1
|
Kong F, Luo J, Jing L, Wang Y, Shen H, Yu R, Sun S, Xing Y, Ming T, Liu M, Jin H, Cai X. Reduced Graphene Oxide and Gold Nanoparticles-Modified Electrochemical Aptasensor for Highly Sensitive Detection of Doxorubicin. NANOMATERIALS (BASEL, SWITZERLAND) 2023; 13:1223. [PMID: 37049316 PMCID: PMC10096947 DOI: 10.3390/nano13071223] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/02/2023] [Revised: 03/23/2023] [Accepted: 03/27/2023] [Indexed: 06/19/2023]
Abstract
Doxorubicin (DOX) is the most clinically important antibiotic in cancer treatment, but its severe cardiotoxicity and other side effects limit its clinical use. Therefore, monitoring DOX concentrations during therapy is essential to improve efficacy and reduce adverse effects. Here, we fabricated a sensitive electrochemical aptasensor for DOX detection. The sensor used gold wire as the working electrode and was modified with reduced graphene oxide (rGO)/gold nanoparticles (AuNPs) to improve the sensitivity. An aptamer was used as the recognition element for the DOX. The 5' end of the aptamer was modified with a thiol group, and thus immobilized to the AuNPs, and the 3' end was modified with methylene blue, which acts as the electron mediator. The combination between the aptamer and DOX would produce a binding-induced conformation, which changes the electron transfer rate, yielding a current change that correlates with the concentration of DOX. The aptasensor exhibited good linearity in the DOX concentration range of 0.3 μM to 6 μM, with a detection limit of 0.1 μM. In addition, the aptasensor was used for DOX detection in real samples and results, and showed good recovery. The proposed electrochemical aptasensor will provide a sensitive, fast, simple, and reliable new platform for detecting DOX.
Collapse
Affiliation(s)
- Fanli Kong
- State Key Laboratory of Transducer Technology, Aerospace Information Research Institute, Chinese Academy of Sciences, Beijing 100190, China
- School of Electronic, Electrical and Communication Engineering, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Jinping Luo
- State Key Laboratory of Transducer Technology, Aerospace Information Research Institute, Chinese Academy of Sciences, Beijing 100190, China
- School of Electronic, Electrical and Communication Engineering, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Luyi Jing
- State Key Laboratory of Transducer Technology, Aerospace Information Research Institute, Chinese Academy of Sciences, Beijing 100190, China
- School of Electronic, Electrical and Communication Engineering, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Yiding Wang
- State Key Laboratory of Transducer Technology, Aerospace Information Research Institute, Chinese Academy of Sciences, Beijing 100190, China
- School of Electronic, Electrical and Communication Engineering, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Huayu Shen
- State Key Laboratory of Transducer Technology, Aerospace Information Research Institute, Chinese Academy of Sciences, Beijing 100190, China
| | - Rong Yu
- State Key Laboratory of Transducer Technology, Aerospace Information Research Institute, Chinese Academy of Sciences, Beijing 100190, China
| | - Shuai Sun
- State Key Laboratory of Transducer Technology, Aerospace Information Research Institute, Chinese Academy of Sciences, Beijing 100190, China
- School of Electronic, Electrical and Communication Engineering, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Yu Xing
- State Key Laboratory of Transducer Technology, Aerospace Information Research Institute, Chinese Academy of Sciences, Beijing 100190, China
- School of Electronic, Electrical and Communication Engineering, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Tao Ming
- State Key Laboratory of Transducer Technology, Aerospace Information Research Institute, Chinese Academy of Sciences, Beijing 100190, China
- School of Electronic, Electrical and Communication Engineering, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Meiting Liu
- State Key Laboratory of Transducer Technology, Aerospace Information Research Institute, Chinese Academy of Sciences, Beijing 100190, China
- School of Electronic, Electrical and Communication Engineering, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Hongyan Jin
- Obstetrics and Gynecology Department, Peking University First Hospital, Beijing 100034, China
| | - Xinxia Cai
- State Key Laboratory of Transducer Technology, Aerospace Information Research Institute, Chinese Academy of Sciences, Beijing 100190, China
- School of Electronic, Electrical and Communication Engineering, University of Chinese Academy of Sciences, Beijing 100049, China
| |
Collapse
|
2
|
Sulfur nanoparticle-encapsulated MOF and boron nanosheet-ferrocene complex modified electrode platform for ratiometric electrochemical sensing of adriamycin and real-time monitoring of drug release. Microchem J 2022. [DOI: 10.1016/j.microc.2022.107319] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
|
3
|
Tang W, Zhang Z, Li C, Chu Y, Qian J, Ying T, Lu W, Zhan C. Facile Separation of PEGylated Liposomes Enabled by Anti-PEG scFv. NANO LETTERS 2021; 21:10107-10113. [PMID: 34812646 DOI: 10.1021/acs.nanolett.1c03946] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
PEGylated nanocarriers have gained increasing attention due to reduced toxicity and enhanced circulation compared with free drugs. According to guidances of drug regulatory departments worldwide, it is crucial to determine free and liposomal drug concentrations; however, the conventional used separation methods including dialysis, ultrafiltration, and solid-phase extraction (SPE) have drawbacks of time-consuming, drug leakage, environmental pollution or error bias of trace level drug. Here we developed a facile PEG-scFv-based separation method combined with HPLC to quantify free doxorubicin (DOX) and liposomal DOX in plasma. Anti-PEG single chain variable fragment antibody (PEG-scFv) was adopted to sediment PEGylated liposomes by simple incubation and low speed centrifugation. Compared to SPE, it demonstrated sufficient accuracy and sensitivity to evaluate free and liposomal DOX with intact liposomes. Therefore, it can serve as an alternative approach of SPE, which is suitable for quality assessment and pharmacokinetics evaluation of PEGylated liposomal drugs and possible other PEGylated nanocarriers.
Collapse
Affiliation(s)
- Wenjing Tang
- MOE Key Laboratory of Smart Drug Delivery, School of Pharmacy & State Key Laboratory of Molecular Engineering of Polymers, Fudan University, Shanghai, 201203 P.R. China
- Department of Pharmacology, School of Basic Medical Sciences & Center of Medical Research and Innovation, Shanghai Pudong Hospital, Fudan University, Shanghai, 200032 P.R. China
| | - Zui Zhang
- Department of Pharmacology, School of Basic Medical Sciences & Center of Medical Research and Innovation, Shanghai Pudong Hospital, Fudan University, Shanghai, 200032 P.R. China
| | - Cheng Li
- Key Laboratory of Medical Molecular Virology (MOE/NHC/CAMS), School of Basic Medical Sciences, Fudan University, Shanghai, 200032 PR China
| | - Yuxiu Chu
- Department of Pharmacology, School of Basic Medical Sciences & Center of Medical Research and Innovation, Shanghai Pudong Hospital, Fudan University, Shanghai, 200032 P.R. China
| | - Jun Qian
- MOE Key Laboratory of Smart Drug Delivery, School of Pharmacy & State Key Laboratory of Molecular Engineering of Polymers, Fudan University, Shanghai, 201203 P.R. China
| | - Tianlei Ying
- Key Laboratory of Medical Molecular Virology (MOE/NHC/CAMS), School of Basic Medical Sciences, Fudan University, Shanghai, 200032 PR China
| | - Weiyue Lu
- MOE Key Laboratory of Smart Drug Delivery, School of Pharmacy & State Key Laboratory of Molecular Engineering of Polymers, Fudan University, Shanghai, 201203 P.R. China
| | - Changyou Zhan
- MOE Key Laboratory of Smart Drug Delivery, School of Pharmacy & State Key Laboratory of Molecular Engineering of Polymers, Fudan University, Shanghai, 201203 P.R. China
- Department of Pharmacology, School of Basic Medical Sciences & Center of Medical Research and Innovation, Shanghai Pudong Hospital, Fudan University, Shanghai, 200032 P.R. China
| |
Collapse
|
4
|
Bavlovič Piskáčková H, Øiestad EL, Váňová N, Lengvarská J, Štěrbová-Kovaříková P, Pedersen-Bjergaard S. Electromembrane extraction of anthracyclines from plasma: Comparison with conventional extraction techniques. Talanta 2020; 223:121748. [PMID: 33298272 DOI: 10.1016/j.talanta.2020.121748] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2020] [Revised: 10/01/2020] [Accepted: 10/05/2020] [Indexed: 01/05/2023]
Abstract
Electromembrane extraction (EME) of the polar zwitterionic drugs, anthracyclines (ANT, doxorubicin, daunorubicin and its metabolite daunorubicinol), from rabbit plasma was investigated. The optimized EME was compared to conventional sample pretreatment techniques such as protein precipitation (PP) and liquid-liquid extraction (LLE), mainly in terms of extraction reliability, recovery and matrix effect. In addition, phospholipids profile in the individual extracts was evaluated. The extracted samples were analyzed using UHPLC-MS/MS with electrospray ionization in positive ion mode. The method was validated within the concentration range of 0.25-1000 ng/mL for all tested ANT. Compared with PP and LLE, the EME provided high extraction recovery (more than 80% for all ANT) and excellent sample clean-up (matrix effect were 100 ± 10% with RSD values lower than 4% for all ANT). Furthermore, only negligible amounts of phospholipids were detected in the EME samples. Finally, practical applicability of EME was proved by analysis of plasma samples taken from a pilot in vivo study in rabbits. Consistent results were obtained when using both EME and LLE to extract the plasma prior to the analysis, which further confirmed high reliability of EME. This study clearly showed that EME is a simple, rapid, repeatable technique for extraction of ANT from plasma and it is an up to date alternative to routine conventional extraction techniques.
Collapse
Affiliation(s)
- Hana Bavlovič Piskáčková
- Faculty of Pharmacy in Hradec Králové, Charles University, Akademika Heyrovského 1203, 500 05, Hradec Králové, Czech Republic
| | - Elisabeth Leere Øiestad
- Department of Pharmacy, University of Oslo, P.O.Box 1068 Blindern, 0316, Oslo, Norway; Oslo University Hospital, Division of Laboratory Medicine, Department of Forensic Sciences, P.O. Box 4459 Nydalen, 0424, Oslo, Norway
| | - Nela Váňová
- Faculty of Pharmacy in Hradec Králové, Charles University, Akademika Heyrovského 1203, 500 05, Hradec Králové, Czech Republic
| | - Júlia Lengvarská
- Faculty of Pharmacy in Hradec Králové, Charles University, Akademika Heyrovského 1203, 500 05, Hradec Králové, Czech Republic
| | - Petra Štěrbová-Kovaříková
- Faculty of Pharmacy in Hradec Králové, Charles University, Akademika Heyrovského 1203, 500 05, Hradec Králové, Czech Republic
| | - Stig Pedersen-Bjergaard
- Department of Pharmacy, University of Oslo, P.O.Box 1068 Blindern, 0316, Oslo, Norway; Department of Pharmacy, Faculty of Health and Medical Sciences, University of Copenhagen, Universitetsparken 2, 2100, Copenhagen, Denmark.
| |
Collapse
|
5
|
A simple and highly sensitive masking fluorescence detection system for capillary array electrophoresis and its application to food and medicine analysis. J Chromatogr A 2020; 1620:460968. [PMID: 32087880 DOI: 10.1016/j.chroma.2020.460968] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2019] [Revised: 02/06/2020] [Accepted: 02/11/2020] [Indexed: 02/06/2023]
Abstract
A high sampling rate, good stability, high throughput masking fluorescence detection system with easy positioning of each channel for capillary array electrophoresis was prepared and studied. A special mask combined with convex lenses was designed to modulate signals, without using any extra device to position each channel. The signal of each channel was detected by a photomultiplier tube, classified and saved by software. The design was used to evidently reduce the rotational vibration of optical components and to stabilize the system, so a high sampling rate was obtained by increasing the DC motor speed. To improve the optical system, optical fibers instead of conventional bulky optical components were used to transmit optical signal and to collect fluorescences in multiple directions, which greatly raised the sensitivity. Other important parameters including sampling rate, rotating speed and driven voltage laser diode (LDs) have also been investigated. Under optimal conditions, the performance of the detection system was evaluated. This novel system had a well-designed structure, and allowed independent multiple capillary operations and easy microanalysis. Its limit of detection for rhodamine 6G was 2.0 × 10-2 µg/mL.
Collapse
|
6
|
Optimization of LC method for the quantification of doxorubicin in plasma and urine samples in view of pharmacokinetic, biomedical and drug monitoring therapy studies. J Pharm Biomed Anal 2018; 158:376-385. [DOI: 10.1016/j.jpba.2018.06.031] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2018] [Revised: 06/18/2018] [Accepted: 06/19/2018] [Indexed: 11/23/2022]
|
7
|
Miniaturized voltammetric cell for cathodic voltammetry making use of an agar membrane. J Electroanal Chem (Lausanne) 2018. [DOI: 10.1016/j.jelechem.2017.12.073] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
|
8
|
Zhai H, Yuan K, Yu X, Chen Z, Liu Z, Su Z. A simple and compact fluorescence detection system for capillary electrophoresis and its application to food analysis. Electrophoresis 2015; 36:2509-15. [PMID: 26109527 DOI: 10.1002/elps.201500265] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2015] [Revised: 06/11/2015] [Accepted: 06/12/2015] [Indexed: 12/20/2022]
Abstract
A novel fluorescence detection system for CE was described and evaluated. Two miniature laser pointers were used as the excitation source. A Y-style optical fiber was used to transmit the excitation light and a four-branch optical fiber was used to collect the fluorescence. The optical fiber and optical filter were imported into a photomultiplier tube without any extra fixing device. A simplified PDMS detection cell was designed with guide channels through which the optical fibers were easily aligned to the detection window of separation capillary. According to different requirements, laser pointers and different filters were selected by simple switching and replacement. The fluorescence from four different directions was collected at the same detecting point. Thus, the sensitivity was enhanced without peak broadening. The fluorescence detection system was simple, compact, low-cost, and highly sensitive, with its functionality demonstrated by the separation and determination of red dyes and fluorescent whitening agents. The detection limit of rhodamine 6G was 7.7 nM (S/N = 3). The system was further applied to determine illegal food dyes. The CE system is potentially eligible for food safety analysis.
Collapse
Affiliation(s)
- Haiyun Zhai
- College of Pharmacy, Guangdong Pharmaceutical University, Guangzhou, P. R. China
| | - Kaisong Yuan
- College of Pharmacy, Guangdong Pharmaceutical University, Guangzhou, P. R. China
| | - Xiao Yu
- College of Pharmacy, Guangdong Pharmaceutical University, Guangzhou, P. R. China
| | - Zuanguang Chen
- School of Pharmaceutical Science, Sun Yat-sen University, Guangzhou, P. R. China
| | - Zhenping Liu
- College of Pharmacy, Guangdong Pharmaceutical University, Guangzhou, P. R. China
| | - Zihao Su
- College of Pharmacy, Guangdong Pharmaceutical University, Guangzhou, P. R. China
| |
Collapse
|
9
|
Yang X, Gao H, Qian F, Zhao C, Liao X. Internal standard method for the measurement of doxorubicin and daunorubicin by capillary electrophoresis with in-column double optical-fiber LED-induced fluorescence detection. J Pharm Biomed Anal 2015; 117:118-24. [PMID: 26350558 DOI: 10.1016/j.jpba.2015.08.037] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2015] [Revised: 08/25/2015] [Accepted: 08/27/2015] [Indexed: 11/17/2022]
Abstract
An internal standard method has been developed for the simultaneous determination of anthracycline antibiotics, doxorubicin (DOX) and daunorubicin (DAN), in rabbit plasma using capillary electrophoresis (CE) with in-column double optical-fiber LED-induced fluorescence detection (CE-ICDOF-LED-FLD). Rhodamine B (RhB) was selected as an internal standard because its emission wavelength is similar to that of the anthracycline antibiotics. Parameters including buffer pH, buffer concentration, organic solvents and separation voltage have been investigated to explore the sensitivity and separation efficiency of DOX and DAN. The optimal electrophoretic separation conditions were a borate buffer (15 mM, pH 9.0) containing 50% acetonitrile (v/v), 10 s hydrodynamic injection at a height of 20 cm and a separation voltage of 15 kV. The developed CE-ICDOF-LED-FLD method provides limits of detection of 18 and 13 ng/mL for DOX and DAN in rabbit plasma samples, respectively. The recoveries ranging from 93.7 to 104.8% and the relative standard deviations at 1.1-1.7% were achieved for DOX and DAN in spiked rabbit plasma samples.
Collapse
Affiliation(s)
- Xiupei Yang
- College of Chemistry and Chemical Engineering, Chemical Synthesis and Pollution Control Key Laboratory of Sichuan Province, China West Normal University, Nanchong 637000, PR China.
| | - Huanhuan Gao
- College of Chemistry and Chemical Engineering, Chemical Synthesis and Pollution Control Key Laboratory of Sichuan Province, China West Normal University, Nanchong 637000, PR China
| | - Fan Qian
- College of Chemistry and Chemical Engineering, Chemical Synthesis and Pollution Control Key Laboratory of Sichuan Province, China West Normal University, Nanchong 637000, PR China
| | - Chuan Zhao
- College of Chemistry and Chemical Engineering, Chemical Synthesis and Pollution Control Key Laboratory of Sichuan Province, China West Normal University, Nanchong 637000, PR China
| | - Xiangjun Liao
- Exposure and Biomonitoring Division, Health Canada, 50Colombine Driveway, Ottawa K1A 0K9, Canada.
| |
Collapse
|