2
|
Dey KK. Dynamic Coupling at Low Reynolds Number. Angew Chem Int Ed Engl 2019; 58:2208-2228. [DOI: 10.1002/anie.201804599] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2018] [Indexed: 01/10/2023]
Affiliation(s)
- Krishna Kanti Dey
- Discipline of PhysicsIndian Institute of Technology Gandhinagar Gandhinagar Gujarat 382355 India
| |
Collapse
|
5
|
Wahl AJ, Seymour IP, Moore M, Lovera P, O'Riordan A, Rohan JF. Diffusion profile simulations and enhanced iron sensing in generator-collector mode at interdigitated nanowire electrode arrays. Electrochim Acta 2018. [DOI: 10.1016/j.electacta.2018.04.181] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
6
|
Cui C, Huang J, Huang J, Chen G. Size separation of mechanically exfoliated graphene sheets by electrophoresis. Electrochim Acta 2017. [DOI: 10.1016/j.electacta.2017.11.128] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
|
7
|
Adam V, Vaculovicova M. Nanomaterials for sample pretreatment prior to capillary electrophoretic analysis. Analyst 2017; 142:849-857. [DOI: 10.1039/c6an02608g] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
Abstract
Nanomaterials are, in analytical science, used for a broad range of purposes, covering the area of sample pretreatment as well as separation, detection and identification of target molecules.
Collapse
Affiliation(s)
- Vojtech Adam
- Department of Chemistry and Biochemistry
- Mendel University in Brno
- CZ-613 00 Brno
- Czech Republic
- Central European Institute of Technology
| | - Marketa Vaculovicova
- Department of Chemistry and Biochemistry
- Mendel University in Brno
- CZ-613 00 Brno
- Czech Republic
- Central European Institute of Technology
| |
Collapse
|
8
|
García-Carmona L, Martín A, Sierra T, González MC, Escarpa A. Electrochemical detectors based on carbon and metallic nanostructures in capillary and microchip electrophoresis. Electrophoresis 2016; 38:80-94. [DOI: 10.1002/elps.201600232] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2016] [Revised: 06/27/2016] [Accepted: 06/28/2016] [Indexed: 11/07/2022]
Affiliation(s)
- Laura García-Carmona
- Department of Analytical Chemistry, Physical Chemistry and Chemical Engineering; University of Alcalá; Madrid Spain
| | - Aida Martín
- Department of Analytical Chemistry, Physical Chemistry and Chemical Engineering; University of Alcalá; Madrid Spain
| | - Tania Sierra
- Department of Analytical Chemistry, Physical Chemistry and Chemical Engineering; University of Alcalá; Madrid Spain
| | - María Cristina González
- Department of Analytical Chemistry, Physical Chemistry and Chemical Engineering; University of Alcalá; Madrid Spain
| | - Alberto Escarpa
- Department of Analytical Chemistry, Physical Chemistry and Chemical Engineering; University of Alcalá; Madrid Spain
| |
Collapse
|
9
|
Nasir MZM, Pumera M. Impact electrochemistry on screen-printed electrodes for the detection of monodispersed silver nanoparticles of sizes 10–107 nm. Phys Chem Chem Phys 2016; 18:28183-28188. [DOI: 10.1039/c6cp05463c] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
We discuss the use of screen-printed electrodes for the impact electrochemistry detection of well-defined monodispersed silver nanoparticles of sizes 10, 20, 40, 80, and 107 nm.
Collapse
Affiliation(s)
- Muhammad Zafir Mohamad Nasir
- Division of Chemistry and Biological Chemistry
- School of Physical and Mathematical Sciences
- Nanyang Technological University
- Singapore 637371
| | - Martin Pumera
- Division of Chemistry and Biological Chemistry
- School of Physical and Mathematical Sciences
- Nanyang Technological University
- Singapore 637371
| |
Collapse
|
10
|
Guszpit E, Krizkova S, Kepinska M, Rodrigo MAM, Milnerowicz H, Kopel P, Kizek R. Fluorescence-tagged metallothionein with CdTe quantum dots analyzed by the chip-CE technique. JOURNAL OF NANOPARTICLE RESEARCH : AN INTERDISCIPLINARY FORUM FOR NANOSCALE SCIENCE AND TECHNOLOGY 2015; 17:423. [PMID: 26543399 PMCID: PMC4624813 DOI: 10.1007/s11051-015-3226-8] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/09/2015] [Accepted: 10/15/2015] [Indexed: 05/12/2023]
Abstract
ABSTRACT Quantum dots (QDs) are fluorescence nanoparticles (NPs) with unique optic properties which allow their use as probes in chemical, biological, immunological, and molecular imaging. QDs linked with target ligands such as peptides or small molecules can be used as tumor biomarkers. These particles are a promising tool for selective, fast, and sensitive tagging and imaging in medicine. In this study, an attempt was made to use QDs as a marker for human metallothionein (MT) isoforms 1 and 2. Four kinds of CdTe QDs of different sizes bioconjugated with MT were analyzed using the chip-CE technique. Based on the results, it can be concluded that MT is willing to interact with QDs, and the chip-CE technique enables the observation of their complexes. It was also observed that changes ranging roughly 6-7 kDa, a value corresponding to the MT monomer, depend on the hydrodynamic diameters of QDs; also, the MT sample without cadmium interacted stronger with QDs than MT saturated with cadmium. Results show that MT is willing to interact with smaller QDs (blue CdTe) rather than larger ones QDs (red CdTe). To our knowledge, chip-CE has not previously been applied in the study of CdTe QDs interaction with MT. GRAPHICAL ABSTRACT
Collapse
Affiliation(s)
- Ewelina Guszpit
- />Department of Biomedical and Environmental Analysis, Faculty of Pharmacy, Wroclaw Medical University, Borowska 211, 50-556 Wroclaw, Poland
| | - Sona Krizkova
- />Department of Chemistry and Biochemistry, Faculty of Agronomy, Mendel University in Brno, Zemedelska 1/1665, 613 00 Brno, Czech Republic
- />Central European Institute of Technology, Brno University of Technology, Technicka 3058/10, 616 00 Brno, Czech Republic
| | - Marta Kepinska
- />Department of Biomedical and Environmental Analysis, Faculty of Pharmacy, Wroclaw Medical University, Borowska 211, 50-556 Wroclaw, Poland
| | - Miguel Angel Merlos Rodrigo
- />Department of Chemistry and Biochemistry, Faculty of Agronomy, Mendel University in Brno, Zemedelska 1/1665, 613 00 Brno, Czech Republic
- />Central European Institute of Technology, Brno University of Technology, Technicka 3058/10, 616 00 Brno, Czech Republic
| | - Halina Milnerowicz
- />Department of Biomedical and Environmental Analysis, Faculty of Pharmacy, Wroclaw Medical University, Borowska 211, 50-556 Wroclaw, Poland
| | - Pavel Kopel
- />Department of Chemistry and Biochemistry, Faculty of Agronomy, Mendel University in Brno, Zemedelska 1/1665, 613 00 Brno, Czech Republic
- />Central European Institute of Technology, Brno University of Technology, Technicka 3058/10, 616 00 Brno, Czech Republic
| | - Rene Kizek
- />Department of Chemistry and Biochemistry, Faculty of Agronomy, Mendel University in Brno, Zemedelska 1/1665, 613 00 Brno, Czech Republic
- />Central European Institute of Technology, Brno University of Technology, Technicka 3058/10, 616 00 Brno, Czech Republic
| |
Collapse
|
11
|
Cloake SJ, Toh HS, Lee PT, Salter C, Johnston C, Compton RG. Anodic stripping voltammetry of silver nanoparticles: aggregation leads to incomplete stripping. ChemistryOpen 2015; 4:22-6. [PMID: 25861566 PMCID: PMC4380949 DOI: 10.1002/open.201402050] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2014] [Indexed: 11/18/2022] Open
Abstract
The influence of nanoparticle aggregation on anodic stripping voltammetry is reported. Dopamine-capped silver nanoparticles were chosen as a model system, and melamine was used to induce aggregation in the nanoparticles. Through the anodic stripping of the silver nanoparticles that were aggregated to different extents, it was found that the peak area of the oxidative signal corresponding to the stripping of silver to silver(I) ions decreases with increasing aggregation. Aggregation causes incomplete stripping of the silver nanoparticles. Two possible mechanisms of 'partial oxidation' and 'inactivation' of the nanoparticles are proposed to account for this finding. Aggregation effects must be considered when anodic stripping voltammetry is used for nanoparticle detection and quantification. Hence, drop casting, which is known to lead to aggregation, is not encouraged for preparing electrodes for analytical purposes.
Collapse
Affiliation(s)
- Samantha J Cloake
- Physical & Theoretical Chemistry Laboratory, Oxford UniversitySouth Parks Road, Oxford OX1 3QZ (UK)
| | - Her Shuang Toh
- Physical & Theoretical Chemistry Laboratory, Oxford UniversitySouth Parks Road, Oxford OX1 3QZ (UK)
| | - Patricia T Lee
- Physical & Theoretical Chemistry Laboratory, Oxford UniversitySouth Parks Road, Oxford OX1 3QZ (UK)
| | - Chris Salter
- Department of Materials, Oxford UniversityParks Road, Oxford OX1 3PH (UK)
| | - Colin Johnston
- Department of Materials, Oxford UniversityParks Road, Oxford OX1 3PH (UK)
| | - Richard G Compton
- Physical & Theoretical Chemistry Laboratory, Oxford UniversitySouth Parks Road, Oxford OX1 3QZ (UK)
| |
Collapse
|
12
|
Pumera M. Impact electrochemistry: measuring individual nanoparticles. ACS NANO 2014; 8:7555-8. [PMID: 25084212 DOI: 10.1021/nn503831r] [Citation(s) in RCA: 74] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/21/2023]
Abstract
While the electrochemistry of redox-active ions or molecules has been studied for decades, the electrochemistry of individual nanoparticles remains largely unexplored. In this issue of ACS Nano, Stuart et al. report the direct electrochemical detection of impacting carbon C60 nanoparticles in a non-aqueous solution. This study opens up the possibility of detecting and counting various redox-active inorganic, organic, and carbon-based nanoparticles, one by one, in colloids and suspensions by a simple and highly sensitive technique. The method developed by Stuart et al. enables the determination of the type, size, and concentration of the nanoparticles. One can foresee a wide scope of potential applications, ranging from the environmental monitoring of nanoparticles to the detection of self-propelled autonomous nano- and micromachines.
Collapse
Affiliation(s)
- Martin Pumera
- Division of Chemistry & Biological Chemistry, School of Physical and Mathematical Sciences, Nanyang Technological University , 637371 Singapore
| |
Collapse
|
13
|
Yakushenko A, Mayer D, Buitenhuis J, Offenhäusser A, Wolfrum B. Electrochemical artifacts originating from nanoparticle contamination by Ag/AgCl quasi-reference electrodes. LAB ON A CHIP 2014; 14:602-607. [PMID: 24296941 DOI: 10.1039/c3lc51029h] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/02/2023]
Abstract
Electrochemical techniques rely on the stability of a defined reference potential. Due to the need for miniaturization, electrochemical lab-on-a-chip platforms often employ Ag/AgCl quasi-reference electrodes for this purpose. Here, we report on electrochemical artifacts resulting from nanoparticle-electrode collisions originating from standard chlorinated silver wires.
Collapse
Affiliation(s)
- Alexey Yakushenko
- Institute of Bioelectronics (PGI-8/ICS-8) and JARA-Fundamentals of Future Information Technology, Forschungszentrum Jülich, 52425 Jülich, Germany.
| | | | | | | | | |
Collapse
|