1
|
Ghafoori Z, Tehrani T, Pont L, Benavente F. Separation and characterization of bovine milk proteins by capillary electrophoresis-mass spectrometry. J Sep Sci 2022; 45:3614-3623. [PMID: 35866669 PMCID: PMC9805173 DOI: 10.1002/jssc.202200423] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2022] [Revised: 07/19/2022] [Accepted: 07/20/2022] [Indexed: 01/09/2023]
Abstract
Protein profiling of major bovine milk proteins (i.e., whey and casein proteins) is of great interest in food science and technology. This complex set of protein proteoforms may vary with breed, genetics, lactation stage, health, and nutritional status of the animal. Current routine methods for bovine milk protein profiling at the intact level are typically based on capillary electrophoresis-ultraviolet, which does not allow confirming unequivocally the identity of the separated proteins. As an alternative, in this study, we describe for the first time a novel and simple capillary electrophoresis-mass spectrometry method in positive electrospray ionization mode. Under the optimized conditions, capillary electrophoresis-mass spectrometry allowed the separation and identification at the intact level of major bovine milk whey and casein proteins in less than 15 min. Furthermore, high-resolution mass spectrometry confirmed its importance in the reliable characterization of bovine milk protein proteoforms, especially those with slight molecular mass differences, such as β-casein A1 and A2, which are relevant to unequivocally identify milk with specific β-casein compositions (e.g., A2A2 milk, which is widely known as A2 milk). This differentiation was not possible by matrix-assisted laser desorption/ionization mass spectrometry, which provided rapidly and easily a rich but less accurate fingerprint of bovine milk proteins due to the lower mass resolution.
Collapse
Affiliation(s)
- Zahra Ghafoori
- Department of Chemical Engineering and Analytical ChemistryInstitute for Research on Nutrition and Food Safety (INSA·UB)University of BarcelonaBarcelonaSpain,Department of Food HygieneFaculty of Veterinary MedicineShahid Chamran UniversityAhvazIran
| | - Tahereh Tehrani
- Department of Chemical Engineering and Analytical ChemistryInstitute for Research on Nutrition and Food Safety (INSA·UB)University of BarcelonaBarcelonaSpain
| | - Laura Pont
- Department of Chemical Engineering and Analytical ChemistryInstitute for Research on Nutrition and Food Safety (INSA·UB)University of BarcelonaBarcelonaSpain,Serra Húnter ProgrameGeneralitat de CatalunyaBarcelonaSpain
| | - Fernando Benavente
- Department of Chemical Engineering and Analytical ChemistryInstitute for Research on Nutrition and Food Safety (INSA·UB)University of BarcelonaBarcelonaSpain
| |
Collapse
|
2
|
Cotrina EY, Vilà M, Nieto J, Arsequell G, Planas A. Preparative Scale Production of Recombinant Human Transthyretin for Biophysical Studies of Protein-Ligand and Protein-Protein Interactions. Int J Mol Sci 2020; 21:ijms21249640. [PMID: 33348885 PMCID: PMC7766448 DOI: 10.3390/ijms21249640] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2020] [Revised: 12/14/2020] [Accepted: 12/16/2020] [Indexed: 12/19/2022] Open
Abstract
Human transthyretin (hTTR), a serum protein with a main role in transporting thyroid hormones and retinol through binding to the retinol-binding protein, is an amyloidogenic protein involved in familial amyloidotic polyneuropathy (FAP), familial amyloidotic cardiomyopathy, and central nervous system selective amyloidosis. hTTR also has a neuroprotective role in Alzheimer disease, being the major Aβ binding protein in human cerebrospinal fluid (CSF) that prevents amyloid-β (Aβ) aggregation with consequent abrogation of toxicity. Here we report an optimized preparative expression and purification protocol of hTTR (wt and amyloidogenic mutants) for in vitro screening assays of TTR ligands acting as amyloidogenesis inhibitors or acting as molecular chaperones to enhance the TTR:Aβ interaction. Preparative yields were up to 660 mg of homogenous protein per L of culture in fed-batch bioreactor. The recombinant wt protein is mainly unmodified at Cys10, the single cysteine in the protein sequence, whereas the highly amyloidogenic Y78F variant renders mainly the S-glutathionated form, which has essentially the same amyloidogenic behavior than the reduced protein with free Cys10. The TTR production protocol has shown inter-batch reproducibility of expression and protein quality for in vitro screening assays.
Collapse
Affiliation(s)
- Ellen Y. Cotrina
- Laboratory of Biochemistry, Institut Químic de Sarrià, Universitat Ramon Llull, 08017 Barcelona, Spain; (E.Y.C.); (M.V.); (J.N.)
- Institut de Química Avançada de Catalunya, Consejo Superior de Investigaciones Científicas (IQAC-CSIC), 08034 Barcelona, Spain;
| | - Marta Vilà
- Laboratory of Biochemistry, Institut Químic de Sarrià, Universitat Ramon Llull, 08017 Barcelona, Spain; (E.Y.C.); (M.V.); (J.N.)
| | - Joan Nieto
- Laboratory of Biochemistry, Institut Químic de Sarrià, Universitat Ramon Llull, 08017 Barcelona, Spain; (E.Y.C.); (M.V.); (J.N.)
| | - Gemma Arsequell
- Institut de Química Avançada de Catalunya, Consejo Superior de Investigaciones Científicas (IQAC-CSIC), 08034 Barcelona, Spain;
| | - Antoni Planas
- Laboratory of Biochemistry, Institut Químic de Sarrià, Universitat Ramon Llull, 08017 Barcelona, Spain; (E.Y.C.); (M.V.); (J.N.)
- Correspondence:
| |
Collapse
|
3
|
Ionic matrices for matrix-assisted laser desorption/ionization mass spectrometry analysis of microRNA biomarkers. Anal Chim Acta 2020; 1139:169-177. [PMID: 33190701 DOI: 10.1016/j.aca.2020.10.001] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2020] [Revised: 09/29/2020] [Accepted: 10/02/2020] [Indexed: 11/20/2022]
Abstract
The use of ionic matrices (IMs) was evaluated as an alternative to conventional matrices to analyze microRNAs (miRNAs) by matrix-assisted laser desorption/ionization mass spectrometry (MALDI-MS). 2, 4, 6-Trihydroxyacetophenone (THAP), 6-aza-2-thiothymine (ATT) and 3-hydroxypicolinic acid (3-HPA) and their IMs with pyridine (PYR) and butylamine (BA) were studied to analyze a standard mixture of miRNAs: miR-21, let-7g and iso-miR-16. Among all the studied matrices, ATT-PYR at 75 mg/mL in acetonitrile (MeCN):H2O (50:50, v/v) was selected as the optimal. Furthermore, addition of ammonium citrate dibasic (AC) as signal enhancer was mandatory to obtain an appropriate miRNA detection. ATT-PYR provided the best sensitivity, with limit of detection (LOD) up to 5 nM (equivalent to 1 fmol in the spot) and excellent spot-to-spot repeatability due to the improved homogeneity of the spots compared to the conventional matrices. The applicability of the established method to direct, multiplex and untargeted analysis of miRNAs in serum samples was also investigated.
Collapse
|
4
|
Thomas SL, Thacker JB, Schug KA, Maráková K. Sample preparation and fractionation techniques for intact proteins for mass spectrometric analysis. J Sep Sci 2020; 44:211-246. [DOI: 10.1002/jssc.202000936] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2020] [Revised: 10/28/2020] [Accepted: 10/29/2020] [Indexed: 12/17/2022]
Affiliation(s)
- Shannon L. Thomas
- Department of Chemistry & Biochemistry The University of Texas Arlington Arlington Texas USA
| | - Jonathan B. Thacker
- Department of Chemistry & Biochemistry The University of Texas Arlington Arlington Texas USA
| | - Kevin A. Schug
- Department of Chemistry & Biochemistry The University of Texas Arlington Arlington Texas USA
| | - Katarína Maráková
- Department of Pharmaceutical Analysis and Nuclear Pharmacy Faculty of Pharmacy Comenius University in Bratislava Bratislava Slovakia
| |
Collapse
|
5
|
Vásconez J, Pero-Gascon R, Giménez E, Benavente F. Comparison of capillary electrophoresis and zwitterionic-hydrophilic interaction capillary liquid chromatography with ultraviolet and mass spectrometry detection for the analysis of microRNA biomarkers. Talanta 2020; 219:121263. [PMID: 32887154 DOI: 10.1016/j.talanta.2020.121263] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2020] [Revised: 06/03/2020] [Accepted: 06/04/2020] [Indexed: 12/17/2022]
Abstract
This study evaluates zwitterionic-hydrophilic interaction capillary liquid chromatography (capZIC-HILIC) and capillary electrophoresis (CE) with ultraviolet (UV) and mass spectrometry (MS) detection for the direct, label-free and multiplex analysis of microribonucleic acids (miRNAs). CapZIC-HILIC-UV and CE-UV methods were first optimized, resulting in similar separations for a mixture of three miRNAs (hsa-iso-miR-16-5p, hsa-let-7g-5p, and hsa-miR-21-5p) but with reversal of elution/migration orders and small differences in repeatability, linearity, limit of detection (LOD) and separation efficiency. The established UV methods were transferred and validated in these terms with mass spectrometry (MS) detection, which allowed identifying the miRNAs and characterizing their post-transcriptional modifications. LOD by capZIC-HILIC-MS was 1 μM of miRNA, around 5 times lower than by CE-MS due to the analyte dilution with the sheathflow CE-MS interface and to the slightly increased abundance of alkali metals adducts in the CE-MS mass spectra. In addition, the suction effect promoted by the nebulizer gas in CE-MS negatively affected the already compromised separations. In contrast, CE-MS showed superior repeatabilities with spiked serum samples, as well as reduced costs, extended capillary column durabilities and shorter conditioning times. The comparison of the different methods allows disclosing the current advantages and disadvantages of capZIC-HILIC and CE for the analysis of miRNA biomarkers.
Collapse
Affiliation(s)
- Jeanneth Vásconez
- Department of Chemical Engineering and Analytical Chemistry, Institute for Research on Nutrition and Food Safety (INSA·UB), University of Barcelona, 08028, Barcelona, Spain
| | - Roger Pero-Gascon
- Department of Chemical Engineering and Analytical Chemistry, Institute for Research on Nutrition and Food Safety (INSA·UB), University of Barcelona, 08028, Barcelona, Spain
| | - Estela Giménez
- Department of Chemical Engineering and Analytical Chemistry, Institute for Research on Nutrition and Food Safety (INSA·UB), University of Barcelona, 08028, Barcelona, Spain
| | - Fernando Benavente
- Department of Chemical Engineering and Analytical Chemistry, Institute for Research on Nutrition and Food Safety (INSA·UB), University of Barcelona, 08028, Barcelona, Spain.
| |
Collapse
|
6
|
Pont L, Marin G, Vergara-Barberán M, Gagliardi LG, Sanz-Nebot V, Herrero-Martínez JM, Benavente F. Polymeric monolithic microcartridges with gold nanoparticles for the analysis of protein biomarkers by on-line solid-phase extraction capillary electrophoresis-mass spectrometry. J Chromatogr A 2020; 1622:461097. [PMID: 32381302 DOI: 10.1016/j.chroma.2020.461097] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2020] [Revised: 03/30/2020] [Accepted: 03/31/2020] [Indexed: 01/08/2023]
Abstract
In this study, polymeric monoliths with gold nanoparticles (AuNP@monolith) were investigated as microcartridges for the analysis of protein biomarkers by on-line solid-phase extraction capillary electrophoresis-mass spectrometry (SPE-CE-MS). "Plug-and-play" microcartridges (7 mm) were prepared from a glycidyl methacrylate (GMA)-based monolithic capillary column (5 cm x 250 µm i.d.), which was modified with ammonia and subsequently functionalized with gold nanoparticles (AuNPs). The performance of these novel microcartridges was evaluated with human transthyretin (TTR), which is a protein related to different types of familial amyloidotic polyneuropathies (FAP). Protein retention depended on the isoelectric point of the protein (TTR pI~5.4) and elution was achieved with a basic phosphate solution. Under the optimized conditions, limits of detection (LODs) for TTR by AuNP@monolith-SPE-CE-MS were 50 times lower than by CE-MS (5 vs 250 mg•L-1, with an ion trap (IT) mass spectrometer). The sensitivity enhancement was similar compared to SPE-CE-MS using immunoaffinity (IA) microcartridges with intact antibodies against TTR. Linearity, repeatability in migration times and peak areas, reusability, reproducibility and application to serum samples were also evaluated.
Collapse
Affiliation(s)
- Laura Pont
- Department of Chemical Engineering and Analytical Chemistry, Institute for Research on Nutrition and Food Safety (INSA•UB), University of Barcelona, C/Martí i Franquès 1-11, 08028 Barcelona, Spain
| | - Gemma Marin
- Department of Chemical Engineering and Analytical Chemistry, Institute for Research on Nutrition and Food Safety (INSA•UB), University of Barcelona, C/Martí i Franquès 1-11, 08028 Barcelona, Spain
| | - María Vergara-Barberán
- Department of Analytical Chemistry, University of Valencia, C/Doctor Moliner 50, 46100 Burjassot, Spain
| | - Leonardo G Gagliardi
- Laboratorio de Investigación y Desarrollo de Métodos Analíticos, LIDMA, Facultad de Ciencias Exactas, Universidad Nacional de La Plata, CIC-PBA CONICET, C/ 47 esq. 115, B1900AJL La Plata, Argentina
| | - Victoria Sanz-Nebot
- Department of Chemical Engineering and Analytical Chemistry, Institute for Research on Nutrition and Food Safety (INSA•UB), University of Barcelona, C/Martí i Franquès 1-11, 08028 Barcelona, Spain
| | - José M Herrero-Martínez
- Department of Analytical Chemistry, University of Valencia, C/Doctor Moliner 50, 46100 Burjassot, Spain.
| | - Fernando Benavente
- Department of Chemical Engineering and Analytical Chemistry, Institute for Research on Nutrition and Food Safety (INSA•UB), University of Barcelona, C/Martí i Franquès 1-11, 08028 Barcelona, Spain.
| |
Collapse
|
7
|
Spodzieja M, Rodziewicz-Motowidło S, Szymanska A. Hyphenated Mass Spectrometry Techniques in the Diagnosis of Amyloidosis. Curr Med Chem 2019; 26:104-120. [DOI: 10.2174/0929867324666171003113019] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2016] [Revised: 07/25/2016] [Accepted: 09/01/2016] [Indexed: 12/18/2022]
Abstract
Amyloidoses are a group of diseases caused by the extracellular deposition of proteins forming amyloid fibrils. The amyloidosis is classified according to the main protein or peptide that constitutes the amyloid fibrils. The most effective methods for the diagnosis of amyloidosis are based on mass spectrometry. Mass spectrometry enables confirmation of the identity of the protein precursor of amyloid fibrils in biological samples with very high sensitivity and specificity, which is crucial for proper amyloid typing. Due to the fact that biological samples are very complex, mass spectrometry is usually connected with techniques such as liquid chromatography or capillary electrophoresis, which enable the separation of proteins before MS analysis. Therefore mass spectrometry constitutes an important part of the so called “hyphenated techniques” combining, preferentially in-line, different analytical methods to provide comprehensive information about the studied problem. Hyphenated methods are very useful in the discovery of biomarkers in different types of amyloidosis. In systemic forms of amyloidosis, the analysis of aggregated proteins is usually performed based on the tissues obtained during a biopsy of an affected organ or a subcutaneous adipose tissue. In some cases, when the diagnostic biopsy is not possible due to the fact that amyloid fibrils are formed in organs like the brain (Alzheimer’s disease), the study of biomarkers presented in body fluids can be carried out. Currently, large-scale studies are performed to find and validate more effective biomarkers, which can be used in diagnostic procedures. We would like to present the methods connected with mass spectrometry which are used in the diagnosis of amyloidosis based on the analysis of proteins occurring in tissues, blood and cerebrospinal fluid.
Collapse
Affiliation(s)
- Marta Spodzieja
- Department of Biomedical Chemistry, Faculty of Chemistry, University of Gdansk, Wita Stwosza 63, 80-308 Gdansk, Poland
| | - Sylwia Rodziewicz-Motowidło
- Department of Biomedical Chemistry, Faculty of Chemistry, University of Gdansk, Wita Stwosza 63, 80-308 Gdansk, Poland
| | - Aneta Szymanska
- Department of Biomedical Chemistry, Faculty of Chemistry, University of Gdansk, Wita Stwosza 63, 80-308 Gdansk, Poland
| |
Collapse
|
8
|
Pero-Gascon R, Pont L, Sanz-Nebot V, Benavente F. On-Line Immunoaffinity Solid-Phase Extraction Capillary Electrophoresis-Mass Spectrometry for the Analysis of Serum Transthyretin. Methods Mol Biol 2019; 1972:57-76. [PMID: 30847784 DOI: 10.1007/978-1-4939-9213-3_5] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
The analysis of low abundant proteins in biological fluids by capillary electrophoresis (CE) is particularly problematic due to the typically poor concentration limits of detection of microscale separation techniques. Another important issue is sample matrix complexity that requires an appropriate cleanup. Here, we describe an on-line immunoaffinity solid-phase extraction capillary electrophoresis-mass spectrometry (IA-SPE-CE-MS) method for the immunoextraction, preconcentration, separation, detection, and characterization of serum transthyretin (TTR). TTR is a protein biomarker related to diverse types of amyloidosis, such as familial amyloidotic polyneuropathy type I (FAP-I), which is the most common hereditary systemic amyloidosis.
Collapse
Affiliation(s)
- Roger Pero-Gascon
- Department of Chemical Engineering and Analytical Chemistry, Institute for Research on Nutrition and Food Safety (INSA·UB), University of Barcelona, Barcelona, Spain
| | - Laura Pont
- Department of Chemical Engineering and Analytical Chemistry, Institute for Research on Nutrition and Food Safety (INSA·UB), University of Barcelona, Barcelona, Spain
| | - Victoria Sanz-Nebot
- Department of Chemical Engineering and Analytical Chemistry, Institute for Research on Nutrition and Food Safety (INSA·UB), University of Barcelona, Barcelona, Spain.
| | - Fernando Benavente
- Department of Chemical Engineering and Analytical Chemistry, Institute for Research on Nutrition and Food Safety (INSA·UB), University of Barcelona, Barcelona, Spain
| |
Collapse
|
9
|
A chemometric approach for characterization of serum transthyretin in familial amyloidotic polyneuropathy type I (FAP-I) by electrospray ionization-ion mobility mass spectrometry. Talanta 2018; 181:87-94. [DOI: 10.1016/j.talanta.2017.12.072] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2017] [Revised: 12/20/2017] [Accepted: 12/21/2017] [Indexed: 01/19/2023]
|
10
|
Jiang Y, He MY, Zhang WJ, Luo P, Guo D, Fang X, Xu W. Recent advances of capillary electrophoresis-mass spectrometry instrumentation and methodology. CHINESE CHEM LETT 2017. [DOI: 10.1016/j.cclet.2017.05.008] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
|
11
|
Pont L, Benavente F, Barbosa J, Sanz-Nebot V. On-line immunoaffinity solid-phase extraction capillary electrophoresis mass spectrometry using Fab´antibody fragments for the analysis of serum transthyretin. Talanta 2017; 170:224-232. [DOI: 10.1016/j.talanta.2017.03.104] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2016] [Revised: 03/29/2017] [Accepted: 03/31/2017] [Indexed: 02/08/2023]
|
12
|
Štěpánová S, Kašička V. Recent applications of capillary electromigration methods to separation and analysis of proteins. Anal Chim Acta 2016; 933:23-42. [DOI: 10.1016/j.aca.2016.06.006] [Citation(s) in RCA: 78] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2016] [Revised: 05/10/2016] [Accepted: 06/03/2016] [Indexed: 10/21/2022]
|
13
|
Barroso A, Giménez E, Benavente F, Barbosa J, Sanz-Nebot V. Classification of congenital disorders of glycosylation based on analysis of transferrin glycopeptides by capillary liquid chromatography-mass spectrometry. Talanta 2016; 160:614-623. [PMID: 27591658 DOI: 10.1016/j.talanta.2016.07.055] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2016] [Revised: 07/22/2016] [Accepted: 07/24/2016] [Indexed: 01/30/2023]
Abstract
In this work, we describe a multivariate data analysis approach for data exploration and classification of the complex and large data sets generated to study the alteration of human transferrin (Tf) N-glycopeptides in patients with congenital disorders of glycosylation (CDG). Tf from healthy individuals and two types of CDG patients (CDG-I and CDG-II) is purified by immunoextraction from serum samples before trypsin digestion and separation by capillary liquid chromatography mass spectrometry (CapLC-MS). Following a targeted data analysis approach, partial least squares discriminant analysis (PLS-DA) is applied to the relative abundance of Tf glycopeptide glycoforms obtained after integration of the extracted ion chromatograms of the different samples. The performance of PLS-DA for classification of the different samples and for providing a novel insight into Tf glycopeptide glycoforms alteration in CDGs is demonstrated. Only six out of fourteen of the detected glycoforms are enough for an accurate classification. This small glycoform set may be considered a sensitive and specific novel biomarker panel for CDGs.
Collapse
Affiliation(s)
- Albert Barroso
- Department of Chemical Engineering and Analytical Chemistry, University of Barcelona, Diagonal 645, 08028 Barcelona, Spain
| | - Estela Giménez
- Department of Chemical Engineering and Analytical Chemistry, University of Barcelona, Diagonal 645, 08028 Barcelona, Spain
| | - Fernando Benavente
- Department of Chemical Engineering and Analytical Chemistry, University of Barcelona, Diagonal 645, 08028 Barcelona, Spain.
| | - José Barbosa
- Department of Chemical Engineering and Analytical Chemistry, University of Barcelona, Diagonal 645, 08028 Barcelona, Spain
| | - Victoria Sanz-Nebot
- Department of Chemical Engineering and Analytical Chemistry, University of Barcelona, Diagonal 645, 08028 Barcelona, Spain
| |
Collapse
|
14
|
Pont L, Poturcu K, Benavente F, Barbosa J, Sanz-Nebot V. Comparison of capillary electrophoresis and capillary liquid chromatography coupled to mass spectrometry for the analysis of transthyretin in human serum. J Chromatogr A 2016; 1444:145-53. [PMID: 27052822 DOI: 10.1016/j.chroma.2016.03.052] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2015] [Revised: 02/02/2016] [Accepted: 03/19/2016] [Indexed: 01/10/2023]
Abstract
Capillary electrophoresis and capillary liquid chromatography coupled to mass spectrometry (CE-MS and CapLC-MS, respectively) are nowadays very suitable techniques for the separation and characterization of intact proteins in biological fluids. In this paper, we compare the performance of both techniques for the analysis of transthyretin (TTR), which is a homotetrameric protein (relative molecular mass (Mr) ∼56,000) involved in different types of amyloidosis. Furthermore, it is also presented a novel sample pretreatment based on immunoprecipitation (IP) using Protein A Ultrarapid Agarose™ (UAPA) magnetic beads (MBs) to purify TTR from serum samples. This novel IP based on MBs allowed the detection of TTR monomeric proteoforms that were not possible to analyze by conventional IP in solution. In addition, UAPA MBs provided many other desirable advantages including higher selectivity and minimal unspecific binding of other proteins. CE-MS and CapLC-MS were applied to analyze serum samples from healthy controls and familial amyloidotic polyneuropathy type I (FAP-I) patients, who suffered from the most common hereditary systemic amyloidosis. Both techniques allowed detecting the same TTR proteoforms, including the mutant TTR (Met 30) variant (variation in relative molecular mass (ΔMr) was +32.07, from wild-type TTR). Migration/retention times and relative quantitation of the different proteoforms were similar and reproducible in both cases, but the limits of detection (LODs) achieved by CE-MS were slightly lower (2-2.5-fold). Some other differences were also found on separation selectivity (migration orders and separation of antibody), peak efficiency, total analysis time, calibration ranges and experimental Mr accuracy.
Collapse
Affiliation(s)
- Laura Pont
- Department of Analytical Chemistry, University of Barcelona, Barcelona, Spain
| | - Kader Poturcu
- Department of Chemistry, Suleyman Demirel University, Isparta, Turkey
| | - Fernando Benavente
- Department of Analytical Chemistry, University of Barcelona, Barcelona, Spain
| | - José Barbosa
- Department of Analytical Chemistry, University of Barcelona, Barcelona, Spain
| | - Victoria Sanz-Nebot
- Department of Analytical Chemistry, University of Barcelona, Barcelona, Spain.
| |
Collapse
|
15
|
Peró-Gascón R, Pont L, Benavente F, Barbosa J, Sanz-Nebot V. Analysis of serum transthyretin by on-line immunoaffinity solid-phase extraction capillary electrophoresis mass spectrometry using magnetic beads. Electrophoresis 2016; 37:1220-31. [DOI: 10.1002/elps.201500495] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2015] [Revised: 01/12/2016] [Accepted: 01/21/2016] [Indexed: 12/31/2022]
Affiliation(s)
- Roger Peró-Gascón
- Department of Analytical Chemistry; University of Barcelona; Barcelona Spain
| | - Laura Pont
- Department of Analytical Chemistry; University of Barcelona; Barcelona Spain
| | - Fernando Benavente
- Department of Analytical Chemistry; University of Barcelona; Barcelona Spain
| | - José Barbosa
- Department of Analytical Chemistry; University of Barcelona; Barcelona Spain
| | - Victoria Sanz-Nebot
- Department of Analytical Chemistry; University of Barcelona; Barcelona Spain
| |
Collapse
|
16
|
Lavatelli F, di Fonzo A, Palladini G, Merlini G. Systemic amyloidoses and proteomics: The state of the art. EUPA OPEN PROTEOMICS 2016; 11:4-10. [PMID: 29900105 PMCID: PMC5988550 DOI: 10.1016/j.euprot.2016.02.003] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/10/2015] [Revised: 02/01/2016] [Accepted: 02/16/2016] [Indexed: 12/11/2022]
Abstract
Proteomics is an established approach for diagnostic amyloid typing. Mass spectrometry-based methods to analyze amyloid precursors have been developed. Proteomic studies are ongoing to identify novel biomarkers and clarify disease mechanisms.
Systemic amyloidoses are caused by misfolding-prone proteins that polymerize in tissues, causing organ dysfunction. Since proteins are etiological agents of these diseases, proteomics was soon recognized as a privileged instrument for their investigation. Mass spectrometry-based proteomics has acquired a fundamental role in management of systemic amyloidoses, being now considered a gold standard approach for amyloid typing. In parallel, approaches for analyzing circulating amyloid precursors have been developed. Moreover, differential and functional proteomics hold promise for identifying novel biomarkers and clarifying disease mechanisms. This review discusses recent proteomics achievements in systemic amyloidoses, providing a perspective on its present and future applications.
Collapse
Affiliation(s)
- Francesca Lavatelli
- Amyloidosis Research and Treatment Center and Department of Molecular Medicine, Fondazione IRCCS Policlinico San Matteo and University of Pavia, Pavia, Italy
| | - Andrea di Fonzo
- Amyloidosis Research and Treatment Center and Department of Molecular Medicine, Fondazione IRCCS Policlinico San Matteo and University of Pavia, Pavia, Italy
| | - Giovanni Palladini
- Amyloidosis Research and Treatment Center and Department of Molecular Medicine, Fondazione IRCCS Policlinico San Matteo and University of Pavia, Pavia, Italy
| | - Giampaolo Merlini
- Amyloidosis Research and Treatment Center and Department of Molecular Medicine, Fondazione IRCCS Policlinico San Matteo and University of Pavia, Pavia, Italy.,Clinical Chemistry Laboratory, Fondazione IRCCS Policlinico San Matteo, Pavia, Italy
| |
Collapse
|
17
|
Characterisation of serum transthyretin by electrospray ionisation-ion mobility mass spectrometry: Application to familial amyloidotic polyneuropathy type I (FAP-I). Talanta 2015; 144:1216-24. [DOI: 10.1016/j.talanta.2015.07.079] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2015] [Revised: 07/20/2015] [Accepted: 07/28/2015] [Indexed: 11/19/2022]
|
18
|
Barroso A, Giménez E, Benavente F, Barbosa J, Sanz-Nebot V. Improved tryptic digestion assisted with an acid-labile anionic surfactant for the separation and characterization of glycopeptide glycoforms of a proteolytic-resistant glycoprotein by capillary electrophoresis time-of-flight mass spectrometry. Electrophoresis 2015; 37:987-97. [DOI: 10.1002/elps.201500255] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2015] [Revised: 07/21/2015] [Accepted: 08/07/2015] [Indexed: 11/10/2022]
Affiliation(s)
- Albert Barroso
- Department of Analytical Chemistry; University of Barcelona; Barcelona Spain
| | - Estela Giménez
- Department of Analytical Chemistry; University of Barcelona; Barcelona Spain
| | - Fernando Benavente
- Department of Analytical Chemistry; University of Barcelona; Barcelona Spain
| | - José Barbosa
- Department of Analytical Chemistry; University of Barcelona; Barcelona Spain
| | - Victoria Sanz-Nebot
- Department of Analytical Chemistry; University of Barcelona; Barcelona Spain
| |
Collapse
|