were discovered through tissue culture-based system and tissue extracts. This paper tries to emphasize the tissue culture-based discovery of candidate biomarkers through various mass spectrometry-based proteomic approaches.
Collapse
|
9
|
Kierny MR, Cunningham TD, Kay BK. Detection of biomarkers using recombinant antibodies coupled to nanostructured platforms. NANO REVIEWS 2012; 3:NANO-3-17240. [PMID: 22833780 PMCID: PMC3404449 DOI: 10.3402/nano.v3i0.17240] [Citation(s) in RCA: 41] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/24/2012] [Revised: 05/30/2012] [Accepted: 06/09/2012] [Indexed: 12/14/2022]
Abstract
The utility of biomarker detection in tomorrow's personalized health care field will mean early and accurate diagnosis of many types of human physiological conditions and diseases. In the search for biomarkers, recombinant affinity reagents can be generated to candidate proteins or post-translational modifications that differ qualitatively or quantitatively between normal and diseased tissues. The use of display technologies, such as phage-display, allows for manageable selection and optimization of affinity reagents for use in biomarker detection. Here we review the use of recombinant antibody fragments, such as scFvs and Fabs, which can be affinity-selected from phage-display libraries, to bind with both high specificity and affinity to biomarkers of cancer, such as Human Epidermal growth factor Receptor 2 (HER2) and Carcinoembryonic antigen (CEA). We discuss how these recombinant antibodies can be fabricated into nanostructures, such as carbon nanotubes, nanowires, and quantum dots, for the purpose of enhancing detection of biomarkers at low concentrations (pg/mL) within complex mixtures such as serum or tissue extracts. Other sensing technologies, which take advantage of 'Surface Enhanced Raman Scattering' (gold nanoshells), frequency changes in piezoelectric crystals (quartz crystal microbalance), or electrical current generation and sensing during electrochemical reactions (electrochemical detection), can effectively provide multiplexed platforms for detection of cancer and injury biomarkers. Such devices may soon replace the traditional time consuming ELISAs and Western blots, and deliver rapid, point-of-care diagnostics to market.
Collapse
Affiliation(s)
- Michael R Kierny
- Department of Biological Sciences, University of Illinois at Chicago (UIC), Chicago, IL, USA
| | | | | |
Collapse
|
10
|
|