1
|
Hu DC, Lin XR, Gao Q, Zhang JM, Feng H, Liu JC. Synthesis of novel coordination polymer Cd-MOF and fluorescence recognition of tryptophan. J Mol Struct 2023. [DOI: 10.1016/j.molstruc.2023.135389] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/22/2023]
|
2
|
Simultaneous Determination of Twenty Amino Acids in In Vitro Fertilization Medium by the HPLC–MS/MS Method. Chromatographia 2022. [DOI: 10.1007/s10337-022-04169-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
|
3
|
Wang W, Zhang H, Yu X, Zhang S. Study of antagonism between some intestinal bacteria with high-speed micellar electrokinetic chromatography. Electrophoresis 2021; 42:1196-1201. [PMID: 33580526 DOI: 10.1002/elps.202000372] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2020] [Revised: 01/24/2021] [Accepted: 02/04/2021] [Indexed: 12/20/2022]
Abstract
In this work, high-speed micellar electrokinetic chromatography with LIF detection was applied to study the antagonism between three intestinal bacteria, Escherichia coli (E. coli), Bacillus licheniformis (B. licheniformis) and Bacillus subtilis (B. subtilis). The fluorescent derivatization for the bacteria was performed by labeling the bacteria with FITC. In a high-speed capillary electrophoresis (HSCE) device, the three bacteria could be completely separated within 4 min under the separation mode MEKC. The BGE was 1 × TBE containing 30 mM SDS and 1.5 × 10-5 g/mL polyethylene oxide. The limits of detection for E. coli, B. licheniformis and B. subtilis were 2.80 × 106 CFU/mL, 1.60 × 106 CFU/mL and 1.90 × 106 CFU/mL respectively. Lastly, the method was applied to investigate the antagonism between the three bacteria. The bacteria were mixed and cultured for 7 days. The samples were separated and determined every day to study the interaction between bacteria. The results showed that B. licheniformis and B. subtilis could not inhibit each other, but they could effectively inhibit the reproduction of E. coli. The method developed in this work was quick, sensitive and convenient, and it had great potential in the application of antagonism study for bacteria.
Collapse
Affiliation(s)
- Wei Wang
- Ministry of Education Key Laboratory for Analytical Science of Food Safety and Biology, Fujian Provincial Key Laboratory of Analysis and Detection for Food Safety, School of Chemistry, Fuzhou University, Fuzhou, P. R. China
| | - Huimin Zhang
- Ministry of Education Key Laboratory for Analytical Science of Food Safety and Biology, Fujian Provincial Key Laboratory of Analysis and Detection for Food Safety, School of Chemistry, Fuzhou University, Fuzhou, P. R. China
| | - Xiufeng Yu
- Ministry of Education Key Laboratory for Analytical Science of Food Safety and Biology, Fujian Provincial Key Laboratory of Analysis and Detection for Food Safety, School of Chemistry, Fuzhou University, Fuzhou, P. R. China
| | - Shaoyan Zhang
- Ministry of Education Key Laboratory for Analytical Science of Food Safety and Biology, Fujian Provincial Key Laboratory of Analysis and Detection for Food Safety, School of Chemistry, Fuzhou University, Fuzhou, P. R. China
| |
Collapse
|
4
|
Xu W, Zhong C, Zou C, Wang B, Zhang N. Analytical methods for amino acid determination in organisms. Amino Acids 2020; 52:1071-1088. [PMID: 32857227 DOI: 10.1007/s00726-020-02884-7] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2020] [Accepted: 08/18/2020] [Indexed: 02/07/2023]
Abstract
Amino acids are important metabolites for tissue metabolism, growth, maintenance, and repair, which are basic life necessities. Therefore, summarizing analytical methods for amino acid determination in organisms is important. In the past decades, analytical methods for amino acids have developed rapidly but have not been fully explored. Thus, this article provides reference to analytical methods for amino acids in organisms for food and human research. Present amino acid analysis methods include thin-layer chromatography, high-performance liquid chromatography, liquid chromatography-mass spectrometer, gas chromatography-mass spectrometry, capillary electrophoresis, nuclear magnetic resonance, and amino acid analyzer analysis.
Collapse
Affiliation(s)
- Weihua Xu
- Experiment Center for Science and Technology, Shanghai University of Traditional Chinese Medicine, 1200 Cai-lun Rd, Shanghai, 201203, China
- State Key Laboratory of Drug Research and Center for Pharmaceutics Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 501 Hai-ke Rd, Shanghai, 201203, China
- School of Pharmacy, Anhui University of Traditional Chinese Medicine, Anhui, 230013, China
| | - Congcong Zhong
- Experiment Center for Science and Technology, Shanghai University of Traditional Chinese Medicine, 1200 Cai-lun Rd, Shanghai, 201203, China
| | - Chunpu Zou
- School of Basic Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, China
| | - Bing Wang
- State Key Laboratory of Drug Research and Center for Pharmaceutics Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 501 Hai-ke Rd, Shanghai, 201203, China.
| | - Ning Zhang
- Experiment Center for Science and Technology, Shanghai University of Traditional Chinese Medicine, 1200 Cai-lun Rd, Shanghai, 201203, China.
| |
Collapse
|
5
|
Dunn RC. High-Speed Capillary Electrophoresis Using a Thin-Wall Fused-Silica Capillary Combined with Backscatter Interferometry. Anal Chem 2020; 92:7540-7546. [PMID: 32352792 DOI: 10.1021/acs.analchem.9b05881] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
High-speed capillary electrophoresis (HSCE) is implemented using a 10 cm total length fused-silica capillary (50 μm i.d., 80 μm o.d.) combined with refractive index (RI) detection using backscatter interferometry (BSI). The short capillary length reduces analysis time while the ultrathin wall (15 μm) efficiently dissipates heat from the separation channel, mitigating the deleterious effects of Joule heating. The separation capillary is mounted on a temperature-controlled heat sink that stabilizes the temperature to ±0.004 °C. This temperature stabilization improves separation efficiency and enhances RI detection. Ohm's Law plots confirm the superior heat dissipation of the HSCE capillary compared to a similarly prepared conventional CE capillary (50 μm i.d., 363 μm o.d.). The speed and efficiency of HSCE combined with universal RI detection is illustrated through the separation of K+, Ba2+, Mg2+, Na+, Li+, and Tris+ in approximately 30 s, with efficiencies greater than 500 000 plates/m. Run-to-run repeatability is explored using nine consecutive electrokinetic injections of a K+, Na+, and Li+ mixture. The average migration times and %RSD for K+, Na+, and Li+ were measured to be 22.04 s (1.59%), 26.81 s (1.38%), and 29.80 s (2.21%), respectively. Finally, we show that the BSI signal is sensitive to the separation voltage through the Kerr mechanism. This leads to peaks in the electropherogram from the injection process that are useful for precisely defining the start of each separation and quantifying the amount of sample injected onto the capillary.
Collapse
Affiliation(s)
- Robert C Dunn
- Ralph N. Adams Institute for Bioanalytical Chemistry, University of Kansas, 2030 Becker Drive, Lawrence, Kansas 66047, United States
| |
Collapse
|
6
|
Wang W, Bai R, Zhang H, Cai X. Study of the effect of culture mediums on the amino acid metabolites for
Corynebacterium glutamicum
using high‐speed micellar electrokinetic chromatography. Electrophoresis 2019; 40:2665-2671. [DOI: 10.1002/elps.201900010] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2019] [Revised: 05/21/2019] [Accepted: 05/22/2019] [Indexed: 12/21/2022]
Affiliation(s)
- Wei Wang
- Ministry of Education Key Laboratory for Analytical Science of Food Safety and BiologySchool of ChemistryFuzhou University Fuzhou P. R. China
| | - Ruiguang Bai
- Ministry of Education Key Laboratory for Analytical Science of Food Safety and BiologySchool of ChemistryFuzhou University Fuzhou P. R. China
| | - Huimin Zhang
- Ministry of Education Key Laboratory for Analytical Science of Food Safety and BiologySchool of ChemistryFuzhou University Fuzhou P. R. China
| | - Xiaoyu Cai
- Ministry of Education Key Laboratory for Analytical Science of Food Safety and BiologySchool of ChemistryFuzhou University Fuzhou P. R. China
| |
Collapse
|
7
|
Wang W, Cai X, Lin P, Bai R. Separation and determination of microRNAs by high-speed capillary sieving electrophoresis. J Sep Sci 2018; 41:3925-3931. [PMID: 30136382 DOI: 10.1002/jssc.201800635] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2018] [Revised: 08/10/2018] [Accepted: 08/10/2018] [Indexed: 12/12/2022]
Abstract
In this work, high-speed capillary sieving electrophoresis with laser-induced fluorescence detection was applied to simultaneously determine three microRNAs. A developed manual sample introduction device for the high-speed capillary electrophoresis system was applied to perform sample injection. Strategies, including field-amplified sample injection and electrokinetic injection, were studied to improve the detection sensitivity. Under the optimal conditions, the limit of detection for DNA-159 could be lowered to 5.10 × 10-12 mol/L. In order to achieve enough separation resolution, two DNA probes were designed to have extra sequences that acted as the drag tails. Under the optimized conditions, the three DNA probes and the complexes of microRNA-156, microRNA-159, and microRNA-166 could be completely separated within 3.2 min in background electrolyte (pH 8.7) containing 2.0% m/m polyvinyl pyrrolidone and 0.4% m/m hydroxyethyl cellulose. The limits of detection for the three microRNAs were 0.051, 0.11, and 0.25 nmol/L, respectively. Then the method was applied to analyze the microRNAs spiked in the samples extracted from banana leaves. The recoveries ranged from 114.3 to 121.1% (n = 3). The results showed that the method developed in this work was an effective means for microRNA assay.
Collapse
Affiliation(s)
- Wei Wang
- Ministry of Education Key Laboratory for Analytical Science of Food Safety and Biology, School of Chemistry, Fuzhou University, Fuzhou, Fujian, P. R. China
| | - Xiaoyu Cai
- Ministry of Education Key Laboratory for Analytical Science of Food Safety and Biology, School of Chemistry, Fuzhou University, Fuzhou, Fujian, P. R. China
| | - Ping Lin
- Ministry of Education Key Laboratory for Analytical Science of Food Safety and Biology, School of Chemistry, Fuzhou University, Fuzhou, Fujian, P. R. China
| | - Ruiguang Bai
- Ministry of Education Key Laboratory for Analytical Science of Food Safety and Biology, School of Chemistry, Fuzhou University, Fuzhou, Fujian, P. R. China
| |
Collapse
|
8
|
Ma H, Bai Y, Li J, Chang YX. Screening bioactive compounds from natural product and its preparations using capillary electrophoresis. Electrophoresis 2017; 39:260-274. [DOI: 10.1002/elps.201700239] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2017] [Revised: 08/31/2017] [Accepted: 09/01/2017] [Indexed: 11/10/2022]
Affiliation(s)
- Huifen Ma
- Tianjin State Key Laboratory of Modern Chinese Medicine; Tianjin University of Traditional Chinese Medicine; Tianjin P. R. China
- Key Laboratory of Formula of Traditional Chinese Medicine (Tianjin University of Traditional Chinese Medicine); Ministry of Education; Tianjin P. R. China
| | - Yun Bai
- Tianjin State Key Laboratory of Modern Chinese Medicine; Tianjin University of Traditional Chinese Medicine; Tianjin P. R. China
- Key Laboratory of Formula of Traditional Chinese Medicine (Tianjin University of Traditional Chinese Medicine); Ministry of Education; Tianjin P. R. China
| | - Jin Li
- Tianjin State Key Laboratory of Modern Chinese Medicine; Tianjin University of Traditional Chinese Medicine; Tianjin P. R. China
| | - Yan-xu Chang
- Tianjin State Key Laboratory of Modern Chinese Medicine; Tianjin University of Traditional Chinese Medicine; Tianjin P. R. China
- Key Laboratory of Formula of Traditional Chinese Medicine (Tianjin University of Traditional Chinese Medicine); Ministry of Education; Tianjin P. R. China
| |
Collapse
|
9
|
Wang W, Bai R, Cai X, Lin P, Ma L. Separation and determination of peptide metabolite of Bacillus licheniformis
in a microbial fuel cell by high-speed capillary micellar electrokinetic chromatography. J Sep Sci 2017; 40:4446-4452. [DOI: 10.1002/jssc.201700656] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2017] [Revised: 08/30/2017] [Accepted: 08/30/2017] [Indexed: 12/26/2022]
Affiliation(s)
- Wei Wang
- Ministry of Education Key Laboratory for Analytical Science of Food Safety and Biology; School of Chemistry; Fuzhou University; Fuzhou P. R. China
- Fujian Provincial Key Laboratory of Agroecological Processing and Safety Monitoring; College of Life Sciences; Fujian Agriculture and Forestry University; Fuzhou P. R. China
| | - Ruiguang Bai
- Ministry of Education Key Laboratory for Analytical Science of Food Safety and Biology; School of Chemistry; Fuzhou University; Fuzhou P. R. China
| | - Xiaoyu Cai
- Ministry of Education Key Laboratory for Analytical Science of Food Safety and Biology; School of Chemistry; Fuzhou University; Fuzhou P. R. China
| | - Ping Lin
- Ministry of Education Key Laboratory for Analytical Science of Food Safety and Biology; School of Chemistry; Fuzhou University; Fuzhou P. R. China
| | - Lihong Ma
- Ministry of Education Key Laboratory for Analytical Science of Food Safety and Biology; School of Chemistry; Fuzhou University; Fuzhou P. R. China
| |
Collapse
|
10
|
Chen J, Ni Y, Liu C, Yamaguchi Y, Chen Q, Sekine S, Zhu X, Dou X. Rapid identification and quantitation for oral bacteria based on short-end capillary electrophoresis. Talanta 2016; 160:425-430. [DOI: 10.1016/j.talanta.2016.07.049] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2016] [Revised: 07/19/2016] [Accepted: 07/23/2016] [Indexed: 11/29/2022]
|
11
|
Opekar F, Nesměrák K, Tůma P. Electrokinetic injection of samples into a short electrophoretic capillary controlled by piezoelectric micropumps. Electrophoresis 2016; 37:595-600. [DOI: 10.1002/elps.201500464] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2015] [Revised: 11/19/2015] [Accepted: 11/19/2015] [Indexed: 11/09/2022]
Affiliation(s)
- František Opekar
- Department of Analytical Chemistry, Faculty of Science; Charles University in Prague; Prague Czech Republic
| | - Karel Nesměrák
- Department of Analytical Chemistry, Faculty of Science; Charles University in Prague; Prague Czech Republic
| | - Petr Tůma
- Institute of Biochemistry, Cell and Molecular Biology; Third Faculty of Medicine, Charles University in Prague; Prague Czech Republic
| |
Collapse
|
12
|
Poinsot V, Ong-Meang V, Gavard P, Couderc F. Recent advances in amino acid analysis by capillary electromigration methods, 2013-2015. Electrophoresis 2015; 37:142-61. [DOI: 10.1002/elps.201500302] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2015] [Revised: 08/19/2015] [Accepted: 08/19/2015] [Indexed: 12/17/2022]
Affiliation(s)
- Véréna Poinsot
- Université Paul Sabatier, Université de Toulouse, Laboratoire des IMRCP; Toulouse Cedex France
| | - Varravaddheay Ong-Meang
- Université Paul Sabatier, Université de Toulouse, Laboratoire des IMRCP; Toulouse Cedex France
| | - Pierre Gavard
- Université Paul Sabatier, Université de Toulouse, Laboratoire des IMRCP; Toulouse Cedex France
| | - François Couderc
- Université Paul Sabatier, Université de Toulouse, Laboratoire des IMRCP; Toulouse Cedex France
| |
Collapse
|