1
|
Minkner R, Boonyakida J, Park EY, Wätzig H. Oligonucleotide separation techniques for purification and analysis: What can we learn for today's tasks? Electrophoresis 2022; 43:2402-2427. [PMID: 36285667 DOI: 10.1002/elps.202200079] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2022] [Revised: 09/09/2022] [Accepted: 09/23/2022] [Indexed: 11/07/2022]
Abstract
Nucleic acids are the blueprint of life. They are not only the construction plan of the single cell or higher associations of them, but also necessary for function, communication and regulation. Due to the pandemic, the attention shifted in particular to their therapeutic potential as a vaccine. As pharmaceutical oligonucleotides are unique in terms of their stability and application, special delivery systems were also considered. Oligonucleotide production systems can vary and depend on the feasibility, availability, price and intended application. To achieve good purity, reliable results and match the strict specifications in the pharmaceutical industry, the separation of oligonucleotides is always essential. Besides the separation required for production, additional and specifically different separation techniques are needed for analysis to determine if the product complies with the designated specifications. After a short introduction to ribonucleic acids (RNAs), messenger RNA vaccines, and their production and delivery systems, an overview regarding separation techniques will be provided. This not only emphasises electrophoretic separations but also includes spin columns, extractions, precipitations, magnetic nanoparticles and several chromatographic separation principles, such as ion exchange chromatography, ion-pair reversed-phase, size exclusion and affinity.
Collapse
Affiliation(s)
- Robert Minkner
- Institute of Medicinal and Pharmaceutical Chemistry, Technische Universität Braunschweig, Braunschweig, Germany
| | - Jirayu Boonyakida
- Department of Bioscience, Graduate School of Science and Technology, Shizuoka University, Shizuoka, Japan.,Laboratory of Biotechnology, Green Chemistry Research Division, Research Institute of Green Science and Technology, Shizuoka University, Shizuoka, Japan
| | - Enoch Y Park
- Department of Bioscience, Graduate School of Science and Technology, Shizuoka University, Shizuoka, Japan.,Laboratory of Biotechnology, Green Chemistry Research Division, Research Institute of Green Science and Technology, Shizuoka University, Shizuoka, Japan
| | - Hermann Wätzig
- Institute of Medicinal and Pharmaceutical Chemistry, Technische Universität Braunschweig, Braunschweig, Germany
| |
Collapse
|
2
|
Yamazaki J, Inoue I, Arakawa A, Karakawa S, Takahashi K, Nakayama A. Simultaneous quantification of oligo-nucleic acids and a ferritin nanocage by size-exclusion chromatography hyphenated to inductively coupled plasma mass spectrometry for developing drug delivery systems. ANALYTICAL METHODS : ADVANCING METHODS AND APPLICATIONS 2022; 14:2219-2226. [PMID: 35616084 DOI: 10.1039/d2ay00068g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
An analytical methodology, which can quantify nucleic acids, ferritin nanocages, and their complexes in a single injection, was established by means of size-exclusion chromatography hyphenated with inductively coupled plasma mass spectrometry (SEC-ICP-MS). In this study, several oligo-nucleic acids and ferritin (a human-derived cage-shaped protein) were used as model compounds of nucleic acid drugs (NAD) and drug delivery system (DDS) carriers, respectively. A fraction based on the nucleic acid-ferritin complex was completely distinguished from one based on free nucleic acids by SEC separation. The nucleic acids and ferritin were quantified based on the number of phosphorus and sulfur atoms, respectively. The quantification was carried out by an external calibration method using a series of elemental standard solutions without preparing designated standard materials for each drug candidate. The analytical performance, including sensitivity and accuracy, was evaluated to be appropriate for evaluating the medicines already launched in the market. As demonstrated in the latter part of this study, the encapsulation mechanism is possibly regulated by not only the averaged molecular size of nucleic acids but also the surface charge related to the number of (deoxy-) ribonucleotides. We believe that the methodology presented in this study has the potential to accelerate the development of new modalities based on NAD-DDS to realize therapies in the future.
Collapse
Affiliation(s)
- Junko Yamazaki
- Research Institute for Bioscience Products & Fine Chemicals, Ajinomoto Co., Inc, 1-1, Suzuki-cho, Kawasaki-ku, Kawasaki-shi, Kanagawa 210-8681, Japan.
| | - Ippei Inoue
- Research Institute for Bioscience Products & Fine Chemicals, Ajinomoto Co., Inc, 1-1, Suzuki-cho, Kawasaki-ku, Kawasaki-shi, Kanagawa 210-8681, Japan.
| | - Akihiro Arakawa
- Research Institute for Bioscience Products & Fine Chemicals, Ajinomoto Co., Inc, 1-1, Suzuki-cho, Kawasaki-ku, Kawasaki-shi, Kanagawa 210-8681, Japan.
| | - Sachise Karakawa
- Research Institute for Bioscience Products & Fine Chemicals, Ajinomoto Co., Inc, 1-1, Suzuki-cho, Kawasaki-ku, Kawasaki-shi, Kanagawa 210-8681, Japan.
| | - Kazutoshi Takahashi
- Research Institute for Bioscience Products & Fine Chemicals, Ajinomoto Co., Inc, 1-1, Suzuki-cho, Kawasaki-ku, Kawasaki-shi, Kanagawa 210-8681, Japan.
| | - Akira Nakayama
- Research Institute for Bioscience Products & Fine Chemicals, Ajinomoto Co., Inc, 1-1, Suzuki-cho, Kawasaki-ku, Kawasaki-shi, Kanagawa 210-8681, Japan.
| |
Collapse
|
3
|
Raffaele J, Loughney JW, Rustandi RR. Development of a microchip capillary electrophoresis method for determination of the purity and integrity of mRNA in lipid nanoparticle vaccines. Electrophoresis 2021; 43:1101-1106. [PMID: 34806186 PMCID: PMC9011815 DOI: 10.1002/elps.202100272] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2021] [Revised: 11/01/2021] [Accepted: 11/06/2021] [Indexed: 11/21/2022]
Abstract
Messenger RNA (mRNA)‐based vaccines are advantageous because they can be relatively quicker and more cost efficient to manufacture compared to other traditional vaccine products. Lipid nanoparticles have three common purposes: delivery, self‐adjuvanting properties, and mRNA protection. Faster vaccine development requires an efficient and fast assay to monitor mRNA purity and integrity. Microchip CE is known to be a robust technology that is capable of rapid separation. Here, we describe the development and optimization of a purity and integrity assay for mRNA‐based vaccines encapsulated in lipid nanoparticles using commercial microchip‐based separation. The analytical parameters of the optimized assay were assessed and the method is a stability indicating assay.
Collapse
Affiliation(s)
- Jessica Raffaele
- Analytical Research & Development, Merck & Co., Inc., West Point, PA, 19486, USA
| | - John W Loughney
- Analytical Research & Development, Merck & Co., Inc., West Point, PA, 19486, USA
| | - Richard R Rustandi
- Analytical Research & Development, Merck & Co., Inc., West Point, PA, 19486, USA
| |
Collapse
|
4
|
Henderson JM, Ujita A, Hill E, Yousif-Rosales S, Smith C, Ko N, McReynolds T, Cabral CR, Escamilla-Powers JR, Houston ME. Cap 1 Messenger RNA Synthesis with Co-transcriptional CleanCap ® Analog by In Vitro Transcription. Curr Protoc 2021; 1:e39. [PMID: 33524237 DOI: 10.1002/cpz1.39] [Citation(s) in RCA: 91] [Impact Index Per Article: 22.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Synthetic messenger RNA (mRNA)-based therapeutics are an increasingly popular approach to gene and cell therapies, genome engineering, enzyme replacement therapy, and now, during the global SARS-CoV-2 pandemic, vaccine development. mRNA for such purposes can be synthesized through an enzymatic in vitro transcription (IVT) reaction and formulated for in vivo delivery. Mature mRNA requires a 5'-cap for gene expression and mRNA stability. There are two methods to add a cap in vitro: via a two-step multi-enzymatic reaction or co-transcriptionally. Co-transcriptional methods minimize reaction steps and enzymes needed to make mRNA when compared to enzymatic capping. CleanCap® AG co-transcriptional capping results in 5 mg/ml of IVT with 94% 5'-cap 1 structure. This is highly efficient compared to first-generation cap analogs, such as mCap and ARCA, that incorporate cap 0 structures at lower efficiency and reaction yield. This article describes co-transcriptional capping using TriLink Biotechnology's CleanCap® AG in IVT. © 2021 Wiley Periodicals LLC. Basic Protocol 1: IVT with CleanCap Basic Protocol 2: mRNA purification and analysis.
Collapse
Affiliation(s)
| | - Andrew Ujita
- TriLink Biotechnologies LLC, San Diego, California
| | | | | | - Cory Smith
- TriLink Biotechnologies LLC, San Diego, California
| | - Nicholas Ko
- TriLink Biotechnologies LLC, San Diego, California
| | | | | | | | | |
Collapse
|
5
|
Cheng MY, Tao WB, Yuan BF, Feng YQ. Methods for isolation of messenger RNA from biological samples. ANALYTICAL METHODS : ADVANCING METHODS AND APPLICATIONS 2021; 13:289-298. [PMID: 33300893 DOI: 10.1039/d0ay01912g] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
RNA molecules contain many chemical modifications that can regulate a variety of biological processes. Messenger RNA (mRNA) molecules are critical components in the central dogma of molecular biology. The discovery of reversible chemical modifications in eukaryotic mRNA brings forward a new research field in RNA modification-mediated regulation of gene expression. The modifications in mRNA generally exist in low abundance. The use of highly pure mRNA is critical for the confident identification of new modifications as well as for the accurate quantification of existing modifications in mRNA. In addition, isolation of highly pure mRNA is the first step in many biological research studies. Therefore, the methods for isolating highly pure mRNA are important for mRNA-based downstream studies. A variety of methods for isolating mRNA have been developed in the past few decades and new methods continuously emerge. This review focuses on the methodologies and protocols for isolating mRNA populations. In addition, we discuss the advantages and limitations of these methods. We hope this paper will provide a general view of mRNA isolation strategies and facilitate studies that involve mRNA modifications and functions.
Collapse
Affiliation(s)
- Ming-Yu Cheng
- Key Laboratory of Analytical Chemistry for Biology and Medicine (Ministry of Education), Sauvage Center for Molecular Sciences, Department of Chemistry, Wuhan University, Wuhan 430072, China.
| | | | | | | |
Collapse
|
6
|
Sasaki A, Yamamoto J, Kinjo M, Noda N. Absolute Quantification of RNA Molecules Using Fluorescence Correlation Spectroscopy with Certified Reference Materials. Anal Chem 2018; 90:10865-10871. [DOI: 10.1021/acs.analchem.8b02213] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Akira Sasaki
- Biomedical Research Institute, National Institute of Advanced Industrial Science and Technology (AIST), Tsukuba, Ibaraki 305-8566, Japan
| | - Johtaro Yamamoto
- Biomedical Research Institute, National Institute of Advanced Industrial Science and Technology (AIST), Tsukuba, Ibaraki 305-8566, Japan
- Laboratory of Molecular Cell Dynamics, Faculty of Advanced Life Science, Hokkaido University, Sapporo, Hokkaido 001-0021, Japan
| | - Masataka Kinjo
- Laboratory of Molecular Cell Dynamics, Faculty of Advanced Life Science, Hokkaido University, Sapporo, Hokkaido 001-0021, Japan
| | - Naohiro Noda
- Biomedical Research Institute, National Institute of Advanced Industrial Science and Technology (AIST), Tsukuba, Ibaraki 305-8566, Japan
| |
Collapse
|
7
|
Boitor R, Sinjab F, Strohbuecker S, Sottile V, Notingher I. Towards quantitative molecular mapping of cells by Raman microscopy: using AFM for decoupling molecular concentration and cell topography. Faraday Discuss 2018; 187:199-212. [PMID: 27023675 DOI: 10.1039/c5fd00172b] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
Abstract
Raman micro-spectroscopy (RMS) is a non-invasive technique for imaging live cells in vitro. However, obtaining quantitative molecular information from Raman spectra is difficult because the intensity of a Raman band is proportional to the number of molecules in the sampled volume, which depends on the local molecular concentration and the thickness of the cell. In order to understand these effects, we combined RMS with atomic force microscopy (AFM), a technique that can measure accurately the thickness profile of the cells. Solution-based calibration models for RNA and albumin were developed to create quantitative maps of RNA and proteins in individual fixed cells. The maps were built by applying the solution-based calibration models, based on partial least squares fitting (PLS), on raster-scan Raman maps, after accounting for the local cell height obtained from the AFM. We found that concentrations of RNA in the cytoplasm of mouse neuroprogenitor stem cells (NSCs) were as high as 25 ± 6 mg ml(-1), while proteins were distributed more uniformly and reached concentrations as high as ∼50 ± 12 mg ml(-1). The combined AFM-Raman datasets from fixed cells were also used to investigate potential improvements for normalization of Raman spectral maps. For all Raman maps of fixed cells (n = 10), we found a linear relationship between the scores corresponding to the first component (PC1) and the cell height profile obtained by AFM. We used PC1 scores to reconstruct the relative height profiles of independent cells (n = 10), and obtained correlation coefficients with AFM maps higher than 0.99. Using this normalization method, qualitative maps of RNA and protein were used to obtain concentrations for live NSCs. While this study demonstrates the potential of using AFM and RMS for measuring concentration maps for individual NSCs in vitro, further studies are required to establish the robustness of the normalization method based on principal component analysis when comparing Raman spectra of cells with large morphological differences.
Collapse
Affiliation(s)
- Radu Boitor
- School of Physics and Astronomy, University of Nottingham, University Park, Nottingham NG7 2RD, UK.
| | - Faris Sinjab
- School of Physics and Astronomy, University of Nottingham, University Park, Nottingham NG7 2RD, UK.
| | - Stephanie Strohbuecker
- Wolfson STEM Centre, School of Medicine, University of Nottingham, University Park, Nottingham NG7 2RD, UK
| | - Virginie Sottile
- Wolfson STEM Centre, School of Medicine, University of Nottingham, University Park, Nottingham NG7 2RD, UK
| | - Ioan Notingher
- School of Physics and Astronomy, University of Nottingham, University Park, Nottingham NG7 2RD, UK.
| |
Collapse
|
8
|
Cai WM, Chionh YH, Hia F, Gu C, Kellner S, McBee ME, Ng CS, Pang YLJ, Prestwich EG, Lim KS, Babu IR, Begley TJ, Dedon PC. A Platform for Discovery and Quantification of Modified Ribonucleosides in RNA: Application to Stress-Induced Reprogramming of tRNA Modifications. Methods Enzymol 2015; 560:29-71. [PMID: 26253965 DOI: 10.1016/bs.mie.2015.03.004] [Citation(s) in RCA: 59] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/03/2022]
Abstract
Here we describe an analytical platform for systems-level quantitative analysis of modified ribonucleosides in any RNA species, with a focus on stress-induced reprogramming of tRNA as part of a system of translational control of cell stress response. This chapter emphasizes strategies and caveats for each of the seven steps of the platform workflow: (1) RNA isolation, (2) RNA purification, (3) RNA hydrolysis to individual ribonucleosides, (4) chromatographic resolution of ribonucleosides, (5) identification of the full set of modified ribonucleosides, (6) mass spectrometric quantification of ribonucleosides, (6) interrogation of ribonucleoside datasets, and (7) mapping the location of stress-sensitive modifications in individual tRNA molecules. We have focused on the critical determinants of analytical sensitivity, specificity, precision, and accuracy in an effort to ensure the most biologically meaningful data on mechanisms of translational control of cell stress response. The methods described here should find wide use in virtually any analysis involving RNA modifications.
Collapse
Affiliation(s)
- Weiling Maggie Cai
- Department of Microbiology, National University of Singapore, Singapore; Singapore-MIT Alliance for Research and Technology, Singapore
| | - Yok Hian Chionh
- Department of Microbiology, National University of Singapore, Singapore; Singapore-MIT Alliance for Research and Technology, Singapore
| | - Fabian Hia
- Singapore-MIT Alliance for Research and Technology, Singapore
| | - Chen Gu
- Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts, USA
| | - Stefanie Kellner
- Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts, USA
| | - Megan E McBee
- Singapore-MIT Alliance for Research and Technology, Singapore; Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts, USA
| | - Chee Sheng Ng
- Singapore-MIT Alliance for Research and Technology, Singapore; School of Biological Sciences, Nanyang Technological Institute, Singapore
| | - Yan Ling Joy Pang
- Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts, USA
| | - Erin G Prestwich
- Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts, USA
| | - Kok Seong Lim
- Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts, USA
| | - I Ramesh Babu
- Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts, USA
| | - Thomas J Begley
- College of Nanoscale Engineering and Science, State University of New York, Albany, New York, USA
| | - Peter C Dedon
- Singapore-MIT Alliance for Research and Technology, Singapore; Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts, USA; Center for Environmental Health Sciences, Massachusetts Institute of Technology, Cambridge, Massachusetts, USA.
| |
Collapse
|