1
|
Lin Y, Ma Y, Ye J. A modified Prussian blue biosensor with improved stability based on the use of self-assembled monolayers and polydopamine for quantitative L-glutamate detection. Mikrochim Acta 2024; 191:207. [PMID: 38499896 DOI: 10.1007/s00604-024-06295-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2023] [Accepted: 03/03/2024] [Indexed: 03/20/2024]
Abstract
A miniature L-glutamate (L-Glu) biosensor is described based on Prussian blue (PB) modification with improved stability by using self-assembled monolayers (SAMs) technology and polydopamine (PDA). A gold microelectrode (AuME) was immersed in NH2(CH2)6SH-ethanol solution, forming well-defined SAMs via thiol-gold bonding chemistry which increased the number of deposited Prussian blue nanoparticles (PBNPs) and confined them tightly on the AuME surface. Then, dopamine solution was dropped onto the PBNPs surface and self-polymerized into PDA to protect the PB structure from destruction. The PDA/PB/SAMs/AuME showed improved stability through CV measurements in comparison with PB/AuME, PB/SAMs/AuME, and PDA/PB/AuME. The constructed biosensor achieved a high sensitivity of 70.683 nA µM-1 cm-2 in the concentration range 1-476 µM L-Glu with a low LOD of 0.329 µM and performed well in terms of selectivity, reproducibility, and stability. In addition, the developed biosensor was successfully applied to the determination of L-Glu in tomato juice, and the results were in good agreement with that of high-performance liquid chromatography (HPLC). Due to its excellent sensitivity, improved stability, and miniature volume, the developed biosensor not only has a promising potential for application in food sample analysis but also provides a good candidate for monitoring L-Glu level in food production.
Collapse
Affiliation(s)
- Ye Lin
- College of Chemistry and Chemical Engineering, South China University of Technology, Guangzhou, 510641, People's Republic of China
| | - Ying Ma
- College of Chemistry and Chemical Engineering, South China University of Technology, Guangzhou, 510641, People's Republic of China.
| | - Jianshan Ye
- College of Chemistry and Chemical Engineering, South China University of Technology, Guangzhou, 510641, People's Republic of China.
| |
Collapse
|
2
|
Construction of minitype glutamate sensor for in vivo monitoring of L-glutamate in plant. Microchem J 2023. [DOI: 10.1016/j.microc.2023.108505] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
|
3
|
Torres J, Campos KS, Harrison CR. Fluorescently Labeling Amino Acids in a Deep Eutectic Solvent. Anal Chem 2022; 94:16538-16542. [DOI: 10.1021/acs.analchem.2c03980] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Affiliation(s)
- Jessica Torres
- Department of Chemistry and Biochemistry, San Diego State University, 5500 Campanile Drive, San Diego, California 92182, United States
| | - Karen S. Campos
- Department of Chemistry and Biochemistry, San Diego State University, 5500 Campanile Drive, San Diego, California 92182, United States
| | - Christopher R. Harrison
- Department of Chemistry and Biochemistry, San Diego State University, 5500 Campanile Drive, San Diego, California 92182, United States
| |
Collapse
|
4
|
Lakatos PP, Karádi DÁ, Galambos AR, Essmat N, Király K, Laufer R, Geda O, Zádori ZS, Tábi T, Al-Khrasani M, Szökő É. The Acute Antiallodynic Effect of Tolperisone in Rat Neuropathic Pain and Evaluation of Its Mechanism of Action. Int J Mol Sci 2022; 23:ijms23179564. [PMID: 36076962 PMCID: PMC9455595 DOI: 10.3390/ijms23179564] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2022] [Revised: 08/19/2022] [Accepted: 08/22/2022] [Indexed: 11/16/2022] Open
Abstract
Current treatment approaches to manage neuropathic pain have a slow onset and their use is largely hampered by side-effects, thus there is a significant need for finding new medications. Tolperisone, a centrally acting muscle relaxant with a favorable side effect profile, has been reported to affect ion channels, which are targets for current first-line medications in neuropathic pain. Our aim was to explore its antinociceptive potency in rats developing neuropathic pain evoked by partial sciatic nerve ligation and the mechanisms involved. Acute oral tolperisone restores both the decreased paw pressure threshold and the elevated glutamate level in cerebrospinal fluid in neuropathic rats. These effects were comparable to those of pregabalin, a first-line medication in neuropathy. Tolperisone also inhibits release of glutamate from rat brain synaptosomes primarily by blockade of voltage-dependent sodium channels, although inhibition of calcium channels may also be involved at higher concentrations. However, pregabalin fails to affect glutamate release under our present conditions, indicating a different mechanism of action. These results lay the foundation of the avenue for repurposing tolperisone as an analgesic drug to relieve neuropathic pain.
Collapse
Affiliation(s)
- Péter P. Lakatos
- Department of Pharmacodynamics, Semmelweis University, 4 Nagyvárad tér, H-1089 Budapest, Hungary
| | - Dávid Árpád Karádi
- Department of Pharmacology and Pharmacotherapy, Semmelweis University, 4 Nagyvárad tér, H-1089 Budapest, Hungary
| | - Anna Rita Galambos
- Department of Pharmacology and Pharmacotherapy, Semmelweis University, 4 Nagyvárad tér, H-1089 Budapest, Hungary
| | - Nariman Essmat
- Department of Pharmacology and Pharmacotherapy, Semmelweis University, 4 Nagyvárad tér, H-1089 Budapest, Hungary
| | - Kornél Király
- Department of Pharmacology and Pharmacotherapy, Semmelweis University, 4 Nagyvárad tér, H-1089 Budapest, Hungary
| | - Rudolf Laufer
- Department of Pharmacodynamics, Semmelweis University, 4 Nagyvárad tér, H-1089 Budapest, Hungary
| | - Orsolya Geda
- Department of Pharmacodynamics, Semmelweis University, 4 Nagyvárad tér, H-1089 Budapest, Hungary
| | - Zoltán S. Zádori
- Department of Pharmacology and Pharmacotherapy, Semmelweis University, 4 Nagyvárad tér, H-1089 Budapest, Hungary
| | - Tamás Tábi
- Department of Pharmacodynamics, Semmelweis University, 4 Nagyvárad tér, H-1089 Budapest, Hungary
- Correspondence: (T.T.); (M.A.-K.); Tel.: +36-1-2104-411 (T.T.); +36-1-2104-416 (M.A.-K.)
| | - Mahmoud Al-Khrasani
- Department of Pharmacology and Pharmacotherapy, Semmelweis University, 4 Nagyvárad tér, H-1089 Budapest, Hungary
- Correspondence: (T.T.); (M.A.-K.); Tel.: +36-1-2104-411 (T.T.); +36-1-2104-416 (M.A.-K.)
| | - Éva Szökő
- Department of Pharmacodynamics, Semmelweis University, 4 Nagyvárad tér, H-1089 Budapest, Hungary
| |
Collapse
|
5
|
Zachar G, Jakó T, Vincze I, Wagner Z, Tábi T, Bálint E, Mezey S, Szökő É, Csillag A. Age-related and function-dependent regional alterations of free L- and D-aspartate in postembryonic chick brain. ACTA BIOLOGICA HUNGARICA 2018; 69:1-15. [PMID: 29575913 DOI: 10.1556/018.68.2018.1.1] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
D-aspartate (D-Asp) modulates adult neural plasticity and embryonic brain development by promoting cell proliferation, survival and differentiation. Here, developmental changes of the excitatory amino acids (EAAs) L-Glu, L-Asp and D-Asp were determined during the first postembryonic days, a time window for early learning, in selected brain regions of domestic chickens after chiral separation and capillary electrophoresis. Extracellular concentration (ECC) of EAAs was measured in microdialysis samples from freely moving chicks. ECC of D-Asp (but not L-EAAs) decreased during the first week of age, with no considerable regional or learning-related variation. ECC of L-Asp and L-Glu (but not of D-Asp) were elevated in the mSt/Ac in response to a rewarding stimulus, suggesting importance of Asp-Glu co-release in synaptic plasticity of basal ganglia. Potassium-evoked release of D-Asp, with a protracted transient, was also demonstrated. D-Asp constitutes greater percentage of total aspartate in the extracellular space than in whole tissue extracts, thus the bulk of D-Asp detected in tissue appears in the extracellular space. Conversely, only a fraction of tissue L-EAAs can be detected in extracellular space. The lack of changes in tissue D-Asp following avoidance learning indicates a tonic, rather than phasic, mechanism in the neuromodulatory action of this amino acid.
Collapse
Affiliation(s)
- Gergely Zachar
- Department of Anatomy, Histology and EmbryologySemmelweis University, Tűzoltó u. 58, H-1094 Budapest, Hungary
| | - Tamás Jakó
- Department of PharmacodynamicsSemmelweis University, Budapest, Hungary
| | - István Vincze
- Department of PharmacodynamicsSemmelweis University, Budapest, Hungary
| | - Zsolt Wagner
- Department of PharmacodynamicsSemmelweis University, Budapest, Hungary
| | - Tamás Tábi
- Department of PharmacodynamicsSemmelweis University, Budapest, Hungary
| | - Eszter Bálint
- Department of Anatomy, Histology and EmbryologySemmelweis University, Tűzoltó u. 58, H-1094 Budapest, Hungary
| | - Szilvia Mezey
- Department of Anatomy, Histology and EmbryologySemmelweis University, Tűzoltó u. 58, H-1094 Budapest, Hungary
| | - Éva Szökő
- Department of PharmacodynamicsSemmelweis University, Budapest, Hungary
| | - András Csillag
- Department of Anatomy, Histology and EmbryologySemmelweis University, Tűzoltó u. 58, H-1094 Budapest, Hungary
| |
Collapse
|
6
|
Chiral separations for d -amino acid analysis in biological samples. J Pharm Biomed Anal 2016; 130:100-109. [DOI: 10.1016/j.jpba.2016.06.054] [Citation(s) in RCA: 42] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2016] [Revised: 06/29/2016] [Accepted: 06/30/2016] [Indexed: 11/20/2022]
|
7
|
Denoroy L, Parrot S. Analysis of Amino Acids and Related Compounds by Capillary Electrophoresis. SEPARATION AND PURIFICATION REVIEWS 2016. [DOI: 10.1080/15422119.2016.1212378] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
|
8
|
Yin N, Guan J, He N, Xue F. Simultaneous Sensitive Determination of Eight Collagen-Related Bone Turnover Biomarkers in Diverse Clinical Samples by HPLC with Fluorescent Derivatization. Chromatographia 2016. [DOI: 10.1007/s10337-016-3030-3] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
|
9
|
|
10
|
Jakó T, Szabó E, Tábi T, Zachar G, Csillag A, Szökő E. Chiral analysis of amino acid neurotransmitters and neuromodulators in mouse brain by CE-LIF. Electrophoresis 2014; 35:2870-6. [PMID: 24931272 DOI: 10.1002/elps.201400224] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2014] [Revised: 06/05/2014] [Accepted: 06/07/2014] [Indexed: 11/08/2022]
Abstract
Chiral CE method has been developed for quantitative determination of d-amino acid modulators of NMDA glutamate receptor; d-serine and d-aspartate along with l-glutamate and l-aspartate in biological samples. These ligands are suggested to be involved in regulation of NMDA receptor related brain functions, such as neurogenesis, neuronal plasticity, and memory formation. For sensitive determination of the amino acids LIF detection was chosen, and a fluorogenic reagent, 7-fluoro-4-nitro-2,1,3-benzoxadiazole was used for derivatization. An amino-modified β-CD, 6-monodeoxy-6-mono(3-hydroxy)propylamino-β-CD (HPA-β-CD) was applied as chiral selector. Determinations were accomplished in a polyacrylamide coated capillary and reverse polarity was used for the analysis of the negatively charged analytes. The method was optimized and validated; 6 mM HPA-β-CD in 50 mM HEPES buffer, pH 7 was appropriate to achieve baseline separation of the analytes. The limit of quantification with acceptable accuracy is 0.05 μM for both d-amino acids. The method was used for the determination of d-aspartate and d-serine content in various brain regions of adult mice.
Collapse
Affiliation(s)
- Tamás Jakó
- Department of Pharmacodynamics, Semmelweis University, Budapest, Hungary
| | | | | | | | | | | |
Collapse
|
11
|
Recent advances in development and application of derivatization reagents having a benzofurazan structure: a brief overview. Biomed Chromatogr 2014; 28:760-6. [DOI: 10.1002/bmc.3115] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
|
12
|
Poinsot V, Ong-Meang V, Gavard P, Couderc F. Recent advances in amino acid analysis by capillary electromigration methods, 2011-2013. Electrophoresis 2013; 35:50-68. [DOI: 10.1002/elps.201300306] [Citation(s) in RCA: 52] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2013] [Revised: 09/11/2013] [Accepted: 09/11/2013] [Indexed: 12/28/2022]
Affiliation(s)
- Véréna Poinsot
- Laboratoire des IMRCP; Université Paul Sabatier; Toulouse France
| | | | - Pierre Gavard
- Laboratoire des IMRCP; Université Paul Sabatier; Toulouse France
| | - François Couderc
- Laboratoire des IMRCP; Université Paul Sabatier; Toulouse France
| |
Collapse
|
13
|
Chiral separation and determination of excitatory amino acids in brain samples by CE-LIF using dual cyclodextrin system. Anal Bioanal Chem 2012; 404:2363-8. [PMID: 22960871 DOI: 10.1007/s00216-012-6384-x] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2012] [Revised: 08/22/2012] [Accepted: 08/24/2012] [Indexed: 10/27/2022]
Abstract
Chiral capillary electrophoresis method has been developed to separate aspartate and glutamate enantiomers to investigate the putative neuromodulator function of D-Asp in the central nervous system. To achieve appropriate detection sensitivity fluorescent derivatization with 4-fluoro-7-nitro-2,1,3-benzoxadiazole and laser-induced fluorescence detection was applied. Although, simultaneous baseline separation of the two enantiomer pairs could be achieved by using 3 mM 6-monodeoxy-6-mono(3-hydroxy)propylamino-β-cyclodextrin (HPA-β-CD), further improvement of the chemical selectivity was required because of the high excess of L-enantiomers in real samples to be analyzed. The system selectivity was fine-tuned by combination of 8 mM heptakis(2,6-di-O-methyl)-β-cyclodextrin and 5 mM HPA-β-CD in order to increase the resolution between aspartate and glutamate enantiomers. The method was validated for biological application. The limits of detection for D-Asp and D-Glu were 17 and 9 nM, respectively, while the limit of quantification for both analytes was 50 nM. This is the lowest quantification limit reported so far for NBD-tagged D-Asp and D-Glu obtained by validated capillary electrophoresis laser-induced fluorescence method. The applicability of the method was demonstrated by analyzing brain samples of 1-day-old chickens. In all the studied brain areas, the D-enantiomer contributed 1-2 % of the total aspartate content, corresponding to 17-45 nmol/g wet tissue.
Collapse
|
14
|
Wang J, Huang X, Zan F, Guo CG, Cao C, Ren J. Studies on bioconjugation of quantum dots using capillary electrophoresis and fluorescence correlation spectroscopy. Electrophoresis 2012; 33:1987-95. [DOI: 10.1002/elps.201200024] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Affiliation(s)
- Jinjie Wang
- College of Chemistry & Chemical Engineering; State Key Laboratory of Metal Matrix Composites; Shanghai Jiaotong University; Shanghai; Peoples Republic of China
| | - Xiangyi Huang
- College of Chemistry & Chemical Engineering; State Key Laboratory of Metal Matrix Composites; Shanghai Jiaotong University; Shanghai; Peoples Republic of China
| | - Feng Zan
- College of Chemistry & Chemical Engineering; State Key Laboratory of Metal Matrix Composites; Shanghai Jiaotong University; Shanghai; Peoples Republic of China
| | - Chen-gang Guo
- College of Life Science and Technology; Shanghai Jiaotong University; Shanghai; Peoples Republic of China
| | - Chengxi Cao
- College of Life Science and Technology; Shanghai Jiaotong University; Shanghai; Peoples Republic of China
| | - Jicun Ren
- College of Chemistry & Chemical Engineering; State Key Laboratory of Metal Matrix Composites; Shanghai Jiaotong University; Shanghai; Peoples Republic of China
| |
Collapse
|
15
|
Zachar G, Wagner Z, Tábi T, Bálint E, Szökő É, Csillag A. Differential Changes of Extracellular Aspartate and Glutamate in the Striatum of Domestic Chicken Evoked by High Potassium or Distress: An In Vivo Microdialysis Study. Neurochem Res 2012; 37:1730-7. [DOI: 10.1007/s11064-012-0783-4] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2011] [Revised: 04/01/2012] [Accepted: 04/12/2012] [Indexed: 02/03/2023]
|