1
|
Lin HY, Yen SC, Tsai SK, Shen F, Lin JHY, Lin HJ. Combining Direct PCR Technology and Capillary Electrophoresis for an Easy-to-Operate and Highly Sensitive Infectious Disease Detection System for Shrimp. Life (Basel) 2022; 12:life12020276. [PMID: 35207563 PMCID: PMC8879573 DOI: 10.3390/life12020276] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2022] [Revised: 02/09/2022] [Accepted: 02/09/2022] [Indexed: 11/30/2022] Open
Abstract
Infectious diseases are considered the greatest threat to the modern high-density shrimp aquaculture industry. Specificity, rapidity, and sensitivity of molecular diagnostic methods for the detection of asymptomatic infected shrimp allows preventive measures to be taken before disease outbreaks. Routine molecular detection of pathogens in infected shrimp can be made easier with the use of a direct polymerase chain reaction (PCR). In this study, four direct PCR reagent brands were tested, and results showed that the detection signal of direct PCR in hepatopancreatic tissue was more severely affected. In addition, portable capillary electrophoresis was applied to improve sensitivity and specificity, resulting in a pathogen detection limit of 25 copies/PCR-reaction. Juvenile shrimp from five different aquaculture ponds were tested for white spot syndrome virus infection, and the results were consistent with the Organization for Animal Health’s certified standard method. Furthermore, this methodology could be used to examine single post larvae shrimp. The overall detection time was reduced by more than 58.2%. Therefore, the combination of direct PCR and capillary electrophoresis for on-site examination is valuable and has potential as a suitable tool for diagnostic, epidemiological, and pathological studies of shrimp aquaculture.
Collapse
Affiliation(s)
- Hung-Yun Lin
- Center of Excellence for the Oceans, National Taiwan Ocean University, Keelung 20224, Taiwan;
| | - Shao-Chieh Yen
- Department of Bioscience and Biotechnology, National Taiwan Ocean University, Keelung 20224, Taiwan;
- BiOptic Inc., New Taipei City 23141, Taiwan;
| | | | - Fan Shen
- Giant Bio Technology Inc., New Taipei City 22101, Taiwan;
| | - John Han-You Lin
- School of Veterinary Medicine, National Taiwan University, Taipei, 10617, Taiwan
- Correspondence: (J.H.-Y.L.); (H.-J.L.)
| | - Han-Jia Lin
- Center of Excellence for the Oceans, National Taiwan Ocean University, Keelung 20224, Taiwan;
- Department of Bioscience and Biotechnology, National Taiwan Ocean University, Keelung 20224, Taiwan;
- Correspondence: (J.H.-Y.L.); (H.-J.L.)
| |
Collapse
|
2
|
Sun J, Cao J, Jiang X. Study on the Rapid Preparation of Zinc Oxide Nanotubes by Galvanostatic Etching. EURASIAN CHEMICO-TECHNOLOGICAL JOURNAL 2021. [DOI: 10.18321/ectj1128] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022] Open
Abstract
At present, most of the methods for preparing ZnO nanotubes are chemical etching of ZnO nanorods, which is inefficient and takes a long time. In this paper, ZnO nanotubes were successfully prepared by galvanostatic etching. Nanotubes prepared by galvanostatic etching only took 1/6 of the time of chemical etching. The ZnO nanotubes obtained by two different methods were tested by XRD and SEM. It is found that the crystal structure and crystallinity of the ZnO nanotubes obtained by galvanostatic etching are unchanged, and the internal corrosion of the nanotubes by galvanostatic etching is more thorough and has a larger specific surface area. In the tests of UV-vis spectrophotometry, fluorescence spectra and electrochemical performance test, the optical properties and electrochemical performance of ZnO nanotubes obtained by galvanostatic etching are better than those obtained by chemical etching. Because the ZnO nanotubes obtained by galvanostatic etching have larger specific surface area, better optical properties and better electrochemical performance, they have a greater application prospect in sensors and ultraviolet light detectors.
Collapse
|
3
|
An electrochemical sensor based on plasma-treated zinc oxide nanoflowers for the simultaneous detection of dopamine and diclofenac sodium. Microchem J 2020. [DOI: 10.1016/j.microc.2020.105237] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
4
|
Gross EM, Porter LR, Stark NR, Lowry ER, Schaffer LV, Maddipati SS, Hoyt DJ, Stombaugh SE, Peila SR, Henry CS. Micromolded Carbon Paste Microelectrodes for Electrogenerated Chemiluminescent Detection on Microfluidic Devices. ChemElectroChem 2020; 7:3244-3252. [DOI: 10.1002/celc.202000366] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Affiliation(s)
- Erin M. Gross
- Department of ChemistryCreighton University 2500 California Plaza Omaha NE 68178 USA
| | - Laura R. Porter
- Department of ChemistryCreighton University 2500 California Plaza Omaha NE 68178 USA
| | - Nicholas R. Stark
- Department of ChemistryCreighton University 2500 California Plaza Omaha NE 68178 USA
| | - Emily R. Lowry
- Department of ChemistryCreighton University 2500 California Plaza Omaha NE 68178 USA
| | - Leah V. Schaffer
- Department of ChemistryCreighton University 2500 California Plaza Omaha NE 68178 USA
| | - Sai Sujana Maddipati
- Department of ChemistryCreighton University 2500 California Plaza Omaha NE 68178 USA
| | - Dylan J. Hoyt
- Department of ChemistryCreighton University 2500 California Plaza Omaha NE 68178 USA
| | - Sarah E. Stombaugh
- Department of ChemistryCreighton University 2500 California Plaza Omaha NE 68178 USA
| | - Sarah R. Peila
- Department of ChemistryCreighton University 2500 California Plaza Omaha NE 68178 USA
| | - Charles S. Henry
- Department of ChemistryColorado State University Fort Collins CO 80523 USA
| |
Collapse
|
5
|
Ragab MAA, El-Kimary EI. Recent Advances and Applications of Microfluidic Capillary Electrophoresis: A Comprehensive Review (2017-Mid 2019). Crit Rev Anal Chem 2020; 51:709-741. [PMID: 32447968 DOI: 10.1080/10408347.2020.1765729] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
Microfluidic capillary electrophoresis (MCE) is the novel technique resulted from the CE mininaturization as planar separation and analysis device. This review presents and discusses various application fields of this advanced technology published in the period 2017 till mid-2019 in eight different sections including clinical, biological, single cell analysis, environmental, pharmaceuticals, food analysis, forensic and ion analysis. The need for miniaturization of CE and the consequence advantages achieved are also discussed including high-throughput, miniaturized detection, effective separation, portability and the need for micro- or even nano-volume of samples. Comprehensive tables for the MCE applications in the different studied fields are provided. Also, figure comparing the number of the published papers applying MCE in the eight discussed fields within the studied period is included. The future investigation should put into consideration the possibility of replacing conventional CE with the MCE after proper validation. Suitable validation parameters with their suitable accepted ranges should be tailored for analysis methods utilizing such unique technique (MCE).
Collapse
Affiliation(s)
- Marwa A A Ragab
- Faculty of Pharmacy, Department of Pharmaceutical Analytical Chemistry, Alexandria University, El-Messalah, Alexandria, Egypt
| | - Eman I El-Kimary
- Faculty of Pharmacy, Department of Pharmaceutical Analytical Chemistry, Alexandria University, El-Messalah, Alexandria, Egypt
| |
Collapse
|
6
|
Gold Nanoparticle Size-Dependent Enhanced Chemiluminescence for Ultra-Sensitive Haptoglobin Biomarker Detection. Biomolecules 2019; 9:biom9080372. [PMID: 31416293 PMCID: PMC6723178 DOI: 10.3390/biom9080372] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2019] [Revised: 08/13/2019] [Accepted: 08/13/2019] [Indexed: 12/22/2022] Open
Abstract
Bovine mastitis (BM) is a frequent disease in the dairy industry that causes staggering economical losses due to decreased milk production and increased health care costs. Traditionally, BM detection depends on the efficacy and reliability of analytical techniques that measure somatic cell counts (SCC), detect pathogens, and reveal inflammatory status. Herein, we demonstrate the detection of bovine haptoglobin, a well-documented acute phase protein for evaluating BM clinical status, by utilizing hemoglobin-binding capacity within luminol chemiluminescence (CL) system. The resulting haptoglobin–hemoglobin complex reduces the CL signal proportionally to inherent haptoglobin concentrations. Different sizes of cross-linked gold nanoparticles (GNPs) were examined for enhanced CL (eCL) signal amplification, presenting over 30-fold emitted radiation enhancement for optimized size within real milk samples with respect to nanoparticle-free assay. The eCL values were proportionally related to nanoparticle size and content, influenced by SCC and pathogen type (e.g., Escherichia coli and coagulase-negative staphylococci). The optimized bioassay showed a broad linear response (1 pg mL−1–10 µg mL−1) and minute detection limit of 0.19 pg mL−1, while presenting quantitative performance in agreement with commercial ELISA kit. Finally, the resulting optimized eCL concept offers an efficient label-free detection of haptoglobin biomarker, offering means to diagnose the severity of the associated diseases.
Collapse
|
7
|
Kubáň P, Dvořák M, Kubáň P. Capillary electrophoresis of small ions and molecules in less conventional human body fluid samples: A review. Anal Chim Acta 2019; 1075:1-26. [PMID: 31196414 DOI: 10.1016/j.aca.2019.05.004] [Citation(s) in RCA: 39] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2019] [Revised: 05/02/2019] [Accepted: 05/03/2019] [Indexed: 01/05/2023]
Abstract
In recent years, advances in sensitive analytical techniques have encouraged the analysis of various compounds in biological fluids. While blood serum, blood plasma and urine still remain the golden standards in clinical, toxicological and forensic science, analyses of other body fluids, such as breast milk, exhaled breath condensate, sweat, saliva, amniotic fluid, cerebrospinal fluid, or capillary blood in form of dried blood spots are becoming more popular. This review article focuses on capillary electrophoresis and microchip electrophoresis of small ions and molecules (e.g. inorganic cations/anions, basic/acidic drugs, small acids/bases, amino acids, peptides and other low molecular weight analytes) in various less conventional human body fluids and hopes to stimulate further interest in the field.
Collapse
Affiliation(s)
- Petr Kubáň
- Institute of Analytical Chemistry of the Czech Academy of Sciences, Veveří 97, CZ-60200, Brno, Czech Republic
| | - Miloš Dvořák
- Institute of Analytical Chemistry of the Czech Academy of Sciences, Veveří 97, CZ-60200, Brno, Czech Republic
| | - Pavel Kubáň
- Institute of Analytical Chemistry of the Czech Academy of Sciences, Veveří 97, CZ-60200, Brno, Czech Republic.
| |
Collapse
|
8
|
Li J, Zhao J, Li S, Zhang L, Huang Y, Zhao S, Liu YM. Electrophoresis separation assisted G-quadruplex DNAzyme-based chemiluminescence signal amplification strategy on a microchip platform for highly sensitive detection of microRNA. Chem Commun (Camb) 2018; 52:12806-12809. [PMID: 27711307 DOI: 10.1039/c6cc06327f] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
We have developed an electrophoresis separation assisted G-quadruplex DNAzyme-based chemiluminescence (CL) signal amplification strategy on a microchip platform for the detection of trace microRNA. This strategy exhibits high sensitivity and specificity for detection of target molecules.
Collapse
Affiliation(s)
- Jian Li
- State Key Laboratory for the Chemistry and Molecular Engineering of Medicinal Resources, Guangxi Normal University, Guilin 541004, China.
| | - Jingjin Zhao
- State Key Laboratory for the Chemistry and Molecular Engineering of Medicinal Resources, Guangxi Normal University, Guilin 541004, China.
| | - Shuting Li
- State Key Laboratory for the Chemistry and Molecular Engineering of Medicinal Resources, Guangxi Normal University, Guilin 541004, China.
| | - Liangliang Zhang
- State Key Laboratory for the Chemistry and Molecular Engineering of Medicinal Resources, Guangxi Normal University, Guilin 541004, China.
| | - Yong Huang
- State Key Laboratory for the Chemistry and Molecular Engineering of Medicinal Resources, Guangxi Normal University, Guilin 541004, China.
| | - Shulin Zhao
- State Key Laboratory for the Chemistry and Molecular Engineering of Medicinal Resources, Guangxi Normal University, Guilin 541004, China.
| | - Yi-Ming Liu
- Department of Chemistry and Biochemistry, Jackson State University, 1400 Lynch St, Jackson, MS 39217, USA
| |
Collapse
|
9
|
Phillips TM. Recent advances in CE and microchip-CE in clinical applications: 2014 to mid-2017. Electrophoresis 2017; 39:126-135. [PMID: 28853177 DOI: 10.1002/elps.201700283] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2017] [Revised: 08/09/2017] [Accepted: 08/10/2017] [Indexed: 11/11/2022]
Abstract
CE and microchip CE (ME) are powerful tools for the analysis of a number of different analytes and have been applied to a variety of clinical fields and human samples. This review will present an overview of the most recent applications of these techniques to different areas of clinical medicine during the period of 2014 to mid-2017. CE and ME have been applied to clinical chemistry, drug detection and monitoring, hematology, infectious diseases, oncology, endocrinology, neonatology, nephrology, and genetic screening. Samples examined range from serum, plasma, and urine to lest utilized materials such as tears, cerebral spinal fluid, sweat, saliva, condensed breath, single cells, and biopsy tissue. Examples of clinical applications will be given along with the various detection systems employed.
Collapse
Affiliation(s)
- Terry M Phillips
- Department of Pharmaceutics, School of Pharmacy, Virginia Commonwealth University, Richmond, VA, USA
| |
Collapse
|
10
|
Liu Y, Wang W, Jia M, Liu R, Liu Q, Xiao H, Li J, Xue Y, Wang Y, Yan C. Recent advances in microscale separation. Electrophoresis 2017; 39:8-33. [DOI: 10.1002/elps.201700271] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2017] [Revised: 08/03/2017] [Accepted: 08/04/2017] [Indexed: 12/14/2022]
Affiliation(s)
- Yuanyuan Liu
- School of Pharmacy; Shanghai Jiao Tong University; Shanghai P. R. China
| | - Weiwei Wang
- School of Pharmacy; Shanghai Jiao Tong University; Shanghai P. R. China
| | - Mengqi Jia
- School of Pharmacy; Shanghai Jiao Tong University; Shanghai P. R. China
| | - Rangdong Liu
- School of Pharmacy; Shanghai Jiao Tong University; Shanghai P. R. China
| | - Qing Liu
- School of Pharmacy; Shanghai Jiao Tong University; Shanghai P. R. China
| | - Han Xiao
- School of Pharmacy; Shanghai Jiao Tong University; Shanghai P. R. China
| | - Jing Li
- Unimicro (shanghai) Technologies Co., Ltd.; Shanghai P. R. China
| | - Yun Xue
- School of Pharmacy; Shanghai Jiao Tong University; Shanghai P. R. China
| | - Yan Wang
- School of Pharmacy; Shanghai Jiao Tong University; Shanghai P. R. China
| | - Chao Yan
- School of Pharmacy; Shanghai Jiao Tong University; Shanghai P. R. China
| |
Collapse
|
11
|
Li S, Shi M, Zhao J, Zhang L, Huang Y, Zhao S. A highly sensitive capillary electrophoresis immunoassay strategy based on dual-labeled gold nanoparticles enhancing chemiluminescence for the detection of prostate-specific antigen. Electrophoresis 2017; 38:1780-1787. [DOI: 10.1002/elps.201600396] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2016] [Revised: 03/08/2017] [Accepted: 03/23/2017] [Indexed: 11/10/2022]
Affiliation(s)
- Shuting Li
- State Key Laboratory for the Chemistry and Molecular Engineering of Medicinal Resources; Key Laboratory of Ecology of Rare and Endangered Species and Environmental Protection of Ministry Education; Guangxi Normal University; Guilin P. R. China
| | - Min Shi
- State Key Laboratory for the Chemistry and Molecular Engineering of Medicinal Resources; Key Laboratory of Ecology of Rare and Endangered Species and Environmental Protection of Ministry Education; Guangxi Normal University; Guilin P. R. China
| | - Jingjin Zhao
- State Key Laboratory for the Chemistry and Molecular Engineering of Medicinal Resources; Key Laboratory of Ecology of Rare and Endangered Species and Environmental Protection of Ministry Education; Guangxi Normal University; Guilin P. R. China
| | - Liangliang Zhang
- State Key Laboratory for the Chemistry and Molecular Engineering of Medicinal Resources; Key Laboratory of Ecology of Rare and Endangered Species and Environmental Protection of Ministry Education; Guangxi Normal University; Guilin P. R. China
| | - Yong Huang
- State Key Laboratory for the Chemistry and Molecular Engineering of Medicinal Resources; Key Laboratory of Ecology of Rare and Endangered Species and Environmental Protection of Ministry Education; Guangxi Normal University; Guilin P. R. China
| | - Shulin Zhao
- State Key Laboratory for the Chemistry and Molecular Engineering of Medicinal Resources; Key Laboratory of Ecology of Rare and Endangered Species and Environmental Protection of Ministry Education; Guangxi Normal University; Guilin P. R. China
| |
Collapse
|
12
|
Chemiluminescence noncompetitive immunoassay based on microchip electrophoresis for the determination of β-subunit of human chorionic gonadotropin. J Chromatogr B Analyt Technol Biomed Life Sci 2017; 1053:42-47. [DOI: 10.1016/j.jchromb.2017.03.031] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2016] [Revised: 03/23/2017] [Accepted: 03/26/2017] [Indexed: 11/15/2022]
|
13
|
Du J, He Y. Fast detection of sodium tripolyphosphate using gold nanoflowers coated with luminol and chitosan as a chemiluminescent probe. Mikrochim Acta 2016. [DOI: 10.1007/s00604-016-2053-7] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
|
14
|
Recent Advance in Chemiluminescence Assay and Its Biochemical Applications. CHINESE JOURNAL OF ANALYTICAL CHEMISTRY 2016. [DOI: 10.1016/s1872-2040(16)60981-7] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
|
15
|
Štěpánová S, Kašička V. Analysis of proteins and peptides by electromigration methods in microchips. J Sep Sci 2016; 40:228-250. [PMID: 27704694 DOI: 10.1002/jssc.201600962] [Citation(s) in RCA: 49] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2016] [Revised: 09/14/2016] [Accepted: 09/14/2016] [Indexed: 11/07/2022]
Abstract
This review presents the developments and applications of microchip electromigration methods in the separation and analysis of peptides and proteins in the period 2011-mid-2016. The developments in sample preparation and preconcentration, microchannel material, and surface treatment are described. Separations by various microchip electromigration methods (zone electrophoresis in free and sieving media, affinity electrophoresis, isotachophoresis, isoelectric focusing, electrokinetic chromatography, and electrochromatography) are demonstrated. Advances in detection methods are reported and novel applications in the areas of proteomics and peptidomics, quality control of peptide and protein pharmaceuticals, analysis of proteins and peptides in biomatrices, and determination of physicochemical parameters are shown.
Collapse
Affiliation(s)
- Sille Štěpánová
- Institute of Organic Chemistry and Biochemistry of the Czech Academy of Sciences, Prague, Czech Republic
| | - Václav Kašička
- Institute of Organic Chemistry and Biochemistry of the Czech Academy of Sciences, Prague, Czech Republic
| |
Collapse
|
16
|
Andronico LA, Quintavalla A, Lombardo M, Mirasoli M, Guardigli M, Trombini C, Roda A. Synthesis of 1,2-Dioxetanes as Thermochemiluminescent Labels for Ultrasensitive Bioassays: Rational Prediction of Olefin Photooxygenation Outcome by Using a Chemometric Approach. Chemistry 2016; 22:18156-18168. [DOI: 10.1002/chem.201603765] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2016] [Revised: 09/07/2016] [Indexed: 12/21/2022]
Affiliation(s)
- Luca A. Andronico
- Department of Chemistry “G. Ciamician”; Alma Mater Studiorum; University of Bologna; Via Selmi 2 40126 Bologna Italy
| | - Arianna Quintavalla
- Department of Chemistry “G. Ciamician”; Alma Mater Studiorum; University of Bologna; Via Selmi 2 40126 Bologna Italy
| | - Marco Lombardo
- Department of Chemistry “G. Ciamician”; Alma Mater Studiorum; University of Bologna; Via Selmi 2 40126 Bologna Italy
| | - Mara Mirasoli
- Department of Chemistry “G. Ciamician”; Alma Mater Studiorum; University of Bologna; Via Selmi 2 40126 Bologna Italy
| | - Massimo Guardigli
- Department of Chemistry “G. Ciamician”; Alma Mater Studiorum; University of Bologna; Via Selmi 2 40126 Bologna Italy
| | - Claudio Trombini
- Department of Chemistry “G. Ciamician”; Alma Mater Studiorum; University of Bologna; Via Selmi 2 40126 Bologna Italy
| | - Aldo Roda
- Department of Chemistry “G. Ciamician”; Alma Mater Studiorum; University of Bologna; Via Selmi 2 40126 Bologna Italy
| |
Collapse
|
17
|
Xu X, Li N, Li X, Shi H, Ma C, Kang W, Cong B. Capillary electrophoresis chemiluminescence assay of naphthol isomers in human urine and river water using Ni(IV) complex-luminol system. Electrophoresis 2016; 37:2992-3001. [PMID: 27591165 DOI: 10.1002/elps.201600133] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2016] [Revised: 07/23/2016] [Accepted: 08/17/2016] [Indexed: 11/10/2022]
Abstract
A capillary electrophoresis method involving online indirect chemiluminescence (CL) detection was used to determine naphthol (NAP) isomers. The method was based on the quenching effect of 1- and 2-NAP on a new CL reaction of luminol with Ni(IV) complex in an alkaline medium. Separation was conducted with a 25.0 mM sodium borate buffer containing 0.8 mmol/L luminol. Under optimized conditions, 1- and 2-NAP were baseline separated and detected in less than 8 min. The limits of detection of 1- and 2-NAP were 3.1 and 2.7 μg/L, respectively (S/N = 3), with a linear range of 4.0-80.0 μg/L (r > 0.995). Analysis of real samples demonstrated that the spiked recoveries were in the range of 89.2-107.5% (n = 3). The proposed method was successfully used to determine 1- and 2-NAP contents in three environmental water samples and 14 human urine samples. No derivatization or tedious pretreatment was required in the analysis. The proposed method is a potential approach for routine tests of naphthol isomers in a facile CE-CL system.
Collapse
Affiliation(s)
- Xiangdong Xu
- Key Laboratory of Forensic Medicine of Hebei Province, Shijiazhuang, Hebei Province, P. R. China.,School of Public Health, Hebei Medical University, Shijiazhuang, Hebei Province, P. R. China
| | - Nan Li
- School of Public Health, Hebei Medical University, Shijiazhuang, Hebei Province, P. R. China
| | - Xiang Li
- School of Public Health, Hebei Medical University, Shijiazhuang, Hebei Province, P. R. China
| | - Hongmei Shi
- School of Public Health, Hebei Medical University, Shijiazhuang, Hebei Province, P. R. China
| | - Chunling Ma
- Key Laboratory of Forensic Medicine of Hebei Province, Shijiazhuang, Hebei Province, P. R. China
| | - Weijun Kang
- School of Public Health, Hebei Medical University, Shijiazhuang, Hebei Province, P. R. China
| | - Bin Cong
- Key Laboratory of Forensic Medicine of Hebei Province, Shijiazhuang, Hebei Province, P. R. China
| |
Collapse
|
18
|
Su Y, Deng D, Zhang L, Song H, Lv Y. Strategies in liquid-phase chemiluminescence and their applications in bioassay. Trends Analyt Chem 2016. [DOI: 10.1016/j.trac.2016.07.002] [Citation(s) in RCA: 45] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
19
|
Cheng C, Jiang T, Han J, Lv K, Hu S, Wang X. Capillary electrophoresis coupled with in-column fiber-optic laser-induced fluorescence detection for the rapid separation of neodymium. Electrophoresis 2016; 37:2657-2662. [PMID: 27346878 DOI: 10.1002/elps.201600215] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2016] [Revised: 06/18/2016] [Accepted: 06/20/2016] [Indexed: 01/20/2023]
Abstract
In this study, in-column fiber-optic (ICFO) laser-induced fluorescence (LIF) detection technique is coupled with capillary electrophoresis (CE) for the rapid separation of neodymium for the first time. The effects of buffer concentration, buffer pH, and separation voltage on the CE behaviors, including electrophoretic efficiency and detection sensitivity, are investigated in detail. Under the optimal condition determined in this study (15 mM borate buffer, pH 10.50, separation voltage 24 kV), neodymium could be separated effectively from the neighboring lanthanides (praseodymium and samarium) within several minutes, and the limit of detection for neodymium is estimated to be at the ppt level. The ICFO-LIF-CE system assembled in this study exhibits unique performance characteristics such as low cost and flexibility. Meanwhile, the separation efficiency and detection sensitivity of the assembled CE system are comparable to or somewhat better than those obtained in the previous traditional CE systems, indicating the potential of the assembled CE system for practical applications in the fields of spent nuclear fuel analysis, nuclear waste disposal/treatment, and nuclear forensics.
Collapse
Affiliation(s)
- Changming Cheng
- Institute of Nuclear Physics and Chemistry, China Academy of Engineering Physics, Mianyang, P. R. China
| | - Tao Jiang
- Institute of Nuclear Physics and Chemistry, China Academy of Engineering Physics, Mianyang, P. R. China
| | - Jun Han
- Institute of Nuclear Physics and Chemistry, China Academy of Engineering Physics, Mianyang, P. R. China
| | - Kai Lv
- Institute of Nuclear Physics and Chemistry, China Academy of Engineering Physics, Mianyang, P. R. China
| | - Sheng Hu
- Institute of Nuclear Physics and Chemistry, China Academy of Engineering Physics, Mianyang, P. R. China.
| | - Xiaolin Wang
- Institute of Nuclear Physics and Chemistry, China Academy of Engineering Physics, Mianyang, P. R. China.
| |
Collapse
|