1
|
Hancke D, Suárez OV. A review of the diversity of Cryptosporidium in Rattus norvegicus, R. rattus and Mus musculus: What we know and challenges for the future. Acta Trop 2022; 226:106244. [PMID: 34863707 DOI: 10.1016/j.actatropica.2021.106244] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2021] [Revised: 11/01/2021] [Accepted: 11/02/2021] [Indexed: 11/18/2022]
Abstract
The aim of this paper is to review the diversity of Cryptosporidium species and genotypes infecting synantropic rodents. A total of 27 papers published between 1990 and 2020 assed the presence of Cryptosporidium in these rodents worldwide and described 17 different species and genotypes of Cryptosporidium. A great variation in the prevalence values were observed (0-63%). The most frequent species/genotypes were Rat genotype I and IV for R. norvegicus and Rat genotype II and III R. rattus, while C. tyzzeri was for M. musculus. Cryptosporidium parvum, the second most common species after C. hominis involved in human cryptosporidiosis cases, was the third most detected Cryptosporidium species in R, norvergicus (9.4% of the positive samples) and the 3 rodent species are common host for C. muris, also recognized as zoonotic. Besides, these synanthopic rodents can harbor Cryptosporidium species whose natural hosts are cattle, bovids, pigs, other rodent species, birds and a broad range of mammals. Considering the diversity described so far, it would have a great epidemiological impact to know how the variation of Cryptosporidium species composition along urban-rural gradients is like, including synanthropic rodents, wild and domestic animals and environmental samples, and to analyze the causal factors of such variation.
Collapse
Affiliation(s)
- Diego Hancke
- Laboratorio de Ecología de Roedores, Departamento de Ecología, Genética y Evolución, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, C1428EHA Ciudad Autónoma de Buenos Aires, Ciudad Universitaria, Avenida Intendente Cantilo s/n, Pabellón II, 4° PisoLaboratorio 104 (C1428EHA), Buenos Aires, Argentina; Instituto de Ecología, Genética y Evolución de Buenos Aires (IEGEBA), UBA-CONICET, C1428EHA Ciudad Autónoma de Buenos Aires, Ciudad Universitaria, Intendente Güiraldes 2160, PB II, 4to piso, Argentina.
| | - Olga Virginia Suárez
- Laboratorio de Ecología de Roedores, Departamento de Ecología, Genética y Evolución, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, C1428EHA Ciudad Autónoma de Buenos Aires, Ciudad Universitaria, Avenida Intendente Cantilo s/n, Pabellón II, 4° PisoLaboratorio 104 (C1428EHA), Buenos Aires, Argentina; Instituto de Ecología, Genética y Evolución de Buenos Aires (IEGEBA), UBA-CONICET, C1428EHA Ciudad Autónoma de Buenos Aires, Ciudad Universitaria, Intendente Güiraldes 2160, PB II, 4to piso, Argentina
| |
Collapse
|
2
|
Chen J, Wang W, Lin Y, Sun L, Li N, Guo Y, Kvac M, Ryan U, Feng Y, Xiao L. Genetic characterizations of Cryptosporidium spp. from pet rodents indicate high zoonotic potential of pathogens from chinchillas. One Health 2021; 13:100269. [PMID: 34113708 PMCID: PMC8170418 DOI: 10.1016/j.onehlt.2021.100269] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2021] [Revised: 05/18/2021] [Accepted: 05/20/2021] [Indexed: 11/24/2022] Open
Abstract
Cryptosporidium spp. are common protozoan pathogens in mammals. With pet rodents being integrated into modern life, the potential roles of them in transmitting parasites to humans need assessments. In the present study, we examined the occurrence of Cryptosporidium spp. in pet rodents in Guangdong, south China. A total of 697 fecal samples were collected from 11 species of rodents in seven pet shops, one pet market and one farm. Cryptosporidium spp. were identified by PCR analysis of the small subunit rRNA gene. An overall infection rate of 36.9% (257/697) was obtained, with infection rates varying from 9.3% in chinchillas, 52.3% in guinea pigs, 57.1% in squirrels, to 68.4% in cricetid animals. Nine Cryptosporidium species and genotypes were identified, including C. wrairi (in 129 guinea pigs), C. andersoni (in 34 hamsters), C. homai (in 32 guinea pigs), Cryptosporidium hamster genotype (in 30 hamsters), C. ubiquitum (in 24 chinchillas and squirrels), C. parvum (in 2 chinchillas), Cryptosporidium ferret genotype (in 2 chipmunks), C. muris (in 1 hamster and 1 guinea pig), and Cryptosporidium chipmunk genotype V (in 1 chinchilla and 1 chipmunk). Sequence analysis of the 60 kDa glycoprotein gene identified three subtype families of C. ubiquitum, including family XIId in 15 chinchillas, XIIa in 5 chinchillas, and a new subtype family (XIIi) in 1 squirrel. The identification of C. parvum and C. ubiquitum in pet rodents suggests that these animals, especially chinchillas, could serve as reservoirs of human-pathogenic Cryptosporidium spp. Hygiene should be practiced in the rear and care of these animals, and One Health measures should be developed to reduce the occurrence of zoonotic Cryptosporidium infections due to contact with pet rodents. Cryptosporidium spp. were prevalent in pet rodents in Guangdong, China. Nine Cryptosporidium species and genotypes were identified. Chinchillas were commonly infected with zoonotic C. ubiquitum. The XIId subtype family of C. ubiquitum has been imported into China together with chinchillas. One Health measures should be developed to control zoonotic cryptosporidiosi.
Collapse
Affiliation(s)
- Jia Chen
- Center for Emerging and Zoonotic Diseases, College of Veterinary Medicine, South China Agricultural University, Guangzhou 510642, China.,Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou 510642, China
| | - Weijian Wang
- Center for Emerging and Zoonotic Diseases, College of Veterinary Medicine, South China Agricultural University, Guangzhou 510642, China.,Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou 510642, China
| | - Yu Lin
- Center for Emerging and Zoonotic Diseases, College of Veterinary Medicine, South China Agricultural University, Guangzhou 510642, China.,Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou 510642, China
| | - Lianbei Sun
- Center for Emerging and Zoonotic Diseases, College of Veterinary Medicine, South China Agricultural University, Guangzhou 510642, China.,Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou 510642, China
| | - Na Li
- Center for Emerging and Zoonotic Diseases, College of Veterinary Medicine, South China Agricultural University, Guangzhou 510642, China.,Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou 510642, China
| | - Yaqiong Guo
- Center for Emerging and Zoonotic Diseases, College of Veterinary Medicine, South China Agricultural University, Guangzhou 510642, China.,Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou 510642, China
| | - Martin Kvac
- Institute of Parasitology, Biology Centre of the Czech Academy of Sciences, Branisovska 31, 37005 Ceske Budejovice, Czech Republic
| | - Una Ryan
- Harry Butler Institute, Murdoch University, Perth, Australia
| | - Yaoyu Feng
- Center for Emerging and Zoonotic Diseases, College of Veterinary Medicine, South China Agricultural University, Guangzhou 510642, China.,Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou 510642, China
| | - Lihua Xiao
- Center for Emerging and Zoonotic Diseases, College of Veterinary Medicine, South China Agricultural University, Guangzhou 510642, China.,Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou 510642, China
| |
Collapse
|
3
|
Zahedi A, Ryan U. Cryptosporidium – An update with an emphasis on foodborne and waterborne transmission. Res Vet Sci 2020; 132:500-512. [DOI: 10.1016/j.rvsc.2020.08.002] [Citation(s) in RCA: 61] [Impact Index Per Article: 15.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2020] [Revised: 07/24/2020] [Accepted: 08/03/2020] [Indexed: 12/15/2022]
|
4
|
Ahmadpour E, Safarpour H, Xiao L, Zarean M, Hatam-Nahavandi K, Barac A, Picot S, Rahimi MT, Rubino S, Mahami-Oskouei M, Spotin A, Nami S, Baghi HB. Cryptosporidiosis in HIV-positive patients and related risk factors: A systematic review and meta-analysis. ACTA ACUST UNITED AC 2020; 27:27. [PMID: 32351207 PMCID: PMC7191976 DOI: 10.1051/parasite/2020025] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2019] [Accepted: 04/09/2020] [Indexed: 11/28/2022]
Abstract
Cryptosporidium is one of the major causes of diarrhea in HIV-positive patients. The aim of this study is to systematically review and meta-analyze the prevalence of Cryptosporidium in these patients. PubMed, Science Direct, Google Scholar, Web of Science, Cochrane and Ovid databases were searched for relevant studies dating from the period of 1 January 2000 to 31 December 2017. Data extraction for the included studies was performed independently by two authors. The overall pooled prevalence was calculated and subgroup analysis was performed on diagnostic methods, geographical distribution and study population. Meta-regression was performed on the year of publication, proportion of patients with diarrhea, and proportion of patients with CD4 < 200 cells/mL. One hundred and sixty-one studies and 51,123 HIV-positive participants were included. The overall pooled prevalence of Cryptosporidium infection in HIV-positive patients was 11.2% (CI95%: 9.4%–13.0%). The pooled prevalence was estimated to be 10.0% (CI95%: 8.4%–11.8%) using staining methods, 13.5% (CI95%: 8.9%–19.8%) using molecular methods, and 26.3% (CI95%: 15.0%–42.0%) using antigen detection methods. The prevalence of Cryptosporidium in HIV patients was significantly associated with the country of study. Also, there were statistical differences between the diarrhea, CD4 < 200 cells/mL, and antiretroviral therapy risk factors with Cryptosporidiosis. Thus, Cryptosporidium is a common infection in HIV-positive patients, and safe water and hand-hygiene should be implemented to prevent cryptosporidiosis occurrence in these patients.
Collapse
Affiliation(s)
- Ehsan Ahmadpour
- Research Center for Evidence Based Medicine (RCEBM), Tabriz University of Medical Sciences, 5166-15731 Tabriz, Iran - Infectious and Tropical Diseases Research Center, Tabriz University of Medical Sciences, 5166-15731 Tabriz, Iran
| | - Hanie Safarpour
- Student Research Committee, Tabriz University of Medical Sciences, 5166-15731 Tabriz, Iran
| | - Lihua Xiao
- College of Veterinary Medicine, South China Agricultural University, 510642 Guangzhou, China
| | - Mehdi Zarean
- Department of Parasitology and Mycology, Faculty of Medicine, Mashhad University of Medical Sciences, 91779-48964 Mashhad, Iran
| | | | - Aleksandra Barac
- Clinic for Infectious and Tropical Diseases, Clinical Centre of Serbia, 11000 Belgrade, Serbia
| | - Stephane Picot
- University Lyon, ICBMS UMR 5246 CNRS-INSA-CPE & Institute of Parasitology and Medical Mycology, Croix-Rousse Hospital, Hospices Civils de Lyon, 69004 Lyon, France
| | - Mohammad Taghi Rahimi
- Center for Health Related Social and Behavioral Sciences Research, Shahroud University of Medical Sciences, 36147-73947 Shahroud, Iran
| | - Salvatore Rubino
- Department of Biomedical Sciences, University of Sassari, 07100 Sardinia, Italy
| | - Mahmoud Mahami-Oskouei
- Department of Parasitology and Mycology, Faculty of Medicine, Tabriz University of Medical Sciences, 5166-15731 Tabriz, Iran
| | - Adel Spotin
- Immunology Research Center, Tabriz University of Medical Sciences, 5166-15731 Tabriz, Iran
| | - Sanam Nami
- Drug Applied Research Center, Tabriz University of Medical Sciences, 5166-15731 Tabriz, Iran
| | - Hossein Bannazadeh Baghi
- Infectious and Tropical Diseases Research Center, Tabriz University of Medical Sciences, 5166-15731 Tabriz, Iran
| |
Collapse
|
5
|
King P, Tyler KM, Hunter PR. Anthroponotic transmission of Cryptosporidium parvum predominates in countries with poorer sanitation: a systematic review and meta-analysis. Parasit Vectors 2019; 12:16. [PMID: 30621759 PMCID: PMC6323761 DOI: 10.1186/s13071-018-3263-0] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2018] [Accepted: 12/12/2018] [Indexed: 12/14/2022] Open
Abstract
Background Globally cryptosporidiosis is one of the commonest causes of mortality in children under 24 months old and may be associated with important longterm health effects. Whilst most strains of Cryptosporidium parvum are zoonotic, C. parvum IIc is almost certainly anthroponotic. The global distribution of this potentially important emerging infection is not clear. Methods We conducted a systematic review of papers identifying the subtype distribution of C. parvum infections globally. We searched PubMed and Scopus using the following key terms Cryptospor* AND parvum AND (genotyp* OR subtyp* OR gp60). Studies were eligible for inclusion if they had found C. parvum within their human study population and had subtyped some or all of these samples using standard gp60 subtyping. Pooled analyses of the proportion of strains being of the IIc subtype were determined using StatsDirect. Meta-regression analyses were run to determine any association between the relative prevalence of IIc and Gross Domestic Product, proportion of the population with access to improved drinking water and improved sanitation. Results From an initial 843 studies, 85 were included in further analysis. Cryptosporidium parvum IIc was found in 43 of these 85 studies. Across all studies the pooled estimate of relative prevalence of IIc was 19.0% (95% CI: 12.9–25.9%), but there was substantial heterogeneity. In a meta-regression analysis, the relative proportion of all C. parvum infections being IIc decreased as the percentage of the population with access to improved sanitation increased and was some 3.4 times higher in those studies focussing on HIV-positive indivduals. Conclusions The anthroponotic C. parvum IIc predominates primarily in lower-income countries with poor sanitation and in HIV-positive individuals. Given the apparent enhanced post-infectious virulence of the other main anthroponotic species of Cryptosporidium (C. hominis), it is important to learn about the impact of this subtype on human health. Electronic supplementary material The online version of this article (10.1186/s13071-018-3263-0) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Philippa King
- The Norwich Medical School, University of East Anglia, Norwich, UK
| | - Kevin M Tyler
- The Norwich Medical School, University of East Anglia, Norwich, UK.
| | - Paul R Hunter
- The Norwich Medical School, University of East Anglia, Norwich, UK. .,Department of Environmental Health, Tshwane University of Technology, Pretoria, South Africa.
| |
Collapse
|
6
|
Hatalová E, Valenčáková A, Luptáková L, Špalková M, Kalinová J, Halánová M, Bednárová V, Gabzdilová J, Dedinská K, Ondriska F, Boldiš V. The first report of animal genotypes of
Cryptosporidium parvum
in immunosuppressed and immunocompetent humans in Slovakia. Transbound Emerg Dis 2018; 66:243-249. [DOI: 10.1111/tbed.13009] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2018] [Revised: 08/27/2018] [Accepted: 08/29/2018] [Indexed: 11/29/2022]
Affiliation(s)
- Elena Hatalová
- The University of Veterinary Medicine and Pharmacy in Košice Košice Slovakia
| | | | - Lenka Luptáková
- The University of Veterinary Medicine and Pharmacy in Košice Košice Slovakia
| | - Michaela Špalková
- The University of Veterinary Medicine and Pharmacy in Košice Košice Slovakia
| | - Jana Kalinová
- The University of Veterinary Medicine and Pharmacy in Košice Košice Slovakia
| | | | | | | | | | | | | |
Collapse
|
7
|
Ryan U, Hijjawi N, Xiao L. Foodborne cryptosporidiosis. Int J Parasitol 2017; 48:1-12. [PMID: 29122606 DOI: 10.1016/j.ijpara.2017.09.004] [Citation(s) in RCA: 116] [Impact Index Per Article: 16.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2017] [Revised: 09/05/2017] [Accepted: 09/07/2017] [Indexed: 11/26/2022]
Abstract
Foodborne illness, the majority of which is caused by enteric infectious agents, costs global economies billions of dollars each year. The protozoan parasite Cryptosporidium is particularly suited to foodborne transmission and is responsible for >8 million cases of foodborne illness annually. Procedures have been developed for sensitive detection of Cryptosporidium oocysts on fresh produce and molecular diagnostic assays have been widely used in case linkages and infection source tracking, especially during outbreak investigations. The integrated use of advanced diagnostic techniques with conventional epidemiological studies is essential to improve our understanding of the occurrence, source and epidemiology of foodborne cryptosporidiosis. The implementation of food safety management tools such as Good Hygienic Practices (GHP), Hazard Analysis and Critical Control Points (HACCP), and Quantitative Microbial Risk Assessment (QMRA) in industrialised nations and Water, Sanitation, and Hygiene (WASH) in developing countries is central for prevention and control and foodborne cryptosporidiosis in the future.
Collapse
Affiliation(s)
- Una Ryan
- School of Veterinary and Life Sciences, Vector- and Water-Borne Pathogen Research Group, Murdoch University, Murdoch, Western Australia 6150, Australia.
| | - Nawal Hijjawi
- Department of Medical Laboratory Sciences, Faculty of Allied Health Sciences, The Hashemite University, PO Box 150459, Zarqa 13115, Jordan
| | - Lihua Xiao
- Centers for Disease Control and Prevention, Atlanta, GA 30329, USA
| |
Collapse
|
8
|
Zahedi A, Durmic Z, Gofton AW, Kueh S, Austen J, Lawson M, Callahan L, Jardine J, Ryan U. Cryptosporidium homai n. sp. (Apicomplexa: Cryptosporidiiae) from the guinea pig (Cavia porcellus). Vet Parasitol 2017; 245:92-101. [DOI: 10.1016/j.vetpar.2017.08.014] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2017] [Revised: 08/17/2017] [Accepted: 08/18/2017] [Indexed: 10/19/2022]
|
9
|
Ryan U, Zahedi A, Paparini A. Cryptosporidium in humans and animals-a one health approach to prophylaxis. Parasite Immunol 2017; 38:535-47. [PMID: 27454991 DOI: 10.1111/pim.12350] [Citation(s) in RCA: 163] [Impact Index Per Article: 23.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2016] [Accepted: 07/05/2016] [Indexed: 01/13/2023]
Abstract
Cryptosporidium is a major cause of moderate-to-severe diarrhoea in humans worldwide, second only to rotavirus. Due to the wide host range and environmental persistence of this parasite, cryptosporidiosis can be zoonotic and associated with foodborne and waterborne outbreaks. Currently, 31 species are recognized as valid, and of these, Cryptosporidium hominis and Cryptosporidium parvum are responsible for the majority of infections in humans. The immune status of the host, both innate and adaptive immunity, has a major impact on the severity of the disease and its prognosis. Immunocompetent individuals typically experience self-limiting diarrhoea and transient gastroenteritis lasting up to 2 weeks and recover without treatment, suggesting an efficient host antiparasite immune response. Immunocompromised individuals can suffer from intractable diarrhoea, which can be fatal. Effective drug treatments and vaccines are not yet available. As a result of this, the close cooperation and interaction between veterinarians, health physicians, environmental managers and public health operators is essential to properly control this disease. This review focuses on a One Health approach to prophylaxis, including the importance of understanding transmission routes for zoonotic Cryptosporidium species, improved sanitation and better risk management, improved detection, diagnosis and treatment and the prospect of an effective anticryptosporidial vaccine.
Collapse
Affiliation(s)
- U Ryan
- School of Veterinary and Life Sciences, Murdoch University, Perth, WA, Australia.
| | - A Zahedi
- School of Veterinary and Life Sciences, Murdoch University, Perth, WA, Australia
| | - A Paparini
- School of Veterinary and Life Sciences, Murdoch University, Perth, WA, Australia
| |
Collapse
|
10
|
Xiao L, Feng Y. Molecular epidemiologic tools for waterborne pathogens Cryptosporidium spp. and Giardia duodenalis. Food Waterborne Parasitol 2017; 8-9:14-32. [PMID: 32095639 PMCID: PMC7034008 DOI: 10.1016/j.fawpar.2017.09.002] [Citation(s) in RCA: 160] [Impact Index Per Article: 22.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2017] [Revised: 09/19/2017] [Accepted: 09/19/2017] [Indexed: 01/26/2023] Open
Abstract
Molecular diagnostic tools have played an important role in improving our understanding of the transmission of Cryptosporidium spp. and Giardia duodenalis, which are two of the most important waterborne parasites in industrialized nations. Genotyping tools are frequently used in the identification of host-adapted Cryptosporidium species and G. duodenalis assemblages, allowing the assessment of infection sources in humans and public health potential of parasites found in animals and the environment. In contrast, subtyping tools are more often used in case linkages, advanced tracking of infections sources, and assessment of disease burdens attributable to anthroponotic and zoonotic transmission. More recently, multilocus typing tools have been developed for population genetic characterizations of transmission dynamics and delineation of mechanisms for the emergence of virulent subtypes. With the recent development in next generation sequencing techniques, whole genome sequencing and comparative genomic analysis are increasingly used in characterizing Cryptosporidium spp. and G. duodenalis. The use of these tools in epidemiologic studies has identified significant differences in the transmission of Cryptosporidium spp. in humans between developing countries and industrialized nations, especially the role of zoonotic transmission in human infection. Geographic differences are also present in the distribution of G. duodenalis assemblages A and B in humans. In contrast, there is little evidence for widespread zoonotic transmission of giardiasis in both developing and industrialized countries. Differences in virulence have been identified among Cryptosporidium species and subtypes, and possibly between G. duodenalis assemblages A and B, and genetic recombination has been identified as one mechanism for the emergence of virulent C. hominis subtypes. These recent advances are providing insight into the epidemiology of waterborne protozoan parasites in both developing and developed countries.
Collapse
Affiliation(s)
- Lihua Xiao
- Division of Foodborne, Waterborne, and Environmental Diseases, National Center for Emerging and Zoonotic Infectious Diseases, Centers for Disease Control and Prevention, Atlanta, GA 30329, USA
| | - Yaoyu Feng
- College of Veterinary Medicine, South China Agricultural University, Guangzhou 510642, China
| |
Collapse
|
11
|
Danišová O, Valenčáková A, Stanko M, Luptáková L, Hatalová E, Čanády A. Rodents as a reservoir of infection caused by multiple zoonotic species/genotypes of C. parvum, C. hominis, C. suis, C. scrofarum, and the first evidence of C. muskrat genotypes I and II of rodents in Europe. Acta Trop 2017; 172:29-35. [PMID: 28433573 DOI: 10.1016/j.actatropica.2017.04.013] [Citation(s) in RCA: 30] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2017] [Accepted: 04/14/2017] [Indexed: 12/01/2022]
Abstract
Cryptosporidium spp. is an important causative agent of intestinal parasitoses-induced diarrhoea in humans and animals worldwide. Rodents (small mammals), the main reservoir of infections, are globally expanded and overpopulated, which increases the risk of transfer of human and zoonotic pathogens from the genus Cryptosporidium. In this study, Cryptosporidium was detected in wild immunocompetent asymptomatic small mammals. Altogether 262 fecal samples were collected from five areas in Eastern Slovakia from four different rodent species (Myodes glareolus, Apodemus agrarius, Apodemus flavicollis, Rattus norvegicus), eight samples originated from two insectivore species (Sorex araneus, Crocidura suaveolens), and two sample from a carnivore Mustela nivalis. The samples were examined using a method modified in our laboratory, based on the use of specific primers on a small subunit rRNA (18S rRNA) gene for species identification, and amplification of GP60 gene coding 60-kDa glycoprotein for genotype determination. The following species were identified: Cryptosporidium parvum (n=15), genotypes IIaA18G3R1 (n=11; KU311673), IIaA10G1R1 (n=1; KU311670), IIcA5G3a (n=1; KU311669), IIiA10 (n=2; KU311672); Cryptosporidium suis (n=4; KU311671); Cryptosporidium scrofarum (n=28); Cryptosporidium environment sp. (n=12; KU311677); Cryptosporidium muskrat genotype I (n=3; KU311675); Cryptosporidium muskrat genotype II (n=3; KU311676). From one of the rodent, the species Cryptosporidium hominis genotype IbA10G2 (KU311668) was identified for the first time. The results of this study indicate low host specificity of the detected Cryptosporidium species and imply the importance of free-living small mammals in urban and suburban habitats as a potential source of human cryptosporidiosis.
Collapse
Affiliation(s)
- Oľga Danišová
- Department of Biology and Genetics, University of Veterinary Medicine and Pharmacy, Komenského 73, 041 81 Košice, Slovak Republic.
| | - Alexandra Valenčáková
- Department of Biology and Genetics, University of Veterinary Medicine and Pharmacy, Komenského 73, 041 81 Košice, Slovak Republic
| | - Michal Stanko
- Institute of Parasitology and Institute of Zoology, Slovak Academy of Science, Hlinková 3, 040 01 Košice, Slovak Republic
| | - Lenka Luptáková
- Department of Biology and Genetics, University of Veterinary Medicine and Pharmacy, Komenského 73, 041 81 Košice, Slovak Republic
| | - Elena Hatalová
- Department of Biology and Genetics, University of Veterinary Medicine and Pharmacy, Komenského 73, 041 81 Košice, Slovak Republic
| | - Alexander Čanády
- Faculty of Science, Institute of Biology and Ecology, Pavol Jozef Šafarik University, Moyzesová 11, 040 02 Košice, Slovak Republic
| |
Collapse
|
12
|
Cryptosporidium infection in children with cancer undergoing chemotherapy: how important is the prevention of opportunistic parasitic infections in patients with malignancies? Parasitol Res 2017; 116:2507-2515. [PMID: 28730516 DOI: 10.1007/s00436-017-5560-5] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2017] [Accepted: 07/12/2017] [Indexed: 12/20/2022]
Abstract
Cryptosporidiosis is a relatively uncommon disease in healthy individuals but could be potentially worrisome in immunocompromised patients. This study aimed to evaluate Cryptosporidium infection in children with cancer undergoing chemotherapy. A case-control study was conducted in 132 children with cancer undergoing chemotherapy and 132 non-cancer controls. The modified Ziehl-Neelsen (MZN) staining and polymerase chain reaction methods were used for the detection of Cryptosporidium parasite. All positive isolates were sequenced for phylogenetic analysis. Statistical analysis was performed using the SPSS version 16 and Fisher exact test. The rate of cryptosporidiosis in children with cancer undergoing chemotherapy was 3.8%, which was higher than that of the control group. Other intestinal parasites detected in patients with cancer included Giardia lamblia (3%), Entamoeba coli (1.5%), and Chilomastix mesnili (0.8%). In the control group, only two (1.5%) cases were positive for G. lamblia. No significant difference was observed between the gender, age, residency, contact with domestic animals, stool appearance, neutropenia, chemotherapy period, and type of malignancy with regard to cryptosporidiosis. Phylogenetic analysis revealed that Cryptosporidium parvum isolates in this study relied on a branch that represents similar sequences from Iran and other countries. Although the rate of Cryptosporidium infection was relatively higher in children with cancer undergoing chemotherapy compared to the control group, any statistically significant difference has not been found between them. These findings should not be contrary to the need for healthcare to prevent opportunistic parasitic infections in malignant and immunocompromised patients.
Collapse
|
13
|
Public health significance of zoonotic Cryptosporidium species in wildlife: Critical insights into better drinking water management. INTERNATIONAL JOURNAL FOR PARASITOLOGY-PARASITES AND WILDLIFE 2015; 5:88-109. [PMID: 28560163 PMCID: PMC5439462 DOI: 10.1016/j.ijppaw.2015.12.001] [Citation(s) in RCA: 123] [Impact Index Per Article: 13.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/29/2015] [Revised: 12/01/2015] [Accepted: 12/02/2015] [Indexed: 11/22/2022]
Abstract
Cryptosporidium is an enteric parasite that is transmitted via the faecal-oral route, water and food. Humans, wildlife and domestic livestock all potentially contribute Cryptosporidium to surface waters. Human encroachment into natural ecosystems has led to an increase in interactions between humans, domestic animals and wildlife populations. Increasing numbers of zoonotic diseases and spill over/back of zoonotic pathogens is a consequence of this anthropogenic disturbance. Drinking water catchments and water reservoir areas have been at the front line of this conflict as they can be easily contaminated by zoonotic waterborne pathogens. Therefore, the epidemiology of zoonotic species of Cryptosporidium in free-ranging and captive wildlife is of increasing importance. This review focuses on zoonotic Cryptosporidium species reported in global wildlife populations to date, and highlights their significance for public health and the water industry.
Collapse
|