1
|
Kašička V. Peptide mapping of proteins by capillary electromigration methods. J Sep Sci 2022; 45:4245-4279. [PMID: 36200755 DOI: 10.1002/jssc.202200664] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2022] [Revised: 09/26/2022] [Accepted: 09/26/2022] [Indexed: 12/13/2022]
Abstract
This review article provides a wide overview of important developments and applications of capillary electromigration methods in the area of peptide mapping of proteins in the period 1997-mid-2022, including review articles on this topic. It deals with all major aspects of peptide mapping by capillary electromigration methods: i) precleavage sample preparation involving purification, preconcentration, denaturation, reduction and alkylation of protein(s) to be analyzed, ii) generation of peptide fragments by off-line or on-line enzymatic and/or chemical cleavage of protein(s), iii) postcleavage preparation of the generated peptide mixture for capillary electromigration separation, iv) separation of the complex peptide mixtures by one-, two- and multidimensional capillary electromigration methods coupled with mass spectrometry detection, and v) a large application of peptide mapping for variable purposes, such as qualitative analysis of monoclonal antibodies and other protein biopharmaceuticals, monitoring of posttranslational modifications, determination of primary structure and investigation of function of proteins in biochemical and clinical research, characterization of proteins of variable origin as well as for protein and peptide identification in proteomic and peptidomic studies.
Collapse
Affiliation(s)
- Václav Kašička
- Electromigration Methods, The Institute of Organic Chemistry and Biochemistry of the Czech Academy of Sciences, Prague, Czechia
| |
Collapse
|
2
|
KAWAI T. Recent Studies on Online Sample Preconcentration Methods inCapillary Electrophoresis Coupled with Mass Spectrometry. CHROMATOGRAPHY 2017. [DOI: 10.15583/jpchrom.2017.001] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Affiliation(s)
- Takayuki KAWAI
- Quantitative Biology Center, RIKEN
- Japan Science and Technology Agency, PRESTO
- Graduate School of Frontier Biosciences, Osaka University
| |
Collapse
|
3
|
Štěpánová S, Kašička V. Recent applications of capillary electromigration methods to separation and analysis of proteins. Anal Chim Acta 2016; 933:23-42. [DOI: 10.1016/j.aca.2016.06.006] [Citation(s) in RCA: 78] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2016] [Revised: 05/10/2016] [Accepted: 06/03/2016] [Indexed: 10/21/2022]
|
4
|
Yang C, Zhong X, Li L. Recent advances in enrichment and separation strategies for mass spectrometry-based phosphoproteomics. Electrophoresis 2014; 35:3418-29. [PMID: 24687451 PMCID: PMC4849134 DOI: 10.1002/elps.201400017] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2014] [Revised: 03/21/2014] [Accepted: 03/21/2014] [Indexed: 12/29/2022]
Abstract
Due to the significance of protein phosphorylation in various biological processes and signaling events, new analytical techniques for enhanced phosphoproteomics have been rapidly introduced in the recent years. The combinatorial use of the phospho-specific enrichment techniques and prefractionation methods prior to MS analysis enable comprehensive profiling of the phosphoproteome and facilitate deciphering the critical roles that phosphorylation plays in signaling pathways in various biological systems. This review places special emphasis on the recent five-year (2009-2013) advances for enrichment and separation techniques that have been utilized for phosphopeptides prior to MS analysis.
Collapse
Affiliation(s)
- Chenxi Yang
- Department of Chemistry, University of Wisconsin, 1101 University Avenue, Madison, Wisconsin 53706, United States
| | - Xuefei Zhong
- School of Pharmacy, University of Wisconsin, 777 Highland Avenue, Madison, Wisconsin 53705, United States
| | - Lingjun Li
- Department of Chemistry, University of Wisconsin, 1101 University Avenue, Madison, Wisconsin 53706, United States
- School of Pharmacy, University of Wisconsin, 777 Highland Avenue, Madison, Wisconsin 53705, United States
| |
Collapse
|
5
|
Biacchi M, Bhajun R, Saïd N, Beck A, François YN, Leize-Wagner E. Analysis of monoclonal antibody by a novel CE-UV/MALDI-MS interface. Electrophoresis 2014; 35:2986-95. [PMID: 25070377 DOI: 10.1002/elps.201400276] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2014] [Revised: 07/01/2014] [Accepted: 07/08/2014] [Indexed: 12/16/2022]
Abstract
mAbs are highly complex proteins that present a wide range of microheterogeneity that requires multiple analytical methods for full structure assessment and quality control. As a consequence, the characterization of mAbs on different levels is particularly product- and time-consuming. CE-MS couplings, especially to MALDI, appear really attractive methods for the characterization of biological samples. In this work, we report the last instrumental development and performance of the first totally automated off-line CE-UV/MALDI-MS/MS. This interface is based on the removal of the original UV cell of the CE apparatus, modification of the spotting device geometry, and creation of an integrated delivery matrix system. The performance of the method was evaluated with separation of five intact proteins and a tryptic digest mixture of nine proteins. Intact protein application shows the acquisition of electropherograms with high resolution and high repeatability. In the peptide mapping approach, a total number of 154 unique identified peptides were characterized using MS/MS spectra corresponding to average sequence coverage of 64.1%. Comparison with NanoLC/MALDI-MS/MS showed complementarity at the peptide level with an increase of 42% when using CE/MALDI-MS coupling. Finally, this work represents the first analysis of intact mAb charge variants by CZE using an MS detection. Moreover, using a peptide mapping approach CE-UV/MALDI-MS/MS fragmentation allowed 100% sequence coverage of the light chain and 92% of the heavy chain, and the separation of four major glycosylated peptides and their structural characterization.
Collapse
Affiliation(s)
- Michael Biacchi
- Laboratoire de Spectrométrie de Masse des Interactions et des Systèmes (LSMIS), CNRS-UMR 7140, Université de Strasbourg, Strasbourg, France
| | | | | | | | | | | |
Collapse
|
6
|
Dziomba S, Bekasiewicz A, Prahl A, Bączek T, Kowalski P. Improvement of derivatized amino acid detection sensitivity in micellar electrokinetic capillary chromatography by means of acid-induced pH-mediated stacking technique. Anal Bioanal Chem 2014; 406:6713-21. [PMID: 25146356 PMCID: PMC4182592 DOI: 10.1007/s00216-014-8104-1] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2014] [Revised: 08/08/2014] [Accepted: 08/11/2014] [Indexed: 12/05/2022]
Abstract
Derivatization is a frequently used sample preparation procedure applicable to the enhancement of analyte detection sensitivity. Amino acids mostly require derivatization prior to electrophoretic or chromatographic analysis, especially if spectrophotometric detection is used. This study presents an on-line preconcentration technique for derivatized amino acids. The sensitivity of the method was improved by the utilization of the proposed acid-induced pH-mediated stacking mechanism. The method is demonstrated by preconcentration of amino acids labeled with 2,4-dinitrofluorobenzene. Use of optimized conditions for a large sample volume injection (40 s, 13.8 kPa) followed by electrokinetic injection of 0.1 M HCl (20 s, 10 kV) gave a 20- to 30-fold enhancement of sensitivity. The significance of the sweeping mechanism and pseudo-isotachophoresis for the on-line sample focusing and the influence of parameters on the preconcentration process were discussed. The applicability of the elaborated method was demonstrated using human urine samples.
Collapse
Affiliation(s)
- Szymon Dziomba
- Department of Pharmaceutical Chemistry, Medical University of Gdańsk, 107 Hallera Street, 80-416, Gdańsk, Poland
| | | | | | | | | |
Collapse
|
7
|
Kitagawa F, Otsuka K. Recent applications of on-line sample preconcentration techniques in capillary electrophoresis. J Chromatogr A 2014; 1335:43-60. [DOI: 10.1016/j.chroma.2013.10.066] [Citation(s) in RCA: 137] [Impact Index Per Article: 13.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2013] [Revised: 10/18/2013] [Accepted: 10/21/2013] [Indexed: 12/21/2022]
|
8
|
Kašička V. Recent developments in capillary and microchip electroseparations of peptides (2011-2013). Electrophoresis 2013; 35:69-95. [PMID: 24255019 DOI: 10.1002/elps.201300331] [Citation(s) in RCA: 64] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2013] [Revised: 09/10/2013] [Accepted: 09/10/2013] [Indexed: 01/15/2023]
Abstract
The review presents a comprehensive survey of recent developments and applications of capillary and microchip electroseparation methods (zone electrophoresis, ITP, IEF, affinity electrophoresis, EKC, and electrochromatography) for analysis, isolation, purification, and physicochemical and biochemical characterization of peptides. Advances in the investigation of electromigration properties of peptides, in the methodology of their analysis, including sample preseparation, preconcentration and derivatization, adsorption suppression and EOF control, as well as in detection of peptides, are presented. New developments in particular CE and CEC modes are reported and several types of their applications to peptide analysis are described: conventional qualitative and quantitative analysis, determination in complex (bio)matrices, monitoring of chemical and enzymatical reactions and physical changes, amino acid, sequence and chiral analysis, and peptide mapping of proteins. Some micropreparative peptide separations are shown and capabilities of CE and CEC techniques to provide relevant physicochemical characteristics of peptides are demonstrated.
Collapse
Affiliation(s)
- Václav Kašička
- Institute of Organic Chemistry and Biochemistry, Academy of Sciences of the Czech Republic, Prague, Czech Republic
| |
Collapse
|
9
|
Wang C, Lee CS, Smith RD, Tang K. Capillary isotachophoresis-nanoelectrospray ionization-selected reaction monitoring MS via a novel sheathless interface for high sensitivity sample quantification. Anal Chem 2013; 85:7308-15. [PMID: 23789856 PMCID: PMC3744340 DOI: 10.1021/ac401202c] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
A novel sheathless capillary isotachophoresis (CITP/CZE)-mass spectrometry (MS) interface featuring a large inner diameter (i.d.) separation capillary, and a detachable small i.d. porous electrospray ionization (ESI) emitter was developed in this study to simultaneously achieve large sample loading capacity and stable nanoESI operation. Crucial operating parameters, including sample loading volume, flow rate, and separation window, were systematically investigated to attain optimum CITP/CZE separation efficiency and MS detection sensitivity. The performance of CITP/CZE-nanoESI-MS using the new sheathless interface was evaluated for its achievable low limit of quantification (LOQ) by analyzing targeted peptides, leu-enkephalin and angiotensin II, spiked in a BSA tryptic digest matrix at different concentrations. A linear dynamic range spanning 4.5 orders of magnitude and a 10 pM LOQ with measurement reproducibility of the CV < 22% were obtained experimentally for both targeted peptides, representing a 5-fold sensitivity improvement as compared to using the sheath liquid interface developed previously.1.
Collapse
Affiliation(s)
- Chenchen Wang
- Department of Chemistry and Biochemistry, University of Maryland, College Park, MD 20742
| | - Cheng S. Lee
- Department of Chemistry and Biochemistry, University of Maryland, College Park, MD 20742
| | - Richard D. Smith
- Biological Sciences Division, Pacific Northwest National Laboratory, Richland, WA 99352
| | - Keqi Tang
- Biological Sciences Division, Pacific Northwest National Laboratory, Richland, WA 99352
| |
Collapse
|
10
|
Breadmore MC, Shallan AI, Rabanes HR, Gstoettenmayr D, Abdul Keyon AS, Gaspar A, Dawod M, Quirino JP. Recent advances in enhancing the sensitivity of electrophoresis and electrochromatography in capillaries and microchips (2010-2012). Electrophoresis 2013; 34:29-54. [PMID: 23161056 DOI: 10.1002/elps.201200396] [Citation(s) in RCA: 124] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2012] [Revised: 09/03/2012] [Accepted: 09/04/2012] [Indexed: 12/21/2022]
Abstract
CE has been alive for over two decades now, yet its sensitivity is still regarded as being inferior to that of more traditional methods of separation such as HPLC. As such, it is unsurprising that overcoming this issue still generates much scientific interest. This review continues to update this series of reviews, first published in Electrophoresis in 2007, with updates published in 2009 and 2011 and covers material published through to June 2012. It includes developments in the field of stacking, covering all methods from field amplified sample stacking and large volume sample stacking, through to isotachophoresis, dynamic pH junction and sweeping. Attention is also given to online or inline extraction methods that have been used for electrophoresis.
Collapse
Affiliation(s)
- Michael C Breadmore
- Australian Centre for Research on Separation Science, School of Chemistry, University of Tasmania, Hobart, Tasmania, Australia.
| | | | | | | | | | | | | | | |
Collapse
|
11
|
Šlampová A, Malá Z, Pantůčková P, Gebauer P, Boček P. Contemporary sample stacking in analytical electrophoresis. Electrophoresis 2012; 34:3-18. [PMID: 23161176 DOI: 10.1002/elps.201200346] [Citation(s) in RCA: 63] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2012] [Revised: 07/20/2012] [Accepted: 07/20/2012] [Indexed: 12/29/2022]
Abstract
Sample stacking is a term denoting a multifarious class of methods and their names that are used daily in CE for online concentration of diluted samples to enhance separation efficiency and sensitivity of analyses. The essence of these methods is that analytes present at low concentrations in a large injected sample zone are concentrated into a short and sharp zone (stack) in the separation capillary. Then the stacked analytes are separated and detected. Regardless of the diversity of the stacking electromigration methods, one can distinguish four main principles that form the bases of nearly all of them: (i) Kohlrausch adjustment of concentrations, (ii) pH step, (iii) micellar methods, and (iv) transient ITP. This contribution is a continuation of our previous reviews on the topic and brings an overview of papers published during 2010-2012 and relevant to the mentioned principles (except the last one which is covered by another review in this issue).
Collapse
Affiliation(s)
- Andrea Šlampová
- Institute of Analytical Chemistry of the Academy of Sciences of the Czech Republic, Brno, Czech Republic
| | | | | | | | | |
Collapse
|
12
|
Klepárník K. Recent advances in the combination of capillary electrophoresis with mass spectrometry: From element to single-cell analysis. Electrophoresis 2012; 34:70-85. [DOI: 10.1002/elps.201200488] [Citation(s) in RCA: 68] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2012] [Revised: 10/08/2012] [Accepted: 10/08/2012] [Indexed: 11/11/2022]
Affiliation(s)
- Karel Klepárník
- Institute of Analytical Chemistry; Academy of Sciences of the Czech Republic; Brno; Czech Republic
| |
Collapse
|
13
|
Ramautar R, Heemskerk AAM, Hensbergen PJ, Deelder AM, Busnel JM, Mayboroda OA. CE-MS for proteomics: Advances in interface development and application. J Proteomics 2012; 75:3814-28. [PMID: 22609513 DOI: 10.1016/j.jprot.2012.04.050] [Citation(s) in RCA: 64] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2012] [Revised: 04/23/2012] [Accepted: 04/30/2012] [Indexed: 12/25/2022]
Abstract
Capillary electrophoresis-mass spectrometry (CE-MS) has emerged as a powerful technique for the analysis of proteins and peptides. Over the past few years, significant progress has been made in the development of novel and more effective interfaces for hyphenating CE to MS. This review provides an overview of these new interfacing techniques for coupling CE to MS, covering the scientific literature from January 2007 to December 2011. The potential of these new CE-MS interfacing techniques is demonstrated within the field of (clinical) proteomics, more specifically "bottom-up" proteomics, by showing examples of the analysis of various biological samples. The relevant papers on CE-MS for proteomics are comprehensively summarized in tables, including, e.g. information on sample type and pretreatment, interfacing and MS detection mode. Finally, general conclusions and future perspectives are provided.
Collapse
Affiliation(s)
- Rawi Ramautar
- Biomolecular Mass Spectrometry Unit, Department of Parasitology, Leiden University Medical Center, Albinusdreef 2, 2300 RC, Leiden, The Netherlands.
| | | | | | | | | | | |
Collapse
|
14
|
Benk AS, Roesli C. Label-free quantification using MALDI mass spectrometry: considerations and perspectives. Anal Bioanal Chem 2012; 404:1039-56. [DOI: 10.1007/s00216-012-5832-y] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2011] [Revised: 01/27/2012] [Accepted: 02/01/2012] [Indexed: 01/17/2023]
|