1
|
Wei F, Gou X, Xu X, Wang S, Bao T. Sensitive Quantification of Liensinine Alkaloid Using a HPLC-MS/MS Method and Its Application in Microvolume Rat Plasma. JOURNAL OF ANALYTICAL METHODS IN CHEMISTRY 2021; 2021:6629579. [PMID: 33728092 PMCID: PMC7936900 DOI: 10.1155/2021/6629579] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/21/2020] [Revised: 01/08/2021] [Accepted: 02/16/2021] [Indexed: 05/28/2023]
Abstract
Liensinine, an important alkaloid in lotus seed, exhibits multiple functions such as anti-AIDS, anticancer, antidepressant, and antihypertensive properties. In this study, a highly sensitive HPLC-MS/MS method was developed and validated for the quantification of liensinine in microvolume rat plasma as low as 45 μL. Chromatographic separation was carried out using a reverse-phase Gemini-C18 column (100 mm × 3 mm i.d. × 5 μm), and mass selective detection using multiple reaction monitoring was attained using an electrospray ionization source, which operated in the positive mode. Dauricine was used as the internal standard. The precursor-to-product ion transition m/z 611.15 > 206.10 was selected for the detection of liensinine; m/z 625.25 > 206.10 was used for the detection of dauricine. The developed method is linear over the concentration range of 0.05-1000 ng/mL with an excellent coefficient of determination (R 2 = 0.991). The recoveries ranged from 92.57% to 95.88% at three quality control levels. Intraday and interday precision and accuracy are less than 12.2% and 6.59%, respectively. The lower limit of quantification (LLOQ) is 0.05 ng/mL. The matrix effect was insignificant and acceptable. The validated method was successfully applied to the pharmacokinetic study of liensinine in rats. This method can be used for in vivo studies as well as quality control of traditional Chinese medicines and herbal tea containing liensinine alkaloid.
Collapse
Affiliation(s)
- Fen Wei
- School of Pharmacy, Health Science Center, Xi'an Jiaotong University, Xi'an 710061, China
- Shaanxi Engineering Research Center of Cardiovascular Drugs Screening & Analysis, Xi'an 710061, China
| | - Xilan Gou
- School of Pharmacy, Health Science Center, Xi'an Jiaotong University, Xi'an 710061, China
- Shaanxi Engineering Research Center of Cardiovascular Drugs Screening & Analysis, Xi'an 710061, China
| | - Xiao Xu
- School of Pharmacy, Health Science Center, Xi'an Jiaotong University, Xi'an 710061, China
- Shaanxi Engineering Research Center of Cardiovascular Drugs Screening & Analysis, Xi'an 710061, China
| | - Sicen Wang
- School of Pharmacy, Health Science Center, Xi'an Jiaotong University, Xi'an 710061, China
- Shaanxi Engineering Research Center of Cardiovascular Drugs Screening & Analysis, Xi'an 710061, China
| | - Tao Bao
- School of Pharmacy, Health Science Center, Xi'an Jiaotong University, Xi'an 710061, China
- Shaanxi Engineering Research Center of Cardiovascular Drugs Screening & Analysis, Xi'an 710061, China
| |
Collapse
|
2
|
Luo Z, Yu G, Han X, Liu Y, Wang G, Li X, Yang H, Sun W. Exploring the Active Components of Simotang Oral Liquid and Their Potential Mechanism of Action on Gastrointestinal Disorders by Integrating Ultrahigh-Pressure Liquid Chromatography Coupled with Linear Ion Trap-Orbitrap Analysis and Network Pharmacology. ACS OMEGA 2021; 6:2354-2366. [PMID: 33521474 PMCID: PMC7841926 DOI: 10.1021/acsomega.0c05680] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/22/2020] [Accepted: 12/29/2020] [Indexed: 05/08/2023]
Abstract
Simotang oral liquid (SMT), a well-known traditional Chinese medicine formula composed of four medicinal and edible plants, has been extensively used for treating gastrointestinal disorders (GIDs) since ancient times. However, the major active constituents and the underlying molecular mechanism of SMT on GIDs are still partially understood. Herein, the preliminary chemical profile of SMT was first identified by ultrahigh-pressure liquid chromatography coupled with linear ion trap-Orbitrap tandem mass spectrometry (UHPLC-LTQ-Orbitrap). In total, 70 components were identified. Then, a network pharmacology approach integrating target prediction, pathway enrichment analysis, and network construction was adopted to explore the therapeutic mechanism of SMT. As a result, 170 main targets were screened out and considered as effective players in ameliorating GIDs. More importantly, the major hubs were found to be highly enriched in a calcium signaling pathway. Furthermore, 26 core SMT-related genes were identified, which may play key roles in ameliorating gastrointestinal motility. In conclusion, this work would provide valuable information for further development and clinical application of SMT.
Collapse
Affiliation(s)
- Zhiqiang Luo
- School
of Life Sciences, Beijing University of
Chinese Medicine, Beijing 102488, China
| | - Guohua Yu
- School
of Life Sciences, Beijing University of
Chinese Medicine, Beijing 102488, China
| | - Xing Han
- School
of Pharmaceutical Sciences, Peking University, Beijing 100191, China
| | - Yang Liu
- School
of Chinese Materia Medica, Beijing University
of Chinese Medicine, Beijing 102488, China
- . Fax: +86 1084738611. Tel: +86 13810283092
| | - Guopeng Wang
- Zhongcai
Health (Beijing) Biological Technology Development Co., Ltd., Beijing 101500, China
| | - Xueyan Li
- School
of Chinese Materia Medica, Beijing University
of Chinese Medicine, Beijing 102488, China
| | - Haiyang Yang
- School
of Chinese Materia Medica, Beijing University
of Chinese Medicine, Beijing 102488, China
| | - Wenyan Sun
- School
of Chinese Materia Medica, Beijing University
of Chinese Medicine, Beijing 102488, China
| |
Collapse
|
3
|
Mucha P, Ruczynski J, Dobkowski M, Backtrog E, Rekowski P. Capillary electrophoresis study of systemin peptides spreading in tomato plant. Electrophoresis 2018; 40:336-342. [DOI: 10.1002/elps.201800206] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2018] [Revised: 09/07/2018] [Accepted: 09/23/2018] [Indexed: 11/06/2022]
Affiliation(s)
- Piotr Mucha
- Faculty of Chemistry; University of Gdansk; Gdansk Poland
| | | | | | | | - Piotr Rekowski
- Faculty of Chemistry; University of Gdansk; Gdansk Poland
| |
Collapse
|
4
|
Zhou DD, Zhang Q, Li SP, Yang FQ. Capillary electrophoresis in phytochemical analysis (2014-2017). SEPARATION SCIENCE PLUS 2018. [DOI: 10.1002/sscp.201800108] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Affiliation(s)
- Dong-Dong Zhou
- School of Chemistry and Chemical Engineering; Chongqing University; Chongqing P. R. China
| | - Qian Zhang
- School of Chemistry and Chemical Engineering; Chongqing University; Chongqing P. R. China
| | - Shao-Ping Li
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences; University of Macau; Macao SAR P. R. China
| | - Feng-Qing Yang
- School of Chemistry and Chemical Engineering; Chongqing University; Chongqing P. R. China
| |
Collapse
|
5
|
Separation of 20 coumarin derivatives using the capillary electrophoresis method optimized by a series of Doehlert experimental designs. Talanta 2017; 167:714-724. [DOI: 10.1016/j.talanta.2017.02.017] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2016] [Revised: 02/04/2017] [Accepted: 02/07/2017] [Indexed: 02/07/2023]
|
6
|
Liang Q, Chen H, Zhou X, Deng Q, Hu E, Zhao C, Gong X. Optimized microwave-assistant extraction combined ultrasonic pretreatment of flavonoids fromPeriploca forrestiiSchltr. and evaluation of its anti-allergic activity. Electrophoresis 2017; 38:1113-1121. [DOI: 10.1002/elps.201600515] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2016] [Revised: 12/28/2016] [Accepted: 12/31/2016] [Indexed: 01/03/2023]
Affiliation(s)
- Qian Liang
- Key Laboratory for Information System of Mountainous Areas and Protection of Ecological Environment; Guizhou Normal University; Guiyang P. R. China
- Guizhou Engineering Laboratory for Quality Control & Evaluation Technology of Medicine; Guiyang P. R. China
- The Research Center for Quality Control of Natural Medicine; Guizhou Normal University; Guiyang P. R. China
| | - Huaguo Chen
- Key Laboratory for Information System of Mountainous Areas and Protection of Ecological Environment; Guizhou Normal University; Guiyang P. R. China
- Guizhou Engineering Laboratory for Quality Control & Evaluation Technology of Medicine; Guiyang P. R. China
- The Research Center for Quality Control of Natural Medicine; Guizhou Normal University; Guiyang P. R. China
| | - Xin Zhou
- Key Laboratory for Information System of Mountainous Areas and Protection of Ecological Environment; Guizhou Normal University; Guiyang P. R. China
- Guizhou Engineering Laboratory for Quality Control & Evaluation Technology of Medicine; Guiyang P. R. China
- The Research Center for Quality Control of Natural Medicine; Guizhou Normal University; Guiyang P. R. China
| | - Qingfang Deng
- Key Laboratory for Information System of Mountainous Areas and Protection of Ecological Environment; Guizhou Normal University; Guiyang P. R. China
- Guizhou Engineering Laboratory for Quality Control & Evaluation Technology of Medicine; Guiyang P. R. China
- The Research Center for Quality Control of Natural Medicine; Guizhou Normal University; Guiyang P. R. China
| | - Enming Hu
- Key Laboratory for Information System of Mountainous Areas and Protection of Ecological Environment; Guizhou Normal University; Guiyang P. R. China
- Guizhou Engineering Laboratory for Quality Control & Evaluation Technology of Medicine; Guiyang P. R. China
- The Research Center for Quality Control of Natural Medicine; Guizhou Normal University; Guiyang P. R. China
| | - Chao Zhao
- Key Laboratory for Information System of Mountainous Areas and Protection of Ecological Environment; Guizhou Normal University; Guiyang P. R. China
- Guizhou Engineering Laboratory for Quality Control & Evaluation Technology of Medicine; Guiyang P. R. China
- The Research Center for Quality Control of Natural Medicine; Guizhou Normal University; Guiyang P. R. China
| | - Xiaojian Gong
- Key Laboratory for Information System of Mountainous Areas and Protection of Ecological Environment; Guizhou Normal University; Guiyang P. R. China
- Guizhou Engineering Laboratory for Quality Control & Evaluation Technology of Medicine; Guiyang P. R. China
- The Research Center for Quality Control of Natural Medicine; Guizhou Normal University; Guiyang P. R. China
| |
Collapse
|
7
|
Cirillo G, Restuccia D, Curcio M, Iemma F, Spizzirri UG. Food Analysis: A Brief Overview. Food Saf (Tokyo) 2016. [DOI: 10.1002/9781119160588.ch1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022] Open
|
8
|
D'Orazio G, Asensio-Ramos M, Fanali C, Hernández-Borges J, Fanali S. Capillary electrochromatography in food analysis. Trends Analyt Chem 2016. [DOI: 10.1016/j.trac.2016.06.012] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
|
9
|
Pang H, Wu L, Tang Y, Zhou G, Qu C, Duan JA. Chemical Analysis of the Herbal Medicine Salviae miltiorrhizae Radix et Rhizoma (Danshen). Molecules 2016; 21:51. [PMID: 26742026 PMCID: PMC6273254 DOI: 10.3390/molecules21010051] [Citation(s) in RCA: 79] [Impact Index Per Article: 9.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2015] [Revised: 12/23/2015] [Accepted: 12/25/2015] [Indexed: 12/20/2022] Open
Abstract
Radix Salviae miltiorrhizae et Rhizoma, known as Danshen in China, is one of the most popular traditional Chinese medicines. Recently, there has been increasing scientific attention on Danshen for its remarkable bioactivities, such as promoting blood circulation, removing blood stasis, and clearing away heat. This review summarized the advances in chemical analysis of Danshen and its preparations since 2009. Representative established methods were reviewed, including spectroscopy, thin layer chromatography, gas chromatography, liquid chromatography (LC), liquid chromatography-mass spectrometry (LC-MS), capillary electrophoresis, electrochemistry, and bioanalysis. Especially the analysis of polysaccharides in Danshen was discussed for the first time. Some proposals were also put forward to benefit quality control of Danshen.
Collapse
Affiliation(s)
- Hanqing Pang
- Jiangsu Collaborative Innovation Center of Chinese Medicinal Resources Industrialization, Nanjing University of Chinese Medicine, Nanjing 210023, China.
| | - Liang Wu
- National and Local Collaborative Engineering Center of Chinese Medicinal Resources Industrialization and Formulae Innovative Medicine, Nanjing University of Chinese Medicine, Nanjing 210023, China.
| | - Yuping Tang
- Jiangsu Collaborative Innovation Center of Chinese Medicinal Resources Industrialization, Nanjing University of Chinese Medicine, Nanjing 210023, China.
- National and Local Collaborative Engineering Center of Chinese Medicinal Resources Industrialization and Formulae Innovative Medicine, Nanjing University of Chinese Medicine, Nanjing 210023, China.
- Jiangsu Key Laboratory for High Technology Research of TCM Formulae, Nanjing University of Chinese Medicine, Nanjing 210023, China.
| | - Guisheng Zhou
- Jiangsu Key Laboratory for High Technology Research of TCM Formulae, Nanjing University of Chinese Medicine, Nanjing 210023, China.
| | - Cheng Qu
- Jiangsu Collaborative Innovation Center of Chinese Medicinal Resources Industrialization, Nanjing University of Chinese Medicine, Nanjing 210023, China.
| | - Jin-ao Duan
- Jiangsu Collaborative Innovation Center of Chinese Medicinal Resources Industrialization, Nanjing University of Chinese Medicine, Nanjing 210023, China.
- National and Local Collaborative Engineering Center of Chinese Medicinal Resources Industrialization and Formulae Innovative Medicine, Nanjing University of Chinese Medicine, Nanjing 210023, China.
- Jiangsu Key Laboratory for High Technology Research of TCM Formulae, Nanjing University of Chinese Medicine, Nanjing 210023, China.
| |
Collapse
|
10
|
Toppazzini M, Coslovi A, Rossi M, Flamigni A, Baiutti E, Campa C. Capillary Electrophoresis of Mono- and Oligosaccharides. Methods Mol Biol 2016; 1483:301-338. [PMID: 27645743 DOI: 10.1007/978-1-4939-6403-1_16] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/06/2023]
Abstract
This chapter reports an overview of the recent advances in the analysis of mono- and oligosaccharides by capillary electrophoresis (CE); furthermore, relevant reviews and research articles recently published in the field are tabulated. Additionally, pretreatments and procedures applied to uncharged and acidic carbohydrates (i.e., monosaccharides and lower oligosaccharides carrying carboxylate, sulfate, or phosphate groups) are described.Representative examples of such procedures are reported in detail, upon describing robust methodologies for the study of (1) neutral oligosaccharides derivatized by reductive amination and by formation of glycosylamines; (2) sialic acid derivatized with 2-aminoacridone, released from human serum immunoglobulin G; (3) anomeric couples of neutral glycosides separated using borate-based buffers; (4) unsaturated, underivatized oligosaccharides from lyase-treated alginate.
Collapse
Affiliation(s)
- Mila Toppazzini
- GSK Vaccines, Manufacturing Science & Technology Bellaria di Rosia, Sovicille (Siena), Italy
| | - Anna Coslovi
- GSK Vaccines, Manufacturing Science & Technology Bellaria di Rosia, Sovicille (Siena), Italy
| | - Marco Rossi
- Bracco Imaging SpA-CRB Trieste, AREA Science Park, Trieste, Italy
| | - Anna Flamigni
- Bracco Imaging SpA-CRB Trieste, AREA Science Park, Trieste, Italy
| | - Edi Baiutti
- Bracco Imaging SpA-CRB Trieste, AREA Science Park, Trieste, Italy
| | - Cristiana Campa
- GSK Vaccines, Manufacturing Science & Technology Bellaria di Rosia, Sovicille (Siena), Italy.
| |
Collapse
|
11
|
Wang N, Su M, Liang S, Sun H. Investigation of six bioactive anthraquinones in slimming tea by accelerated solvent extraction and high performance capillary electrophoresis with diode-array detection. Food Chem 2015; 199:1-7. [PMID: 26775937 DOI: 10.1016/j.foodchem.2015.11.083] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2015] [Revised: 11/12/2015] [Accepted: 11/14/2015] [Indexed: 11/29/2022]
Abstract
A rapid and effective method for effective separation and rapid simultaneous determination of six bioactive anthraquinones by capillary zone electrophoresis was developed. An accelerated solvent extraction procedure was used for the extraction of anthraquinones from slimming tea. Under the optimized conditions, the effective separation of six anthraquinones was achieved within 8 min. Good linearity was achieved, with a correlation coefficient (r) of ⩾ 0.999. The limit of detection ranged from 0.33 to 1.40 μg mL(-1). The intra- and inter-day relative standard deviation (RSD) of the six analytes was in the range of 2.3-3.9% and 3.2-4.9%, respectively. The average recovery of the six analytes from real tea samples was in the range of 86.15-98.30% with the RSD of 1.04-4.99%. The developed and validated method has speediness, high sensitivity, recovery and precision, and can be applied for the quality control of slimming tea.
Collapse
Affiliation(s)
- Ning Wang
- College of Chemistry and Environmental Science, Hebei University, Key Laboratory of Analytical Science and Technology of Hebei Province, Baoding 071002, China
| | - Ming Su
- College of Chemistry and Environmental Science, Hebei University, Key Laboratory of Analytical Science and Technology of Hebei Province, Baoding 071002, China
| | - Shuxuan Liang
- College of Chemistry and Environmental Science, Hebei University, Key Laboratory of Analytical Science and Technology of Hebei Province, Baoding 071002, China
| | - Hanwen Sun
- College of Chemistry and Environmental Science, Hebei University, Key Laboratory of Analytical Science and Technology of Hebei Province, Baoding 071002, China.
| |
Collapse
|
12
|
Acunha T, Ibáñez C, García-Cañas V, Simó C, Cifuentes A. Recent advances in the application of capillary electromigration methods for food analysis and Foodomics. Electrophoresis 2015; 37:111-41. [DOI: 10.1002/elps.201500291] [Citation(s) in RCA: 59] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2015] [Revised: 07/22/2015] [Accepted: 07/23/2015] [Indexed: 01/19/2023]
Affiliation(s)
- Tanize Acunha
- Laboratory of Foodomics; CIAL, CSIC; Madrid Spain
- CAPES Foundation; Ministry of Education of Brazil; Brasília DF Brazil
| | - Clara Ibáñez
- Laboratory of Foodomics; CIAL, CSIC; Madrid Spain
| | | | | | | |
Collapse
|
13
|
Gatea F, Teodor ED, Matei AO, Badea GI, Radu GL. Capillary Electrophoresis Method for 20 Polyphenols Separation in Propolis and Plant Extracts. FOOD ANAL METHOD 2014. [DOI: 10.1007/s12161-014-0006-5] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
|
14
|
Escuder-Gilabert L, Martín-Biosca Y, Medina-Hernández MJ, Sagrado S. Cyclodextrins in capillary electrophoresis: recent developments and new trends. J Chromatogr A 2014; 1357:2-23. [PMID: 24947884 DOI: 10.1016/j.chroma.2014.05.074] [Citation(s) in RCA: 85] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2014] [Revised: 05/27/2014] [Accepted: 05/28/2014] [Indexed: 02/07/2023]
Abstract
Despite the fact that extensive research in the field of separations by capillary electrophoresis (CE) has been carried out and many reviews have been published in the last years, a specific review on the use and future potential of cyclodextrins (CDs) in CE is not available. This review focuses the attention in the CD-CE topic over the January 2013-February 2014 period (not covered by previous more general CE-reviews). Recent contributions (reviews and research articles) including practical uses (e.g. solute-CD binding constant estimation and further potentials; 19% of publications), developments and applications (mainly chiral and achiral analysis; 38 and 24% of publications, respectively) are summarized in nine comprehensive tables and are commented. Statistics and predictions related to the CD-CE publications are highlighted in order to infer the current and expected research interests. Finally, trends and initiatives on CD-CE attending to real needs or practical criteria are outlined.
Collapse
Affiliation(s)
- L Escuder-Gilabert
- Departamento de Química Analítica, Universidad de Valencia, Burjassot, Valencia, Spain
| | - Y Martín-Biosca
- Departamento de Química Analítica, Universidad de Valencia, Burjassot, Valencia, Spain
| | - M J Medina-Hernández
- Departamento de Química Analítica, Universidad de Valencia, Burjassot, Valencia, Spain
| | - S Sagrado
- Departamento de Química Analítica, Universidad de Valencia, Burjassot, Valencia, Spain; Centro Interuniversitario de Reconocimiento Molecular y Desarrollo Tecnológico (IDM), Unidad Mixta Universidad Politécnica de Valencia-Universidad de Valencia, Valencia, Spain.
| |
Collapse
|